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In this talk we shall be concerned with real valued solutions iff of Schrödinger equations 
(—A + V - E)i/> = 0 in a domain fi C R n , n > 2, under suitable assumptions on V and 
E. In the literature there are not many results about nodal properties of such solutions. 
We mention only the classical global result of Courant [6], and the local results of Bers 
[2], Cheng [5] and Caffarelli and Friedmann [3]. 

For fi unbounded the nodal set of tp, i.e. { i € ftfoK*) = 0} is in general unbounded 
and it is natural and interesting to investigate the asymptotic properties of ip in relation 
with its nodes. Such investigations were performed by the present authors (partly in 
collaboration with J. Swetina) in a series of papers (for n = 2 in [10,12], and for n > 3 in 
{11,13]). We first give a survey of some of the results obtained there. Then we announce 
a new local result about the geometry of the nodal set of such solutions xp. For its proof 
methods developed in [13] and results of Bers [2] are used. 

First we consider real valued Wr2'3-solutions ^(a:) of 

( -A + V - E)i> = 0 for i € ft*, ilR = {x € R n | |x| = r > R),R> 0,n > 2. (1) 

Here the Sobolev space W2'2(£IR) is defined as in [8]. We assume that 

E < 0 (2) 

and that V(x) satisfies the following conditions: 

V is real valued and continuous in fi/j, (A.l) 

lim V(x) = 0. M.2) 
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(2), (A.l) and (A.2) imply that we can choose R so that 

igjy{x) - E) > 0. (A3) 

The above assumptions on V imply that Co°(ft/t) is a form core for the quadratic form 
associated to —A + V — E and its Friedrichs extension is a positive definite selfadjoint 
operator. This guarantees that given V> = <p on dtln with <p continuous in a neighbourhood 
of dflji, the corresponding Dirichlet problem (1) is uniquely solvable [8]. 

Before we specify our assumptions on V further, we should mention that there is a 
rich literature on the asymptotics of solutions of Schrodinger equations. See for instance 
[1,7,13] and references therein. 

We split V so that 
V{x) = V1(r) + V2(x) (A4) 

and assume that \\ and V2 satisfy the conditions (A.l - A.3) separately. Furthermore we 
assume that in QR 

Vi is continuously differentiate and 

\—r~\ < cr~l~l for some c, t > 0 dr 
(A5) 

and that 
\V2\ < cor"1"7 for some co,7 > 0. (A6) 

Next we consider a radial comparison problem to (1), 

( -A + Vi - E)v = 0 in fiR 

with v 6 L2(ftfl), v = v(r) and - - • "* v > 0 in ilR. J 

We write %l> = 0(ry) where y = {• 6 Sn~l ( 5 n _ 1 the unit sphere in R n ) and define 

Mr) = (/sn_, W * 
(where da denotes normalized integration over Sn"1) and 

u = 0/y, 

then we have (see (9,11]) 

Theorem 1: Let 0 ^ 0 be given according to (1), E < 0, and let V = Vi(r) + V2(x) 
satisfy the foregoing conditions (A). Then for some c.,c+ > 0 

|0| ^ c+v» c.v < 0O 1 ; for r > R 

and 
A(y) = lim u(ry) exists and J4 is continuous. 



Theorem 1 permits us to investigate various asymptotic properties of u, from which 
corresponding results follow for the intrinsically defined function V'/V'«»-

To illustrate that the asymptotic behaviour of tx (resp. 0/0 Sv) is already a nontrivial 
problem for a spherical symmetric potential (i.e. V2 = 0) we use an example of quantum 
mechanics, the Schrödinger equation for the Hydrogen atom 

( _ A - - - £ t t ) ^ n = 0, £„ = _ ! , 
r n* 

with jf>n (E L 2(R 3), n = 1,2,.. , an eigenfunction corresponding to the n2-fold degenerated 
eigenvalue En. It is well-known that Vv can be written as 

* = £ £ <aifin\r)Y}m\y), 

where the Yjm' are the usual surface harmonics. The f}n' satisfy on (0, oo) the ordinary 
differential equation 

and show the /-independent asymptotics 

/ ^ ( r J - r ^ V ^ - l - ^ - V 7 ^ ! ' for r - oo. 

Then with u n = ^n//o a Q d A»(lO = linV-.oow«» »* G N, we obtain explicit examples for 
which the behaviour of the nodal surfaces is nontrivial for r -> oo. 

For the following we need additional assumptions on the decay and regularity of V2. 
We require that for R > R and 

for some a > \, r H a V 2 (ry) € CftS""1), 

i.e. {r1+aV2(r-), r > R] is a uniformly bounded set 

of Cw{Sn-1) functions ifiu means real analytic). 

