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1. Introduction

In [2], Hu Hesheng proves a nonexistence theorem for

nontrivial regular static Yang-Mills field with finite or slowly

divergent energy in the region outside r=5M in the Schwarzschild

spacetime and she conjectures such a nonexistence theorem should

be true for r=2M, where 2M is the Schwarzschild radius. Later, in

[3], the region is improved from r>5M to r>3M together with a

improved energy condition. The aim of this paper is to prove that

the conjecture is true for some boundary conditions.

The idea is as follows. First, under the boundary

condition on the boundary r=2M, we prove that there exists an ope

domain in which the Yang-Mills field is flat. Since in a

neighbourhood of each point the field is (time-independent) gauge

equivalent to an analytic field, we conclude that the field is

flat globally outside r=2M .

2. Preliminaries.

As known, the metric of the Schwarzschild spacetime Mv is

dsr- g^dx'dx" - -(l-ip)dt1+ —^—- dr* + r1 (dG'+ sin^d^ 1),

{ * , /i , - 0,1,2,3 ) (1)

where r=2M is the Schwarzschild radius.

Throughout this paper, we shall use the summation convention

and the ranges of the indices as follows.

A , fi , y , ... , - 0,1,2,3, and i,j,k,..., =1,2,3. (2)

For convenience we use the notation x', x', x*, x'instead of t,r,

£ , ̂  respectively.

On any hypersurface t=constant, the volume element is

d v -
 r*'" e drdedt , (3)
Ji -

and the area element of the sphere r-R is

^dS - Î sinf: d0 df . (4
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Let G be a compact Lie group and its Lie algebra. Let 'P be

a principal G-bundle over M . On the space of connections in fa,

Q, we consider the Yang-Mills functional "J : £-*• R defined by

J (b) - - i j <f^, f^)dv , bc-c, (5)

where

b - bA(x) dx* (6)

is the connection (gauge potential) and

F - { f̂ dx W (7)

is the curvature (field strength) of b . We have

^%7"^-[V^i • (8)

A Yang-Mills connection is a critical point of ̂ " and then its

curvature is a Yang-Mills field. So a Yang-Mills field satisfies

the Yang-Mills equations

J* " 9*'<W+ t V £XA]> - 0' (9)
where ";" denotes the covariant derivative with respect to the

metric (1). If F*=0, the field is called trivial or flat. If the

potential b is independent of t, the field is called static.

The energy momentum tensor of Yang-Mills field is

V ~ <f<* ' f/>* '̂ ' ~ i 94n(ffcw f,c Jg'V
1-' • (10)

For Yang-Mills field the following conservation law holds

T£;A - ° ' (11)
where

tf-^g". (12)
If

j TtCdV <too , ( 1 3 )

we say the energy of the field on the outside of the black hole

is finite . If

i TOtdV =toO , ( 1 4 )

and

•ti*3#> dV <rOO , ( 1 5 )

for a certain positive continuous and unbounded function Y(r) ,

satisfying r ix
•'AH T t i r ) - •>• ° ° , (16)

-3-



we say the energy of the field on the outside of the black hole

is slowly divergent.

The Christoffel symbols of the metric (1) are all zero except

the following terms:

/To-Pi0, - -PM - M/r(r-2M), rc'c= M(r-2M>/r*, ft- - (r-2M) ,

^ - -{r-2M)sin*fl , f\ = K, - f,\ = F,3, - 1/r, f^ - 4 sin26 ,

r « - r « - ctge • (17)

Set

p = T f x{fA»> ' f ) - (fc. '
 f n /

Q - 4- Mf.ai , flCt ) - (fca ̂  fcft )J . a,b = 2,3. (18)

Then P > 0 and Q £ 0 . The eqalities hold simultaneously if and

only if all f*.̂  vanish.

In the following , we establish in detail a formula which is

the correct form of that used in [3].

Lemma 1. For any R > R9> 2M , it holds

ds _d s (
lM/r ^ ^ 7 » -

» » p * I * '£(r» "

where f(r) is any smooth function of r .

Proof. We use " % " to denote the covariant derivative on the

hypersurface t^constant . Note that such a hypersurface is

totally geodesic in the Schwarzschild spacetime. The boundary of

the region Ro < r £ R consists of r-R and r-R,, and the unit

normal vector on the boundary is

J 1 - 2M/r %r , r-R or Re . (20)

From the conservation law (11), we have , noting the field is

static and (17),
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Since the hypersurface is totally geodesic, we have from (21)

particularly.

