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Abstract 

In order to incorporate fluctuations into the extended TDHF, a new approach is 

proposed. The evolution of the single-particle density is considered as a "generalized 

Langevin process" in which the correlated part of the two-body collisions acts as 

a "random force". In the semi-classical approximation, the correlation function of 

the random force is calculated. A possible algorithm for the numerical solution is 

discussed. 
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The extended time-dependent Hartree-Fock (TDKF) in the semi-classical limit with 

the Uehling-Uhlenbeck (VUU) form of a collision term provides a numerically tractable 

model for the single-particle density f(r,p) in nuclear collisions [1]. The model has 

been successfully applied for describing the one-body observables such as the inclusive 

particle spectra and linear momentum transfer [2,3,4]. However, the model can not 

provide a description for the fluctuation phenomena responsible for mnltifragmentation 

processes and correlations in light particle emission. The obvious reason is that, the 

extended TDHF or any approximation to it determines the single-particle density which 

is averaged over all of the accessible channels (ensemble averaging) in a collision process. 

Consequently, all of fluctuations are washed out and a smooth single-particle density is 

produced. 

In a recent work [5,6], a prescription is proposed in order to incorportate fluctuations 

into the VUU equation by treating the collision term as a quantum mechanical tran

sition rate between Slater determinants rather than treating it as a continuous source 

term for describing the evolution of the single-particle momentum distribution. The 

fluctuation and dissipation properties of the single-particle density are not independent 

properties, but they must be related to each other -as for any relaxation process like in 

a Brownian motion problem- through a "generalized fluctuation-dissipation theorem" 

operating locally in phase-space. In the prescription given in refc."]S,6], fluctuations are 

introduced by hand, and are not treated consistently with the relaxation properties of 

the single-particle density. 

Here, we propose a different approach for incorporating fluctuations into the ex

tended TDHF. We consider the evolution of the.single-particle density as a "generalized 
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Langevin process" similar to tb« motion of a Brownian particle in a heat bath, except 

that the Brownian coordinate is not the momentum of a particle but the whole single-

particle density itself. The effects of the two-body collisions are two fold : 

i) To produce dissipation by randomizing the single-particle momentum distribution 

which can be described by a collision term of the VUU form, ii) To induce fluctuations 

by propagating correlations from one point to the other in phase-space. In the present 

approach, the correlated part of the collisions are regarded as a "generalized random 

force" acting on the single-particle density. This "random force" is characterized by its 

correlation function. Once the correlation function of the random force is known, we 

have a well-defined Langevin problem for the fluctuating single-particle density. 

The sepai ation of the collision term into the uncorrected part and the correlations 

can, be done formally by using the projection method of Nakajima-Zwanzig [7,8,9]. This 

yields an exact equation for the single-particle density in the semi-classical limit having 

the following form, 

Jj/O-.P) - {M/)>/(r,P)} = K[f) + I(r,p,t) (1) 

where, {...} indicates the Poisson bracket, K(f) is the "collision term" and I(r,p,t) is 

usually referred to as the "correlation term". The separation of the right-hand-side 

of the eq.(l) into a smoothly varying collision term and a rapidly fluctuating correla

tion term is done by introducing a projection-averaging procedure in such a way that 

when the ensemble averaging is performed, the average of the correlation term in eq.(l) 

vanishes and we recover the usual transport equation for the averaged single-particle 

density. However, before averaging I(r,p,t) never vanishes, even at an "initial time" 

corresponding to the initial condition of a collision problem, and it describes the prop-
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agation of the fluctuations in the single-particle density. The correlation term varies 

rapidly in time with a characteristic time, 7-4, of the order of the duration time of a two-

body collision, and it is almost impossible to calculate it microscopically. Therefore, we 

give up a detailed microscopic description and consider only the gross properties of the 

fluctuations. For this purpose, we assume that the correlation term in the eq.(l) acts 

like a "random force" on the single-particle density, and, in analogy to the Brownian 

motion problem, is characterized by the correlation function, 

I(r,p,t)I(r',p>,t') = C{r,p;r',p')S(t - *') (2) 

where bar indicates the ensemble averaging, with a correlation time of the order of 

r<( -taken to be zero here-. With a given correlation function, we regard eq.(l) as a 

generalized Langevin problem for the fluctuating single-particle density. The "collision 

term" describes dissipation, that is the approach toward equilibrium, and the "random 

force" determines the fluctuations. During short time intervals, the entire single-particle 

density receives a random "kick". However, the "kicks" are not random at different parts 

of the phase space, but must be consistent with the correlation function of the random 

force. 

