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In this talk weshall be concerned with real valued solutions ¥ of Schrédinger equations
(-A+ V- E) =0in adomain & C R*, n > 2, urder suitable assumptions on V and
E. In the literature there are not many results about nodal properties of such solutions.
We mention only the classical global result of Courant [6], and the local results of Bers
{2], Cheng [5] and Caffarelli and Friedmann [3].

For ) unbounded the nodal set of 9, i.e. {z € QP(z) = 0} is in general unbounded
and it is natural and interesting to investigate the asymptotic properties of ¥ in relation
with its nodes. Such investigations were performed by the present authors (partly in
collaboration with J. Swetina) in a series of papers (for n = 2 in [10,12), and for n > 3 in
{11,13])). We first give a survey of some of the results obtained there. Then we announce
a new local result about the geometry of the nodal set of such solutions . For its proof
methods developed in [13] and results of Bers (2] are used.

First we consider real valued W?2-solutions 9(z) of

(-A+V -E)Ypy=0forz€Qp, QNQpr={z€eRzj=r>R}L,R>0n2>2. (1)

Here the Sobolev space W?23(§1g) is defined as in (8]. We assume that

E<0 (2)

and that V(=) satisfies the following conditions:
V is real valued and continuous in 5, (A.1)
lim V(z)=0. (A.2)

|z|—00
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(2), (A-1) and (A.2) imply that we can choose R so that
inf (V(z) - E)> 0. (A.3)
T€QR

The above assumptions on V imply that C§°(§2g) is a form core for the quadratic form
associated to —A + V — E and its Friedrichs extension is a positive definite selfadjoint
operator. This guarantees that given ¢ = p on 32z with ¢ continuous in a neighbcurhood
of 3SR, the corresponding Dirichlet problem (1) is uniquely solvable [8].

Before we specify our assumptions on V further, we should mention that there is a
rich literature on the asymptotics of solutions of Schrédinger equations. See for instance
[1,7,13] and references therein.

We split V so that

V(z) = K(r) + V(=) (A4)

and assume that V; and V; satisfy the conditions (A.1 - A.3) separately. Furthermore we
assume that in Qg

V1 is continuously differentiable and
d (A.5)
lﬁl < erle for some ¢c,e > 0
dr
and that
[Va] S cor™'  for'some co,y > 0. (A.6)
Next we consider a radial comparison problem to (1),
(-A+V—-E)v=0 inQp ‘)
with v € L}(Qg), v = v(r) and v > 0 in Qp.

We write ¢ = ¢(ry) where y = £ € §*! (S~ the unit sphere in R") and define

Yau(r) = ( s ¢,2do,)l/2
(where do denotes normalized integration over S*~!) and
u=4¢/v,

then we have (see {9,11])
L Vg

Theorem 1: Let ¢ # 0 be given according to (1), E < 0, and let V = Vj(r) + V;(2)
satisfy the foregoing conditions (A). Then for some c.,c, >0

Wl<cv, cv<$, forr2R

and
Aly) = 'lLrg u(ry) exists and A is continuous.



Theorem 1 permits us to investigate various asymptotic properties of u, from which
corresponding results follow for the intrinsically defined function ¥/v,,.

To illustrate that the asymptotic behaviour of u (resp. ¥ /v,,) is already a nontrivial
problem for a spherical symmetric potential (i.e. V; = 0) we use an example of quantum
mechanics, the Schrodinger equation for the Hydrogen atora

("A - % - En)'bn = 01 En = —i’

nz
with ¢, € L}(R?),n = 1,2,.. , an eigenfunction corresponding to the n?-fold degenerated
eigenvalue E,. It is well-known that ), can be written as

n-1 ¢
h=Y 3 2 ANY ™M),

1=0 m=~¢

where the Y™ are the usual surface harmonics. The fi™ satisfy on (0, 0) the ordinary
differential equation

a2 L+1) n)
'—F-;"’ r2 - n)rfl( -0’

and show the £-independent asymptotics
f,(")(r) ~ rV/VIEal=1g=/|En|* for r — o00.

Then with u, = ¢,/ fg”) and A,(y) =lim,_. u,, n € N, we obtain explicit examples for
which the behaviour of the nodal surfaces is nontrivial for r — oo.