*"j ^'il* Ti ' he ' (22)

T « l i e T i l i e

J » • (23)

For any vector field on the hypersurface t=constant ,

we have

Taking V-f (r)|p , i.e., v' = f (r), v'= v* = 0, from (24) and

Stckes formula we have

*t«T! •- ( +xr)T!
dS

f (r) T* ()j dV A M£L dS -i ^"T' .

(25)

By means of (17), (23) and T* + T ] = - T ^ -T,' , (25) car. be written

as

\ •frr*'*r'' •- ( ^'•)T:

^ ^ + ff(r) - 'fSr'TMdV . (26)
;;ctir.g T^= -(F+C! and T,1 = -P T Q , w e g e t (1S)>

2 . Xair. Results.

First we prove the following nonexistence theorem for any

regular static solution for Yang-Mills equation outside the

black hole.

Theorem 1 . Let G be a compact Lie group. The Yang-Mills

equation on the outside of the black hole of the Schwarzschild

spacetime does not admit any regular static solution which

satisfies the following boundary condition;

s i ^ k n ' x"2M/r )fi7>ids > ° ' <27>
where (I 6 [ 0 , 1 ) .

P roof . Because 1 > P J O ( we can f i n d a p o s i t i v e ot such t h a t

I f * > / 5 * (28)
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S e t ,+JJ

f (r) - P*** . <r-2M)* * . (29)

By a straightforward computation , from Lemma 1 we get, for any

R, > R, > 2M, .

( „ rl-r* • <r-2M)''r< T,' dS -j-.-r1""* (r-2M)' T,1 dS

(r-2M)iTlx (r-3M)(o(P + Q ) dV. (30)

Letting R,—• 2M in (30), due to (27) and (28), we see the

second term on the left-hand side of (30) tends zero , and we get

J r"77^ <r-2M)"* T| dS

= J ,-7T3T r l t " <r-2K)1*" 'r-3M) ( e* P + Q ) dV , (31)

for any R z > 2M .

But if RA is sufficiently close to 2M , due to (27), the left-

hand side of (31) is positive , while the right-hand side of (31)

is nonpositive . This contradiction proves our theorem.

Remark 1 . When/! - 0 ,the boundary condition here is much

similar to that in [2], but now we need no condition concerning

the energy .

The example in [2] shows there does exist a solution for the

Yar.a-Mills equation outside the black hole of the Schwarzschild

spacetime which satisfies the boundary condition

lim ] TjdS < 0

Refering to the Theorem 1 , it is natural for us to study the

case under the boundary condition

lim J T*, dS - 0 .

We have the following

Theorem 2 . Let G be a compact Lie group. The pure Yang-

Mills equation on the outside of the black hole of the

Schwarzschild spacetime does not admit any regular static

solution which has slowly divergent energy and satisfies the

boundary condition

lim ̂  _ T,'dS - 0 . (32)

Proof Set

f(r> - r - 2M . (33)
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By a straightforward computation from Lemma 1 , we get

j r y~l -IM/r T|dS - j r / 1 -3M/r TJ dS -f W dV , (34)

where " * " * * •

w , £ ^ £ L { P + Q » . {35)

Noting T 0 6 - ( 1 - I H / r ) ( P 4 Q J , we see

}1?L W- ' 1 ' (36)
and

vv

Thus from (34) and (37), we see

lim -^f - £> . (37,

.imjlim\ Ttt dV + c>o < (38)

and the assumption on energy says

lim \ TCi dV - • cio . (39)

From (36) , we have then

lim j W dV •= T °" . (40)

Since W is nonpositive inside r=3M , we deduce from (40) that

there is a certain R( > 3M such that

b*f.RW ̂  = ° " (41)

Letting R — * 2M and setting Rt*= R > R, in (34) , we have

for any R > R( .

We claim that there exists a certain R > R,(>3M) such that

P -= Q - 0 outside r-R . For otherwise there would be two positive

constants R and £ such that R > R, and for any RA> R

W d v > t - (43)
Set

M)(R)

0 ,
i

( 4 4 )

where ~Y(R) is the same function in (15) and (16) .