In order to define the "Langevin problem" completely, the correlation function, 

^( riP! r ' iP ,)> must be evaluated explicitly. This can be done rather easily for a dilute 

gas, in the same approximation as for the derivation of the collision term in the VUU 

equation. The details of the calculations will be published elsewhere [10]. Here, we 

outline the derivation and give the result. Because of the short correlation time, it 

is sufficient to consider the propagation of the random force, I(r,p,t), in eq.(2) over 

short time intervals, t*-t = r « r m / , which are much smaller than the mean-free-time 
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between collisions. For simplicity, we first consider a homogeneous Fermi gas and at 

the end, translate the result into the phase space. During a small time interval r, the 

correlations propagate according to [9,10], 

I(k,t + T) = - « 5 3 v«,i,(r)[n,irê|t - SijSitmm,] - c.c. (3) 

with 

«Wi(f) = "U,V «p[-lV(«l! + e< - £j - «|)I (4) 

where n,, is the matrix element of the fluctuating single-particle density, n}- is the 

averaged occupation number, v*,̂ - is the matrix elements of the residual two-body 

interaction and £, is the single-particle energy. All the quantities in eqs.(3) and (4) 

are evaluated at time t. Then, the correlation function of I(k,t) can be evaluated by 

integrating over r, 

C(k,k') = H drI{k,t)I{kf,t + T) (5) 
J - 06 

and assuming that the correlation function of the fluctuating single-particle density is 

given by 

(n,-,- - «,-,n,)(nu - 6ank) = £,ift,rc.(l - n,) (6) 

The result for the correlation function of the random force in the phase space can be 

given as , C(r,p;r>,T/) = C[p,p/,T)6{r - r1), 

c(p,j/,r) = £^ (PP' ;P3P0[ / / ' ( I - / 3 ) ( I - /H) + ( I - / ) ( I - / ' ) / 3 / < ] 
3,4 

-2 2>(Pft;p'P0[/Ml -/OU"/*) + (!- / )(! ~h)f h] (7) 
1.4 

+ W £ W(PV2\ P&t)[fh(\ - /j)(l - ft) + (1 - /)(1 - ft)hft] 
s,s,< 
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where /,- = /(r-,Pi,i) and the transition probability is given by 

da 
W(pip,;pspt) = | V I - " J I ^ (12; 34)i(pl + p i - pl-p""4) (8) 

with ^ is the nucleon-nucleon scattering cross-section. 

The correlation function is completely determined by the averaged properties of the 

single-particle density. This result can be regarded as a consequence of the "fluctuation-

dissipation theorem" which relates the fluctuation and dissipation properties of the 

single-particle density locally in phase space. Using the symmetry properties of the 

transition probability in theeq.(8), i.e., W(pw,pspA) = W(psPi,PiPî) = ^(PiPi\PzPi), 

it is straightforward to show that the correlation function is symmetric, C(p,p,' ,r) = 

C(p',p,''), and obeys the following sum rules, 

£C(p,p',r)=X;C(p,p' !r)=0 
r p' 

£ pC[p, p\ r) = £ pC(p, p\ r) = 0 (9) 

£e p C(p,p ' , r )=£6 l > ,C(p,p ' , r )=0 
p p ' 

where ep = p 2/2ro. These sum rules correspond to the conservation of particle number, 

momentum and energy, respectively, and indicate the fact that the correlation function 

given by eq.(7) satisfies the conservation laws locally in the phase space, as it should 

be the case. The strength of the correlation function is determined by its diagonal 

elements, and is given by, C(p,p,r) = C(r,p), 

C(r,p) = £ W(pp2;p3Pi)lfh(l - h)(\ - A) + (1 - /)(1 - / 2 ) / 3 /«] (10) 
2,3,4 

This follows from the fact that the diagonal elements in the first two terms of eq.(7) 

vanish. It is interesting to observe that the strength of the correlation function given 
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by eq.(10) resembles the collision t*rm in the VUU equation, but the sum of the gain 

and loss terms appear instead of the difference, as is also the case in the off-diagona] 

elements of eq.(7). This has a simple physical interpretation : the rate of change of 

the averaged occupation number is determined by the net effect of the gain and loss 

terms. On the other hand, the rate of change of the mean-square-fluctuations of the 

occupation numbers, which are described by the strength of the correlation function, 

are determined by the sum of the gain and loss terms, as in a random walk problem. 

