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Design of high-reflectivity supermirror structures

John B. Hayter and H. A. Mook

Solid State Division, Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831-6031

ABSTRACT

We present: a new method of designing supermirrors, based on considering the
contribution of each bilayer to the extinction in a given stack of bilayers, and
derive and solve the discrete equations governing the choice of layer thicknesses.
In the limit of zero layer thickness, the usual continuum result is recovered. The
design, which can produce essentially perfect reflectivity over the entire
supermirror range, also provides an objective physical mechanism for trading
reflectivity to gain angular range.

1. INTRODUCTION

Many of the optical techniques developed for use with visible light can be
employed directly with neutron or X-radiation*, requiring only an appropriate
formalism for computing the refractive indices^3. In the case of neutron optics, an
extensive current application lies in the transport of neutrons over many tens of
meters through guides, which make use of total external reflection on thin film
coatings on the interior walls of an evacuated tube, usually of rectangular
cross-section. A fundamental limitation of such guides is the small solid angle
(4tf|) which may be transported, due to the intrinsically small total reflection
angles, 6C, which are available from uniform thin films. To overcome this situation,
Mezei^ proposed a modified multilayer thin-film design, termed a supermirror, to
extend the angular range reflected by the mirror coating, using an aperiodic
structure, in which successive bilayers vary in thickness, analogous to the designs
used in light optics for broad-band filter design^. To date, designs for
superrairrors^'°"H have been based on continuum approaches. In this paper, we derive
a discrete design technique which takes into specific account the discontinuous
nature of the structure.

^_^ 2. PERIODIC BILAYER STRUCTURES

As a necessary preliminary step, prior to considering a general supermirror, we
shall consider the case of periodic multilayer structures, first establishing the
general optical relations common to any type of thin-film structure. We write the
refractive index for a given material in the generic form

n - 1 - (a - i/9) (1)

where, at wavelength X,

a - (N\2/2*)(bo + Ab'); 0 - (N\2/2K)|Ab"| (2a)

for neutrons (scattering amplitude bo + Ab' - iAb"), and
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a - (NX2re/2n) (fo \hf>' {2b)

for X-rays . (scattering amplitude (fo + Af' + iAf") r f ) , where re is the classical
electron radius. Here, N is the number density of scatterers in the material;
scattering amplitudes are available in tabulated forml2,13 For neutrons, we shall
usually have / M ) , since strongly absorbing materials will generally not be of
interest for mirror design, although reflection from strongly absorbing layers must
be considered in, for example, collimator design. The situation is different for
X-rays, since absorption is not so easily avoided, and we may commonly expect 0/a
values up to about 0.1 in the X-ray case.

n = nP (P)

(1)

u
II

(2);
'M
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Figure 1. Definition of multilayer geometry. The structure comprises 2N alternating
films of materials labelled types 1 and 2, having respective refractive indices nj

and ii2, a n d thicknesses d^i and d^ in the k'th bilayer (fc-1,2 N).

Figure 1 defines our notation for a general discrete thin-film multilayer (DTFM)
structure, in which successive bilayers of materials (generically labelled types 1
and 2) are deposited on a substrate, S; the structure may be protected from the
atmosphere A by a layer F. All angles are sufficiently small to permit the approxi-
mations sin* « 8, costf « l-f2 Consider a plane wave, exp(iko.r), incident on the
multilayer structure at an angle, t, which is larger than that for total reflection,
so that the wave enters the structure. In a layer of material type y. (p-1,2), of
refractive index n^, we shall have an inhomogeneous plane wave, whose planes of

h l h d i i d f i d b h l V h ^constant phase are normal to the direction defined by the angle where^

H/) V T,



(3)

Here, we have defined 7£"2a^. In the absence of absorption, y^ will be the
critical angle for total reflection at a vacuum-/* interface, and ifu will coincide
with the angle 6^ given by Snell's law; generally, however, the latter is complex,
while \lin is real. Optimal reflectivity will occur when the bilayer is a A/2 plate,
with each component sub-layer being a A/4 plate. Since
a Bragg angle when

\n-l »0. K O' and 6 will be

Eqs. (3) and (4) give the refraction-corrected expression of Bragg's law for the
bilayer. Without loss of generality, we may now restrict further discussion to the
case

Figure 2. Multiple beams in the fc'th bilayer of a multi-bilayer stack.

