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RIASSUNTO 

Il conteggio dei neutroni emessi per fissione spontanea dagli isotopi 
del plutonio è un possibile metodo di determinazione del contenuto di 
plutonio in campioni di diversa forma e composizione. 

Allo scopo di discriminare il conteggio dovuto ai neutroni di fissione 
spontanea da quello dovuto alla emissione di neutroni di tipo (a,n), sono 
state sviluppate tecniche di misura basate sulla correlazione temporale 
dei conteggi neutronici. Ulteriori procedure sono state inoltre sviluppate 
per correggere gli effetti dovuti al conteggio di neutroni provenienti da 
fissioni indotte. Tale correzione dipende da una accurata conoscenza 
della composizione chimica del campione. 

Questo lavoro presenta una formulazione teorica di un nuovo approccio 
(add-a-source technique) che potrebbe permettere la correzione della 
misura indipendentemente dalla conoscenza della composizione chimica 
del campione. 

SUMMARY 

Counting neutrons emitted by spontaneously fissioning plutonium 
isotopes is a means for determining plutonium content in samples. 

Correlation techniques have been developed for separating such 
neutrons from a background of nonfission neutrons due to (a, n) 
reactions. Further procedures are then used to correct the effect of 
neutron-induced fission. In order to perform such a correction the 
sample's chemical composition (including the presence of moisture) 
must be a well known parameter. 

The present paper reports a theoretical formulation of a new approach 
(add-a-source technique), which could allow to correct the measurement 
indipendently by the knowledge of the sample's chemical composition. 
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INTRODUCTION 

Neutron coincidence technique is currently used for the nondestructive 
assay of plutonium sample. Such a technique is based on the 
measurement of time-correlated neutrons emitted in the spontaneous 
fission of the even mass number plutonium isotopes. Shift Register 
electronic is normally used to count both the total neutron rate and the 
coincidence rate. This last parameter is related to the mass of 
240Pu-effective to give a calibration curve. 

Such a calibration function is nonlinear for plutonium samples larger 
than a few tens of grams because of neutron-induced fission. 

A correction procedure, multiplication equation, [1], based on the 
knowledge of the ratio of (a, n) neutrons to spontaneous-fission 
neutrons was developed. Such a ratio is currently calculated from the 
plutonium isotopie composition, 241Am content, and (aj i) yields in 
oxides. This multiplication equation allows for the evaluation of the 
sample multiplication factor which is then used for determining the 
multiplication-corrected coincidence rate. 

It must be pointed out that, in order to perform this calculation, the 
sample chemical composition must be a well known parameter. This 
requirement is due to the fact that in neutron coincidence counting there 
are more unknown parameters (the mass of 240Pu-effective, the 
multiplication factor M and the aforementioned ratio) than knowns (R 
and T). 

"252Cf add-a-source" technique, proposed by H. Menlove [2], could be a 
promising approch to solve such a problem which is of great importance 
especially for medium-to-large samples that are impure or have a large 
moisture content. Such a technique should be able to estimate the 
multiplication in the sample by measuring the incremental 
multiplication induced by a 252Cf source coupled to the sample can. This 
incremental multiplication is measured both on total and coincidence 
rate eventually obtaining a calibration curve. Such a relationship 
(incremental multiplication versus multiplication factor) can be 
calculated by means of pure Pu02 sample with the M values obtained 

from the multiplication equation. The add-a-source curve can be then 
used to evaluate the M value for impure sample. 

The purpose of this report is to determine a theoretical relationship 
between the incremental multiplication and M without using a 
calibration curve which is, in general, dependent on the geometry of the 
sample container. 
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CALIFORNIUM-252 ADD-A-SOURCE 

"Add-a-source" technique is based on the measurement of the 
perturbation on total and coincidence rate, induced by a Californium 
source closely coupled to the Pu sample in assay. 

The procedure foresees the passive measurement of the sample to 
obtain R and "T, and then the repetition of the measurement with the 
252Cf source at the bottom of the can to obtain RCf+s and TCf+s. 

The 252Cf source is also measured with no plutonium in the can to 
obtain the external neutron flux in terms of total and coincidence rate 
(TCf and RCf). 

As a first approximation we can say that the induced perturbation, 
which is expressed by the following two formula 

(T c , + s -VTC ( ) /T c f = YT 

< RCf+s"Rs ' RCf) / RCf = Y R 

is a function of the sample multiplication factor and the probability for 
Cf neutrons of interacting with the sample itself. 

We want to express such dependence with a system of two equations 
(with the perturbations on total and coincidence rate as dependent 
variables), whose solution allows for the sample multiplication factor 
determination independently from the knowledge of the sample chemical 
composition. 

DEFINITION OF THE PROBLEM 

We define a system consisting of a Californium source and of a 
multiplication sample. Since our aim is to obtain a formulas for the 
perturbation in both total and coincidence rate due to Californium 
source, we assume that the multiplication sample does not emit any 
neutron for spontaneous fissions. 

We need now to define some parameter useful for the solution of the 
problem. Let q(v) be the probability that v neutrons are emitted for 
induced fissions and qCf(v) the same probability for Cf spontaneous 
fissions. 