Eq.(l) with a correlation function of the "random force" given by eq.(7) is a stochas

tic, non-linear, integro-differential equation for the evolution of the Suctuating single-

particle density. The solution of this equation is a very complex mathematical problem, 

and certainly requires power of the present-day supercomputer technology. Each solu

tion of the stochastic r }.(1) generates an event and many solutions must be examined 

to provide a description of the collision process. 

The main difficulty in solving the eq.(l) arises from the fact that the fluctuations 

in different parts of phase-space are correlated as expressed by the correlation function 

of the random force. However, an approximate algorithm may be developped for the 

solution by employing a "coarse-graining" procedure in the following way. One can 

consider that the phase space is divided into discrete cells with volume elements, Çlj = 

(2jrft)s, so that each cell represents one physical particle. This coarse-graining can be 

realized in two different but equivalent ways : 

i) Euler's view. The phase space cells have fixed positions and shapes, but the number 

of particles in the cells is fluctuating. In this case, cells can be characterized by the 

mean occupation numbers averaged over the cells, fj = < / >n,-. 
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ii) Lagrange's view. The number of particles in the cells are fixed, but the position 

and the shape of the cells are fluctuating. This case, cells can be characterized by their 

mean positions and momentum, r, = < rf >n,- and p,- = < pf >n;. In either case, the 

mean values evolve like an ordinary Langevin process provided that the time steps are 

sufficiently large, and the correlations between cells, aside from the local conservation 

laws, can be neglected. Then, during a time interval At, in the Euler's view, the mean 

occupation numbers of the cells change according to (10,11], 

fiit + At) - /,(*) = KU,)ùt + f£cj X„(t) (11) 

where the Erst term on the right-hand-side determines the smooth evolution of the oc

cupation numbers by the collision term, and the second term describes the random kick. 

The maximum kick is determined by the stregth of the correlation function averaged 

over the cell, and is given by C,- = < C[r,p) >aj. In the Lagrange's view, which is phys

ically more appealing and easier to implement to the numerical simulation, the mean 

momenta of the cells evolve like a Brownian motion in a heat bath according to [10,11] 

Pj(t + At) - Pi{t) = F{rhPj)At + \j~Dj Xn{t) (12) 

where the first term on the right-hand-side gives the smooth motion determined by the 

mean-field and the collision term which is indicated collectively by F and the second term 

describes the random kick on the mean momenta of the cell. In this case, the maximum 

kick is determined by D,- = < p2C(r,P) >ry which acts like a "diffusion coefficient" 

for describing the momentum fluctuations of the cells. In eqs.(ll) and (12), At is a 

time interval which should be larger than the correlation time of the random force but 

small compared to the mean-free-time between collisions, and Xji is a gaussian random 
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number with a second moment, Xft = 2. The kicks are not independent and involve 

four cells at a time, say flj,fij,n|, f!J, kicks are given either to the mean occupation 

numbers by the amounts of ^j^CjXji and y/^dXji or to the mean momenta by the 

amounts of y ^£>,X ; f and \J"DiXji, then the fluctuations in the cells U[ and tlj , are 

determined by the energy and momentum conservation, as in a two-body collision. It 

can be shown that the kicks given to the cells in the eqs.(ll) and (12) do not violate 

the Pauli principle provided that the time interval At is smaller than the mean-free-

time between collisions. However, when the cells or the particles are moved to the new 

positions, it must be checked that the Pauli principle is not violated. This algorithm may 

be incorporated, without much difficulty, into the existing computer codes for solving 

VUU equation by test particle simulation, but the details of the calculations remain to 

be worked out. 

In summary, we propose a new approach, in order to incorporate the fluctuations 

into the extended TDHF. The evolution of the single-particle density is considered as a 

"generalized Langevin process" in which the correlated part of the collision term acts 

as a "random force" generating fluctuations. The correlation function "f the random 

force is calculated in the semi-classical approximation. The result is a "stochastic trans

port equation" for the fluctuating single-particle density. We discuss an approximate 

algorithm for the numerical solution. 
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