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Subsheil effects in the A=100 region

H.Mach

Brookhaven National Laboratory, Upton , New York 11973, USA

The A=100 region shows two unusual features only a few nucleons apart: a rapid onset

of deformation at N=60 and the existence of an almost doubly-magic nucleus of 96Zr (at

N=56) characterized by an almost complete closure of the d^^ neutron and pj^2 proton

orbits. The purity of the 96Zr g.s. is confirmed by one of the fastest 0~—*0+ /?-transitions

(i/swj —•• 7rpi/2) observed1 in the decay of 96Y-^96Zr. Federman and Pittel2 interpreted a

rapid onset of deformation at N=60 as due to a strong attractive neutron-proton interaction

between particles in large-j orbits. When neutrons enter the 1^7/2 orbit near N=60 the

n-p interaction lowers the spin-partner 7rg9/2 orbit which effectively annihilates the Z=40

subsheil gap between p ^ and g9/2 orbits. There is an opposite effect in 96Zr where far

from magic shell closures at N,Z =28 or 50, there is a reappearance of an almost magic shell

closures at Z=40 and N=56. The mechanism which overcomes the deformation driving

forces in ^Zr results from a mutual re-inforcement of otherwise weak proton and neutron

shell closures.

16O, ^Zr, and 208Pb have similar properties1 with the valence 7rpi/2 orbit filled and

the valence neutron space influenced by the v8l/2 orbit. The importance of a simultaneous

occupation of low-,? orbits by neutron and protons for a mutual reinforcement of subshell

closures in ^Zr has been pointed out by Molnar.3 Thus when Iaige-j neutron orbit crosses

a large-j proton orbit there is an onset of deformation while at the crossing of low-j orbits

occurs an island of sphericity. Alternatively, doubly magic 96Zr and deformed 100Zr are

results of the same n-p mechanism involving a simultaneous occupation by neutrons and

protons of specific orbits. Properties of the NpNn systematics discussed next will be used

to search for other subshell effects in the A~100 region.

The NpNn parametrization4 of collective variables underscores the correlation between

the collectivity and the product of the number of interacting valence nucleons of oppo-

site type. In particular, a detailed investigation of a large 132<A<208 mass region has

revealed5 that, its three subregions, A~150,160, and 190, which followed different system-

atics attributed4 to different relative positions of highly overlapping proton and neutron



orbits, can be in fact unified into a single systematics that depends exclusively on the

product number of valence nucleons. This was obtained3 by an inclusion of Z=76 subshell

effect into the counting scheme. The resultant uniform systematics of this large region has

been explained5 in terms of two components of the n •, interaction: the monopole part6'7

responsible for the movement of the single-particle orbits in the spherical limit which de-

fines the crucial valence space by creation and destruction of subshell gaps,0'8 and the

quadrupole-quadrupole term which induces the configuration mixing necessary for defor-

mation. A full separation of these effects demonstrated3 for the 132<A<208 region implies

that the maxima in the collectivity defined, for example, by the lowest energy of the first

excited 2]1" state or the highest energy ratio, E4+/E2+, for a given isotopic (or isotonic)

sequence of nuclei define a mid point of an active neutron (or proton) space which may

include up to a few degenerate orbits. Moreover, sharp minima in the collectivity indicate

subshell gaps. These properties are used to search for subshell effects in the A~100 nuclei.

A systematics of collective variables in the A=100 region (from Ref. 9) indicate that for

isotonic sequences for N<58 there are local collective maxima at Z=44/46 consistent with

the known subshell gaps at Z=40 and Z=50. At N>58 the Z=40 gap is annihilated2 and the

proton space is vastly enlarged.2'4 The systematics of the isotopic sequences for Zr nuclei

indicate (see Fig. 1) collective maximum at N=52/54, which is located at approximately

half way between the shell closures at 50 and 56, and a sharp collective minimum at

N=56 consistent with a subshell gap at N=56. In Cd (and Sn) nuclei there are two

collective maxima at 56/58 and ~70 (~74) and a minimum at about N=64 consistent

with the subshell gap at N=64 with the d5/2 and g7/2 below and the Sj/2, h11y2> and d3/2

orbits above the gap. This can be explained if there is a rearrangement of orbits between

spherical Zr and Sn nuclei. The lowering of the vg7i2 and raising of the i/s1i2 relative to

other orbits is mass dependent since no valence n-p interaction can be attributed to the

closed shell (Z=40 or N=50) 90~96Zr or Sn nuclei, which raises the question to what extent

the movement of orbits between shell closures depends on forces other than a direct n-p

interaction of valence nucleons ?

Although weak, a new subshell effect at N=64 suggests that the movement of the

"nii/2 orbit was smaller than for the fg7/2 orbit. Nevertheless, the ^hu;2 orbit strongly

participates in the buildup of collectivity in the A~100 region yet only after the defor-



mation process was started with the occupation of the V%TJI orbit. This is implied from

a characteristic discontinuity of collective properties at N~58 for the isotopic sequences

of Mo and Pd nuclei. The systematics at N<58 is due to occupation of fd5/2 and v%~n

orbits. The second phase at N>58 with a minimum at N~64 for Mo (and also N~68

for Fd) nuclei indicates an occupation of the h n / 2 orbit and its full involvement in the

deformation process for A=100 nuclei even below N=66.

A weak subshell effect at N=64 in the Z~50 nuclei can be explained by a (relative)

movement of the vg7/2 orbit, which by lowering the energy difference with the ^d5/2 orbit

annihilated the N=56 gap and at the same time created a gap at N=64. This is equivalent

to a two-fold subshell effect in the 132<A<208 region5, where a movement of 7rhuy2 orbit

annihilated the Z=64 gap and created a new one at Z=76. These phenomena support the

interpretation of tho deformation process proposed by Federman and Pittel2. Furthermore,

the movement of the vg7/2 orbit that annihilates the N=56 subshell gap takes place at the

same time when the movement of its spin-partner Jrg9/2 orbit annihilates the Z=40 gap. A

relative movement of the r/Sj /2 orbit appears opposite to that of the v%-j /2. It may suggest

that lowering of the i/sl i3 orbit at N=56 is due to the interaction with protons in the pj /2

or p3/2 orbits and represents an important factor for the magicity of the 96Zr as suggested

before.3

Subshell effects suggested for the A=100 region imply a counting scheme of valence nu-

cleons more complex than presently accepted.4 Thus the Np and Nn numbers are presently

overestimated in IBA-type calculations, g-factor systematics and related problems. Fur-

thermore, for nuclei where Z=40 or N=56 subshell gaps are weak or totally annihilated the

previously closed inner orbits of uA^i^, Tfs/2j TP3/2 and TP1/2 are active and thus, should

be included explicitly in the shell model calculations.
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Fig. 1 Energies of the 2f states (from Ref. 9) plotted against the neutron number for

selected isotopes in the A~100 region. Sequences of shell model orbits suggested for 96Zr

(lower row) and Sn nuclei (upper row) are illustrated in the top.