{B) 

We first state our results for dimension n = 2: 
It will be convenient to use polar coordinates i j = r cosw, x 2 = r sinu>, u> G [—K, JT]. 

Further we write ^ = V>(r>w) and A s= A{u). 

Theorem 2: Suppose the assumptions of Theorem 1 hold and V2 satisfies condition 
(B), then 

(i) u(ry) € CZ(S*), A e C(Sl) and A # 0. Further for k € N U {0} 

I JJf(«(r,w) - i4(w))| < ftr-, a = min(l, a), (4) 

in ft/} for Ä > R large enough with some c* < oo (net depending on r). 
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(ii) Let ß € (0,1/2) and Vß = {x € fl/iJM < r~0}, Rß sufficiently l&rge. Suppose 
A(0) = 0, so that for some M € N and for |u>| small, A{u) = w** + 0 ( w M + 1 ) . Then 
for some 6, v > 0 we have in Z ĵ 

u(r, w) = ( 2 M - M r - w / 2 H M ( f r v ^ ) ( l + 0(r-")) + 0(r'Mf2-s), (5) 

where 6 = (\E\/A)^2 and i / ^ denotes the Hermite polynomial of degree M. 

Corollary 1: Choosing u> = z/(bi/r) and denoting 

UM(r,z) = rMfMr^) 

(5) implies 
U*(r, z) - i2b)~MHM(z) for r - oo, V z 6 R. (6) 

The proof of Theorem 2 is given in [10]. We note that the proof of part (ii) is based 
on iterations of an integrodifferential equation for u. 

Investigating the properties of U\f(r, z) further it was shown in [12] that for large 
r the nodal set of ip consists of non intersecting nodal lines wnich look asymptotically 
either like straight lines or like branches of parabolas. Specifically we have 

Theorem 3: Suppose the assumptions of Theorem 2 hold. Assume A(0) = 0 with 

A(u) =wM + dü,M+l + 0 ( w M + 2 ) for M small 

for some d 6 R and M € N. Let z< 6 R for 1 < t < M denote the zeros of the Hermite 
polynomial HM, i.e. HM(ZI) = 0 for 1 < t < M. 

Then for c > 0 sufficiently small and R,. large the nodal set of $ in Dt = {x € ftn\r > 
Rt, \u>\ < e} consists of M nodal lines (corresponding to the M zeros of HM). They admit 
a representation in cartesian coordinates ((zi,£ 2) € R 3 ) denoted by x 2 — Gi{x\) for 
1 < i < A/..Therefore denoting 0 ~ ^{x\,x^), 0(zi,G,-(xi)) = 0 for 1 < i < M. For 
all t, Gi is continuously differentiable and the nodai lines have the following asymptotic 
behaviour: 

For M > 2 and z{ ± 0 

Z' 

Gi{xx) = ( j + <Kl))v^T for large xx 

with b = d^l /4) 1 ' 4 . Further if z, > 0 (< 0), then d is strictly monotonically increasing 
(decreasing) for large x\. 

For M odd, HM(Q) = 0 and without loss let zx — 0, then 

G\(xt) = —7= + o(l) for large x t . 

For dimensions n > 3 the structure of the nodal set near infinity of a solution i> can 
show much more complicated patterns than for n = 2, due to the fact that the nodal 



set of A will be usually an (n — 2)-dimensional object. Though there is an asymptotic 
expansion for u analogously to Theorem 2 (given in [11]), where linear combinations of 
products of Hermite polynomials occur, it seems to be no longer possible in general to 
characterize the nodal surfaces as in Theorem 3 the nodal lines. But in [13] we obtain 
results on the asymptotics of ij>/tl>av in relation with the asymptotic behaviour of the 
nodal domains of t/>: 

Let r 0 > R and let Hrit = {x € ft,jV>(x} = 0}. A component Dro of $!,.„ \ Afro will be 
called a nodal domain of t/> in ftro. Further we define for r > R 

S(r) = {y(,S»-1\ryeDro} 

and denote \S(r)\ = / s ( r ) da. 
The main results for n > 3 are: 

Theorem 4: Let E, V and $ be given as in Theorem 1 and let V7 satisfy condition 
(B). Let Dro be an unbounded nodal domain of 0, then for some fgeqO and c > 0 

VV>.v > c r - 7 V,- > r0, where Vo = Us{r) ^dafl\ (7) 