For the following we need additional assumptions on the decay and regularity of V5.
We require that for R > R and

for some a > 1, r'1V,(ry) € C¥(S™Y),
ie. {r'*2Vy(r-), r 2> R} is a uniformly bounded set (B)
of C¥(S™?) functions (C“ means real analytic).

We first state our results for dimension n = 2:

It will be convenient to use polar coordinates z; = r cosw, z; = rsinw, w € [~7, 7).
Further we write ¢ = ¥(r,w) and A = A(w).

Theorem 2: Suppose the assumptions of Theorem 1 hold and V; satisfies condition
(B), then

(i) w(ry) € C¥(S*), A € C¥(S") and A # 0. Further for k € N U {0}

2 (u(r) - A S ™, a= min(l, ), @

in Qg for R > R large enough with some ¢; < oo (nc! Jepending on r).



(i) Let B € (0,1/2) and Dg = {z € Qp,llw| < r~?}, Ry sufficiently large. Suppose
A(0) = 0, so that for some M € N and for jw| small, A(w) = w™ + O(w™*?). Then
for some é,» > 0 we have in Dy

u(r,w) = (ENMrMPHy (by/rw)(1 4 O(r™)) + O(r~M/27%), (5)
where b = (|E|/4)'/? and H)s denotes the Hermite polynomial of degree M.

Corollary 1: Choosing w = z/(by/r) and denoting

Unitr,2) = rMVu(r, 1=2)
(5) implies
Un(r, z) = (20) "M Hy{z) for r - 00,Vz € R. (6)

The proof of Theorem £ is given in [10]. We note that the proof of part (ii) is based
on iterations of an mtegrodlfferentlal equation for u.

Investigating the properties of Up(r, z)} further it was shown in [12] that for large
r the nodal set of 1 consists of non intersecting nodal lines wnich look asymptotically
either like straight lines or like branches of parabolas. Specifically we have

Theorem 3: Suppose the assumptions of Theorem 2 hold. Assume A(0) = 0 with
A(w) =wM + dM + O(WM*?)  for |w| small

for somed € R and M € N. Let z; € R for 1 < i< M denote the zeros of the Hermite
polynomial Hys, i.e. Hy(z)=0for1 <i < M.

Then for ¢ > 0 sufficiently small and R, large the nodal set of ¢ in D, = {z € Qg|r >
R, Jw| < €} consists of M nodal lines (corresponding to the M zeros of Hys). They admit
a representation in cartesian coordinates ((z;,z;) € R?) denoted by z, = Gj(z,) for
1 € i £ M. Therefore denoting ¥ = y(z;,22), ¥(21,Gi(z1)) = 0 for 1 < i < M. For
all ¢, G; is continuously differentiable and the nodai lines have the following asymptohc
behaviour:

For M>2and z; £0
Gi(zy) = (ib'- +0(1))y/z;  for large z;
with b = {|E|/4)"/4. Further if z; > 0 (< 0), then G; is strictly monotonically increasing

(decreasing) for large z,.
For M cdd, Hp(0) = 0 and without loss let z; = 0, then

d
Gi(zy) = + o1 for large z;.
1(z1) ﬁ (1) ge 71

For dimensions n > 3 the structure of the nodal set near infinity of a solution 3 can
show much more complicated patterns than for n = 2, due to the fact that the nodal



set of A will be usually an (n — 2)-dimensional object. Though there is az asymptotic
expansior for u analogously to Theorem 2 (given in [11]), where linear combinations of
products of Hermite polynomials occur, it seems to be no longer possible in general to
characterize the nodal surfaces as in Theorem 3 the nodal lines. But in [13] we obtain
results on the asymptotics of ¥/4,, in relation with the asymptotic behaviour of the
nodal domains of ¥:

Let ro > R and let N;, = {z € Q,,|¢(z) = 0}. A component D,, of Q,, \ N;, will be
called a nodal domain of ¢ in Q2,,. Further we define for r > R

S(r)={y € 5*'Iry € Dy, }

and denhote iS(r)l - fs(') da.
The main results for n > 3 are:

Theorem 4: Let E, V and ¢ be given as in Theorem 1 and tet V, satisfy condition
(B). Let D,, be an unbounded nodal domain of ¢, then for some ygeq0 and ¢ > 0