Let p be the probability that a neutron induces fission in the 
multiplication sample. Then (1-p) will be the probability that a neutron 
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does not cause fission but leaves the system. In an energy independent 
model, the detector efficiency defines the fraction of these neutrons 
which is counted. 

We introduce a global parameter k which denotes the probability that a 
neutron, coming from a Cf spontaneous fission event, leaves the system 
without entering the sample, then (1-k) is the probability that a neutron 
enters the multiplication sample. We assume that the only possible 
interaction for a Cf neutron entering the sample is the induced fission. 

Let now R(u.) be the probability that n neutrons leave the system as a 
consequence of one source event. We want to express such a probability 
distribution and its factorial moments as a function of the neutron 
emission probability for Cf fissions, the probability of interaction with 
the multiplication sample, the probability of induced fissions in the 
sample and of the neutron emission probability of such fissions. 

In order to accomplish such requirement we make use of the concept 
of Probability Generating Functions (PGF). 

Any random process resulting in various integral numbers, each with 
its own probability, may be described by a PGF. 

In general a PGF is defined as 

f(u) = Iq(n)un 

where q(n) is the probability for the realization of the integer random 
variable n. 

Among the properties of the PGF, the following will be used in our 
paper: 

(P1): The PGF of a random process which is the combination of two or 
more statistically independent processes is obtained by 
multiplying together the constituent PGF's. 

(P2) The derivates at u»1 of a PGF yield the factorial moments of p(n) 
(P3) Let g,(u) be the PGF formed with the conditional probabilities 

p(n/i), which describes the probabilities that the variable takes 
the value n under the condition i. If the probability of 
occurrence of this condition is a Pj( then the PGF for the quantity 

n without conditions is: 

f(u) - 1 Pfl (u) 
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THEORETICAL FORMULATION 

First of all we need to define the PGF for the number of neutrons 
from a Cf source event (fCf(u)) and that one for the number of neutrons 
emitted by an induced fission. 

y u H X q ^ O u ' 

f(u) = Xq(i)u* 

We can now define, as a consequence of one Cf source neutron, the PGF 
for the number of neutrons which leave the system in the case of 
absence of multiplication sample: 

L(u) = u 

We can also define, assuming one neutron in the multiplication sample, 
the PGF for the number of neutrons of this first and of all successive 
generations that leave the multiplication sample: 

h(u) = (1-p)u + p-f[h(u)] 

(defined by Bohnel[3]) 
We have thus, two different ways of evolution of the same initial 

event (one Cf source neutron) namely: 

- neutrons leaving immediately the system 
- neutrons leaving the system after interaction with the 

multiplication sample. 

Since these two possible evolutions are not independent to each other, 
the PGF for the number of all the neutrons that leave the system (always 
starting from one Cf source neutron) can be expressed by the sum of the 
relative PGFs weighted by the probability that the evolution itself 
comes about: 

N(u) = ku + (1-k){(1-p)u + pf[h(u)]} 

We now introduce a new PGF: 

H(u) - IR(i)uj 
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with the probabilities R(i) previously defined. This is the PGF for the 
number of neutrons leaving the system as the result of a Cf source 
event. It can be expressed making use of a PGF's property as: 

H(u) = fc,[N(u)] 

From this equation and from a PGF's property we can evaluate the 
probability distribution R(u.) and its factorial moments describing the 
multiplicity of the Cf source neutron "burst" in presence of a 
multiplication sample. 

FACTORIAL MOMENTS EVALUATION 

For a PGFs' property, the derivates at u=1 of a PGF yield the factorial 
moments of the probability distribution p(n): 

df(u)/du = n 
'u=1 

d2f(u)/du2 I = n(n-1) 
'u=1 

In our case we have: 

v - dH/du I = ( dfrf /dN • dN/du) , (1) 
»u*1 x Cf ' u«1 

i2uiM.,2 v(v-1) - d^H/du' (2) 
'u«1 

We know from [3] that 

dh(u)/du I - (1-p)/(1-pv,) (3) 
•u»1 ' 

,T7\3 (4) and d2h(u)/du2 I - { v((v,-1) (1-p)2p } / (1-pv,) 
*u«1 ' ' 

By inserting Eq. (3) and (4) in the elaboration of Eq. (1) and (2) we have 
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v = vCf[(1-k)M+k] (5) 

v (v -1) - k2 vCf(vc(-1) + (1-k)2 M2 vCf(vCf-1) + 
|2 + (1-k) M* (M-1) v a [ v,(vr1)/(v f 1)] + 2k(1-k)M vC((vCf-1) (6) 

As we previously pointed out "add-a-source" technique is based on the 
measurement of the perturbation, induced by an external Cf source, in 
the coincidence and total rate of a multiplication sample. 

Such a perturbation has been defined as followed: 

(TCf+s-VTCf) / TCf = YT 

( R C f + s " R s " R C f ) / R C f = Y R 

We can also define the two variables YT and YR as: 

Y T - (vcl+,- vs - vCf) / v Cf 

Y R = [ V C f + s ( V C f + s - 1 ) " v s ( v s - 1 ) * v C f < V C f - 1 H I v Cf ( V Cf" 1 ) 

where the differences [vC{+s - vs] and [vC(+s(vC(+s -1) - vs(v8 -1)] are 
expressed by the Eq. (5) and (6) respectively. 