For a general ray in the structure,
as follows. Let 7",-, R

the multiple beam equations are established
.. be the transmitted and reflected amplitudes just above the

J'th interface (see"Figure 2), where j is even at 2-1 interfaces, and odd at 1-2
interfaces. Writing the reflection and transmission coefficients at the 2-1
interface as rj and tj, respectively, we may construct the amplitude relations by
noting that T is composed of a directly transmitted amplitude plus a retransmitted,
doubly reflected amplitude, with a similar inverse consideration for R. Taking into
account the phase shift between 2-1 and 1-2 reflections, the amplitude relations are
thus

- rjTj + tjRjRj+i (5a)

(55)



^j+2) <5c)

Tj+2 ~ tj+lTj+l exp(i4>j+2) + rj+1Rj+2 exp(2i<f>j+2) •

where *.—kodj$j is the normal component of the phase difference between interface j
and interface j'+l, and r is the reflection coefficient at the 1-2 interface. The
reflection and transmission coefficients are given by the usual Fresnel relations^,
noting that conservation of energy requires r^+t2 - 1:

r - -r - p -
(6)

c - 2(p1)l/2/Wf)

The equations (5) are closed by imposing the periodic boundary conditions which
result from the fact that the bilayer composition is independent of the bilayer
number in the present case. This means that the relative attenuation per bilayer, K,
is constant, so that

K - Tj+2/Tj
(7)

Equations (5-7) may be solved exactly using standard techniques. (At small
angles, the reflectivity of typical bilayers is not small, and it is worth noting
that the usual expansion techniques are inapplicable.) A lengthy calculation yields

K - -(1-p2) exp[i(^+^)]/[7 - 1 + P2 exp(2i4>!)] (8)

where y is the solution of

y2 - {1 - p2[exp(2i<f>1) - exp(2i42)] - exp[2i(^+^) ] )Y

+ p2 e^p(2i<f>2)[l - exp(2i*2)]
2 - 0 (9)

which satisfies |£o|<2. Defining To~l as the reference amplitude, the reflectivity
of the entire stack is

(10)

At the Bragg condition, $i-4>2-x/2, and for angles near the Bragg condition we may
take $i~$2x4- Equation (9) may then be solved explicitly, yielding the reflectivity

Ro - [1 + exp(2i*) + 2 exp(i*)(cos^ - P
2)1/2]/[2p exp(2i^)) (11)

from which we obtain the reflected intensity:

\Ro\2 - 2 (cos2* < p2)
(12)

\RO\
2 - 2 cos *[cos 4> + (cos2* - p2)1/2]/p2 - 1 (cos2* > p2)

The half-intensity points are given by

cos 4>1/2 - 3p/2j2 (13)



from which the well-known Darwin result is recovered when the phase-shifts in each
half of the bilayer are the same.

3. VARIABLE THICKNESS MULTI-BILAYER

We now consider an arbitrary bilayer, k, in a supermirror stack (Figure 1), and
choose the angle of incidence, 6k, of the beam arriving on the stack, such that it
meets the Bragg condition defined by eqs. (3) and (4) for the layer in question. If
the stack were uniform, the amplitude attenuation through the bilayer would be given
by eqs. (8) and (9) with 4>kl~4'k2~'x/2> namely (dropping subscripts for clarity)

where the - sign reflects the it phase shift across a bilayer at the Bragg condition.
Let v bilayers contribute to the reflection; that is, after v bilayers, the transm-
itted intensity, |*c*'|̂ . is small enough to be essentially negligible. Consider now
removing the bilayer from the uniform stack, and placing it in a stack of bilayers
of different thicknesses, such that it is effectively the only layer reflecting at
its own Bragg angle. Without the reinforcement of the periodic boundary conditions,
it will now attenuate the transmitted intensity by an amount, |ie| , which is
essentially the i/'th root of its previous performance. Assigning it an effective
reflectivity of p in the aperiodic system, we thus have

\K\ - (l-p)/(l+p) - \K\1/» (15)

from which

p - (2-|«|2/")/(I+|ie|V«') (16)

We may assess v by quantifying what we mean by "negligible" transmitted intensity
after u bilayers. Let us require a fraction f of the incident intensity to be
reflected, so that the transmitted intensity is

i-r - \*v\2 (17)

which yields (subject to the obvious physical restriction I/>1)

(18)

The width of the Bragg reflection from the single layer in the aperiodic stack is
then essentially given by eq. (13), with p replaced by p computed from eqs. (15),
(16) and (18). Replacing the subscript k to emphasize the dependence on bilayer
number, eq. (13) becomes

( f f ) - 3~pk/2j2 (19)

ox, inverting the trigonometric function,

arcsin(3pk/2j2) (20)

where we have used eq. (4) to evaluate <f>. Here, i(>kfl is the value of if> at the Bragg
condition corresponding to the thickness of material p in the k'th bilayer, and
is the offset at which the intensity is halved.
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To find the corresponding values of 8k, it is convenient to use scaled parameters

Tk -

f
(21)

gfi - <

in terms of which eq. (3) becomes

£ ^ (22)

We now substitute r±Ar for r, and w±Aw for w, in eq. (22), and solve for the
variation Ar which corresponds to the variation Aw. This yields for the half-
intensity points at the vacuum (or, in practice, air) interface

+ g2] - h2)l/2

(23)

where

n) arcsin(3pk/2j2) (24)

and the superscripts (±) reflect the asymmetry of the intensity profile when
expressed as a function of rk.