¢0/¢av 2 ™’ Vr 2 To, where ¢l0 = (IS(r) 1[)2do')l/2. (7)
Theorem 5: Let B, = {z € R"||z| < r}. then under the same assumptions as in
Theorem 4 In(Vol(D,, N B ) g nt]
. n(Vol(D,, n
lm-om ln r — 2 . (8)
We note that for n = 2 the result analogous to (8! i
. In(Vol(D,, N B,)) ‘ 2)
r—o0 Inr 2

as a consequence of Theorem 3.
The main ideas of the proofs of Theorem 4 and £ {given in [13]) are the iollowmg
By application of the n-dimensional analogue to “Theorem 2(i) (derived in {11)) it can
be seen that lim,_.,|S(r)] > 0 or lim,_.. |S(r)] = 0. Since in the first case Theorem 4 is
trivial, let |S(r)| — O for r — 00. We define ‘

S Loldo
vEC“’(S(r)) I lpfPdo

¥(r) =

where —L? is the Laplace-Beltrami operator on S™~!. Then A*(r) — oo for r — oo (e.g.
by the Faber-Krahn inequality {4]).
It is not difficult to show that ), = r(*=1)/2y, satisfies in the distributional sense

n—1)(n-23
4r2

. ‘ ,\2 Y
(gt imE+ ot Vi) + <o ()

for r > R, whereas the proof of



Lemma 1: There exists a 7 > 1 such that

hmv_.oo'\"'(r)(—)(f) >0 (10)

is rather involved. We mention that thereby the analyticity of A and n-dimensional
estimates analogous to (4) are heavily used. Specifically it is shown that 2y = M + (n —
1)/2, where M is the highest order of the zeros of A.
From (9) and (10) it follows via linear and nonlinear comparison techniques for dif-
ferential inequalities that
lim,_ A} (r)r~! < 00 (11)

which finally again by application of Lemma 1 leads to {7).
For the proof of Theorem 5 we observe that the “growth” of the nodal domain con-
sidered is connected with the asymptotics of A(r) by

Vol(D,, N B,) > ¢, / 1S(z)|z""Ydz > ¢ j () de.

'\( )
Roughly speaking: A%(r) cannot increase “too much”, since this would imply via inequality
(9) that ¢ decays “too much” contradicting Theorem 5.

Finally we announce a result on the behaviour of a local solution of a Schrodinger
equation in a neighbourhood of a zero (14]. The result is derived by a suital.le modification
of the methods developed to prove Theorem 4, and by making use of a theorem of Bers

2].

[ Let @ C R", (n > 2) be a domain with z, € .
Let V € C*(Q) and ¢ #£ 0, € C=(N) satisfying (12)
(-A+ V)Y =0inQ and (o) = 0.
Without loss we assume zy = O.

Under the above asssumptions Bers’ result tells us that there exists a homogenous
harmenic polynomial Py(z) # 0, of degree M > 1 such that for 0 < e < 1

(¥ — Pu)(2)
9z .oz
for£{=0,1,2,...,M, where °0..,1; = (.
For the 2-dimensional case it is known (see e.g. [5]) that the nodal lines of ¢, which
pass through the origin, form an equiangular system as the straight nodal lines of Py do.

For dimensions n > 3 the situation is more complicated: Since we can write Py(z) =
M Yy(y), (Ya a surface harmonic) it follows from the above) that

lim M (ry) = Yiew)  Vye S (14)

But it 1s a priori not clear how the nodal set of ¢r in a neighbourhcod of the origin is

= O(jz/M=+) (13)

—— e,

domain D,, of 1, for which the correspondmg S(r) “shrinks” as r — 0 into a subset
of the nodal set of Yps (due to the zeros of Yy, of order > 2). As before D,, denotes a
component of B, \ {z € Q|¢¥(z) = 0}, where B,, = {z € R"||z| < ro} with r sufficiently
small, and again S(r) = {y € S*Yry € D,,}. The question above is answered by




Theorem 6 [14]: Let 4 be given according to (12) and satisfy (14). Let D,, denote
a nodal domain of ¢ with O € 3D,, and denote o = ([, ¥2do)!/?, then or—M and
{S(r)] have for r — 0 non zero finite limits.

Corollary: This implies that the number cf nodal domains of ¥, whose boundaries hit
the origin, is smaller than or equal to the number of the nodal domains of Y),.

The case r — 0 in Theorem 6 parallels in some sense the case r — oo in Theorems 4
and 5, and it turns out that Theorem 6 can be proven by following the ideas of the proof
of Theorem 4 with suitable modifications.
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