Finally we can get the following equations: 

YT = (1-k)(M-1) 

YR = k2 + (1-k)2M2 + (1-k)M2(M-1)A + ?k(1-k)M - 1 

where 

A-[v,(v,-1) vCf]/[(v,-1) vCf(vCf-1)] 

The resolution of §uch.a system allows for the determination of the 
two unknown values M and k. The term A is evaluated on the basis of the 
sample isotopie composition and Cf nuclear data. 
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MATHEMATICAL MODEL VALIDATION 

A simple computer simulation program has been developed in order to 
test the mathematical model and evaluate the sensitivity of the 
technique. 

For the simulation program, the samples were assumed to be composed 
of 100% Pu239, hence the spontaneous emission of the even Pu isotopes 
was not simulated. The calculation produced, for different values of k 
and M, the factorial moments of the first and second order v and v(v-1) 
of the probability distribution relative to two different phenomena, 
namely: 

- neutrons which leave a system constituted by a Cf source and a 
multiplication sample without spontaneous emissions; 

- neutrons emitted by the Cf source. 

The difference of these two moments can represent the perturbation 
induced in the multiplication sample by a Cf source. 

We have then used these values to evaluate k and M by the system of 
two equations. Table I and fig. 1 summarize the results obtained. 

We have also plotted in fig. 2 the behaviour of YR versus (M-1) for 

different k values, as evaluated by the theoretical formulation, along 
with the values obtained by the simulation program. 

These results show that it is possible to determine the multiplication 
factor by the system of equations at least for values of M higher than 
1.05. 

Below such a limit the perturbation induced by the external Cf source 
is so small that the errors introduced by the simulation, in the 
calculation of YT and YR become not negligible. 

It must be pointed out that the simulation did not take into account 
the errors due to the three different measurements which must be 
carried out for evaluating YT and YR . 

In this» context it is worth mentioning that YT and YR are evaluated 

with different precisions (better in the case of YT) and that the 

multiplication signal is enhanced by the coincidence rates (YR is in the 

range of 0-0.3 while YT is in the range 0-0.08). 
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ERROR PROPAGATION ANALYSIS 

In order to study the errors propagation in determining the 
multiplication factor by the add-a-source approach, a computer 
simulation was used. 

Such a simulation starts with the "true" values of YT and YR, obtained 
from the system of two equations with M and k known. 

The measured values YT* and YR* are given by : 

YT*= Y T ( 1 + E ) 

YR--YR(1 + t|) 

where e and T| represent the relative errors caused by instrument 
imprecision. 

Both errors are assumed to be independent and to be normally 
distributed with mean zero and variances o 2 and o 2, respectively. 

These measured values YT* and YT" are then used to recalculate the 
multiplication factor. 

The whole calculation is repeated, with the same set of variances, in 
order to produce a distribution of the M values, which simulates the 
statistical density function of the actual measurements. 

Fig. 3 shows the relative standard deviation of M versus the relative 
precision of YT and YR; fig. 4 shows the behaviour of the relative 
standard deviation of M as a function of the multiplication factor for 
various figures of relative precisions of YT and YR. 

CONCLUSIONS 

Theoretical formulation of "252Cf add-a-source", using both induced 
perturbation on real and total rate for solving a system of two 
equations, has been confirmed by computer simulation. 

Simulation results indicate the possibility to perform measurements 
of the multiplication coefficient at least for values of M highor than 
1.05, for realistic values of (1-k) in the range 0.25+0.5. 

This approach could be very promising for measuring sample whose 
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chemical composition is not known for the presence of light impurities 
or large moisture quantities. 

In fact, after determining the M value by the "add-a-source technique", 
the multiplication equation can be rewritten, to evaluate the (a,n) to 
spontaneous fission ratio, in the following form: 

M 
o = - 1 

(R/T)/p0 - 2.074 (M2-M) 

where p0 is the ratio (R/T) for a small nonmultiplying reference sample. 

Both a and M are then used to calculate the multiplication-corrected 
coincidence ratio. 

This add-a-source technique has the desirable feature that, although 
it requires an additional measurement with the Cf source, no further 
calibrations are needed for the multiplication factor determination. 

The disadvantage of the me'uod is that YT and YR must be determined 

with high precision so that counting times should be long. 
The analysis of the statistical error propagation pointed out that 

relative precisions of 0.1% and 0.5% for YT and YR respectively are 
needed to obtain a relative precision on M value better than 1%. 
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1.1202 
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1.2042 
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1.0489 
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1.0439 
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1.1498 

1.2031 

1.00 

1.0000 

1.0154 

1.0169 

1.0389 

1.0504 

1.0974 

1.1498 

1.1995 

Table I - M values determined by the system of two 
equations using YT and YR obtained with the 
simulation program. (A = 1.1336) 
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Fig. 3 - Relative standard deviation (%) of M as a function of relative precision of YT and YR . 
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