To construct a supermirror stack, the thicknesses of successive bilayers are now
chosen such that their reflectivity profiles match at the half-intensity points:

rk - Arfc(-) - rfc_2 + Ark.2(
+) (25)

Eq. (25), which prescribes the geometry of bilayer k, in terms of that of bilayer
k-1, is the central result of this paper. The equation is readily solved for rk in
terms of Tk.\ by simple Newton iteration, which is rapidly convergent; since the
left hand side of eq. (23) does not depend on p, we need only solve for p-2, which
then completely defines the bilayer geometry through eqs. (4), (21) and (22). The
entire supermirror structure may thus be built up layer by layer, given a suitable
initial condition to start the process. The obvious choice is to match the first
supernirror layer (Ac-2) to the half-intensity point of the total mirror reflection:

ro + Aro(
+) - 3/2J2 (26)

The design is fully determined by the refractive indices of the bilayer
materials, once the reflectivity parameter, f, has been specified. It is interesting
to note that, at sufficiently high incident angles, the reflecting layers vary only
slowly in thickness. In this limit, we may express eq. (25) as

drk/dk = 2Ark (27)

Expanding eq. (23) for the case r^l, substituting in (27) and integrating yields

" (
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(28)

which shows that the continuum result"'' corresponds.to the case of vanishing layer
thickness, as expected.

4. RESULTS AND DISCUSSION

The main features of the DTFM design appear in Figure 3. First, total reflection
is maintained close to the critical reflection edge, where the discrete nature of
the structure is most important. The response of a Ni-Mn DTFM structure of only 8
bilayers is shown in Figure 3a, where it is seen that a gain of 35% in the range of
total reflectivity is achieved, at a very modest cost in complexity, compared with a
natural Ni mirror; for comparison, the use of the pure isotope 5 8 ^ WOuld provide a
gain factor of only 18%. Curves b and c of Figure 3, which both show gain factors
of 3 over a Ni mirror, compare the continuum design (Figure 36 of Schelten & Mika^)
with the DTFM design (Figure 3c). The DTFM shows no losses near the critical edge,
and is better optimized, achieving a better response in 350 layers than does the
continuum design in 404 layers.

O
LU
UJ

e/ec
Figure 3. Calculated*-^ "I-* neutron reflectivities of Ni/Mn supernirrors, shown as a
function of glancing angle, 8, relative to the critical angle for total mirror
reflection, 6C. (a) DTFM (f-0.988) with 16 layers total; (b) 350 layer DTFM; (c) 404

layer continuum design of Schelten and Mika".

The effective orthogonality of each layer generated by eq. (25) allows the
construction of bandpass filters, since layers nay be omitted from a full DTFM
design without deteriorating the response elsewhere. Such designs may be of interest
in the fabrication of long wavelength monochromators for use in biochemical
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crystallography. We note in this context that the analysis of §2 is quite general,
and applies to synthetic thin-film monochroraator designs'-"»1?, in which all bilayers
have the sane thicknesses. (The cerra multilayer has become generally reserved for
such synthetic crystals, to distinguish them from supermirrors.) In particular, the
refraction correction to Bragg's law, which has generally been neglected, may be
sizeable; the component thicknesses of the bilayer must be derived on the basis of
eqs. (3) and (4) for a correct response at low angles. Conversely, thicknesses
derived from first-order low-angla diffraction data via the usual Bragg relation,
\-2d6, rather than eqs. (3) and (4), will typically be underestimated by about 20%
for d of order 20 run. This shift in the nominal Bragg angle offers a useful means of
assessing in situ material densities, which are not known a priori in the
multilayer, without having to measure absolute intensities; the positions alone of
the mirror edge and of the first few orders of diffraction depend on scattering
amplitude density, as well as on layer geometry.

In conclusion, the DTFM equations provide a straightforward prescription for
designing supermirrors or bandpass filters of specified mean reflectivity, without
any need for numerical trial and error, while optimizing the number of layers to
minimize production costs.
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