Multiplying (42) by W(R) and substituting (44) into it and

then integrating the both sides , we have

J~ RS'tR) J 0 ~ 2M/r T, dS *"J— r.~i.,t,\ L W dV .
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It is easy to see that there exists a positive constant A

such that , for r > R ,

IT) I < A T U . (4 6)

Hence the left-hand side of (45) is less than

On the other hand , the right-hand side of (45) is greater than

s R^T .
 { 4 8>

Thus we have

Since the energy is slowly divergent , the left-hand side of

(49) remains finite as R^—»+• oo , but the right-hand side of (49)

tends to 4-c»c as Rx —»**•© . This is a contradiction .

Thus we conclude that P=Q=0,i.e., f^' 0 , outside a certain

R>3M . Consequently the energy would be finite . It is a

contradiction . The theorem is proved.

Concerning the case of finite energy , we have the following.

Theorem 3 . Let G be a compact Lie group. The pure Yang-

Mills equation on the outside of the black hole of the

Schwarzschild spacetime does not admit any nontrivial regular

static solution which has finite energy and satisfies the

following boundary condition

limf T[ dS « 0 , (50)

and

lim( rT! dS - 0 . (51)

Proof, In this case , we see

E " L r M d V t52)

is finite too.

We have to consider three cases : E > 0, E - 0 and E < 0 .

(1) E > 0 . For this case we can go in the same way as the

proof of the theorem 2 and conclude that outside a certain
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R>3M , P-Q-0, i.e., f^= 0 . Then , taking the last paragraph in

section 1 into account, we deduce the global triviality of the

solution.

(2) E < 0 . In this case, we see there exists a certain R<3M

such that

<sr W dV = 0 . (53,

Now if

J r/ 1 - 2M/r T dS > 0, (54)

we can find a sufficiently small $ > 0 such that

J r / 1 - 2K/r T,' dS > 0 . (55)

Thus we have

y W dV > 0 . (56)

Then in the same way as above we come to the global triviality of

the solution .

If

^ r J 1 - 2M/r TJ dS < 0 , (57)

we can find a sufficiently small % > 0 such that

J r y i - 2M/r i\ dS < 0 . (58)

Thus we have

j W dV - -"0 < 0 , (59)

where "T) > 0 and 134) says , for any R>3M ,

5 r^ l-2M/r I"! dS - j r/ l-2M/r T(' dS < -^ . (60)

Due to (58) we have , for any R>3M

j ij l-2M/r T dS < -1) . (61)

It is easy to see there exists a A>0 such that , for r>3M ,

( 1 - 2M/r ) T| > - ATe0 . (62)

Multiplying the both sides of (61) by 1/R and integrating ,

we get

T,, dV < -]J \ # - . (63)

Letting R —*-r«o , we again come to a contradiction .

Now if

j V l-2M/r T,1 dS - 0 r (64)



we have , for any R<R, ,

-j r/ l-2M/r Tj dS -J W dV . (65)

Letting R —» 2M, we get

j W dV - 0 . (66)

Due to 2M < R( < 3M , (66) forces P and Q to be zero for r$R, .

This again means the global triviality of the solution.

(3) E - 0 . We claim this case can not occur . Otherwise ,

from (34) and (50) we should have , for any R>2M

t\ r/ l-2M/r T dS - \ W dV (67)

Letting R —> -t •;*.• in (67) , we should have

lim \ rT dS = 0 . (68)
o ~ Jr-.n

this contradicts the condition (51) . The theorem is proved .

Remark 2 . We do not know whether the condition (51) is

necessary or not.

Remark 3 . To justify the remark made in the last paragraph i)i

section 1 , we proceed as following (refering to the section 4 in

[1]). First one need to show that for each point P in the

hypersurface t-=constant , say t-0 , there is a neighbourhood U a

a G-valued function w(x^), i-1,2,3, such that on U

satisfies

cj'-'riT = 0 . (69)

To see this let u be a system of local coordinates of a

neighbourhood of identity in G and w - w(uA) . Then we have

"hL~ £Ap (u(xM)b^ +X^<u(x 1)>^ , (70)

where ^ c is nonsingular.

Differentiating and substituting in (68), we get

g" 7*— +>Ufc37*ir- + ^ ( ( ^ c b : »^ >9' - ° ' (71)

which is a guasilinear elliptic system of equations , and hence

there exists functions uF"(x~) such that they are defined on some

U around P and satisfy (71) . Hence on U we have (69) . Now on U,

b satisfies the Yang-Mills equations so that

-10-



where F is an analytic function of its arguments . Hence by

elliptic regularity theory , b̂  is analytic on U .
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