Theorem 5: Let Br = {x 6 R.n||x| < r}. then under the same assumptions as in 
Theorem 4 

ln(Vol(Z?ro n B r ) ) , n + l 
lffilr-oo j ^ > — • (8) 

We note that for n = 2 the result analogous to (8) i? 

l i m l , ( V o l ( ^ n M 6 | . 
r-oo l n r > 

as a consequence of Theorem 3. 
The main ideas of the proofsjof Theorem 4 and 5 (given in [13]) are the following: 
By application of the n-dimensional analogue to Theorem 2(i) (derived in [11]) it can 

be seen that limr_00|S'(r)| > 0 or lim,-» \S(r)\ = 0. Since in the first case Theorem 4 is 
trivial, let |S(r)| -» 0 for r - • oo. We define 

where — L2 is the Laplace-Beltrami operator on Sn~x. Then A2(r) -• oo for r —• oo (e.g. 
by the Faber-Krahn inequality (4]). 

It is not difficult to show that 0 O = ^""^Vo satisfies in the distributional sense 

<-£ +« " E + J L * " > + ̂ ^ + ̂  * o <•> 
for r > R, whereas the proof of 
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Lemma 1: There exists a 7 > 1 such that 

i i D W A » ( ^ ) ( r ) > 0 (10) 

is rather involved. We mention that thereby the analyticity of A and n-dimensional 
estimates analogous to (4) are heavily used. Specifically it is shown that 27 = M + (n — 
l)/2, where M is the highest order of the zeros of A. 

From (9) and (10) it follows via linear and nonlinear comparison techniques for dif­
ferential inequalities that 

limr^ooA2(r)r-1 < 00 (11) 

which finally again by application of Lemma 1 leads to (7). 
For the proof of Theorem 5 we observe that the "growth" of the nodal domain con­

sidered is connected with the asymptotics of A2(r) by 

Voi(P r o n BT) > C l f \S{x)\x«-Hx > c, j\^-y-Ux. 

Roughly speaking: A3(r) cannot increase "too much", since this would imply via inequality 
(9) that if> decays "too much" contradicting Theorem 5. 

Finally we announce a result on the behaviour of a local solution of a Schrodinger 
equation in a neighbourhood of a zero [14]. The result is derived by a suitaLle modification 
of the methods developed to prove Theorem 4, and by malting use of a theorem of Bers 

12]. 
Let ß C R n , (n > 2) be a domain with x 0 G fi. ] 
Let V G C°°(ü) and V £ 0, V G C°°{tt) satisfying I , . 
( -A + V)j> = 0 in fi and 1>(x0) = 0. [ [ ] 

Without loss we assume x0 = Ö. J 
Under the above asssumptions Bers' result tells us that there exists a homogenous 

harmonic polynomial PM{Z) £ 0, of degree M > 1 such that for 0 < e < 1 

ft*...Atfr " ° ( W ) ( 1 3 ) 

for t = 0,1,2, . . . , A/, where Z]sl t, = /. 
For the 2-dimensional case it is known (see e.g. [5]) that the nodal lines of 0, which 

pass through the origin, form an equiangular system as the straight nodal lines of PM do. 
For dimensions n > 3 the situation is more complicated: Since we can write PM(X) = 

rMYM(y), {YM a surface harmonic) it follows /from the above] that 

limr-Mtl>(ry) = YM(y) Vy G S""1. (14) 

But it is a priori not clear how the nodal set of ^ in a neighbourhood of the origin is 
determined by the nodal set of Y14. So the question arises whether there exists a nodal 
domain Dro of ij>, for which the corresponding S(r) "shrinks" as r -> 0 into a subset 
of the nodal set of YM (due to the zeros of YM of order > 2). As before Dro denotes a 
component of Bf0 \{x€ fi|0(x) = 0}, where Bro = {x G R"||a:| < r 0} with r 0 sufficiently 
small, and again S(r) = {y G Sn~l\ry G Df0). The question above is answered by 
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Theorem 6 [14]: Let if> be given according to (12) and satisfy (14). Let Dro denote 
a nodal domain of 0 with O € dDro and denote rj/0 = (/5^rj ifPda)1/2, then for'*4 and 
\S(r)\ have for r —* 0 non zero finite limits. 

Corollary: This implies that the number cf nodal domains of tj>, whose boundaries hit 
the origin, is smaller than or equal to the number of the nodal domains of YM. 

The case r —• 0 in Theorem 6 parallels in some sense the case r —• oo in Theorems 4 
and 5, and it turns out that Theorem 6 can be proven by following the ideas of the proof 
of Theorem 4 with suitable modifications. 
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