
INTERNATIONAL CENTRE FOR
THEORETICAL PHYSICS

PINCHING CONDITIONS FOR YANG-MILLS INSTABILITY

OF HYPERSURFACES

Pan Yanglian

INTERNATIONAL
ATOMIC ENERGY

AGENCY

UNITED NATIONS
EDUCATIONAL,

SCIENTIFIC
AND CULTURAL
ORGANIZATION

1988 MlRAMARE-TRIESTE





IC/88/212

International Atomic Energy Agency

and

United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

PINCHING CONDITIONS FOR YANG-MILLS INSTABILITY OF HYPERSURFACES *

Pan Yanglian **

International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

A compact Riemannian manifold M is said to be Yang-Mills

instable, if for every choice of compact Lie group G and every

principle G-bundle P over M, none of the nonflat Yang-Mills connec-

tion in P is weakly stable. This paper gives curvature pinching

condition for the Yang-Mills instability of hypersurfaces in space form.
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1 Introduction

Let M be a compact Riemannian manifold and P a principal

G-bundle over M, where G is a compact Lie group. On the space

of connections in P, we consider the Yang-Mills functional

J : £ -» R def ind by

J(w) « ~ [j&f w £ £ , (1)
where _Q is the curvature of the connection and the norm HlZfj is

defined by the Riemannian metric of M and a fixed Ad^. -invariant

inner product on the Lie algebra ^ of G.

A Yang-Mills connection is a critical point of J and its

curvature is a Yang-Mills field. A Yang-Mills connection w is

called a weakly stable if for any family of connections w , |t|<

with w • w, the second variation of the functional at w is non-

negative, i.e.

M is said to be Yang-Mills instable, if for every choice of

compact Lie group G and every principal G-bundle P over M, none

of the nonflat Yang-Mills connection in P is weakly stable. A

typical example of Yang-Mills instable manifold is the Euclidean

sphere S* with n > 5 ([1]). For the case that M is a hypersurface

or submanifold in the Euclidean space E*1 or S m , some conditions

for the Yang-Mills instability of M can be found in [2] and [3].

In this paper , we give an intrinsic condition for the Yang-Mills

instability of M where M is a hypersurface in a space form S (c)

of constant curvature c with c £> 0 .
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2 Preliminaries

Let M n be an isometrically immersed compact submanifold in a

space form s'xc) <c £ 0) . As known, S (c) can be isometrically

immersed into the Euclidean space E in a standard manner. We

choose a local field of orthonormal base { e£ , ê  , ec } of E

such that , restricted to Mn, {e-} span the tangent space of M ,

{e^} span the normal space of M in S (c) and ec is the unit

positionvector. Throughout this paper we agree on the following

ranges of indices unless otherwised stated :

1 £ i, j,k, . . .,£ n, n+1 £<t,p, Y, . . ., < n+p, 1 $ a,b,c, . . .,< dimG

Now let w be a Yang-Mills connection in a principal G-bundle

P over M with compact Lie group G. Let

w*- w + A*, (3)

where A is a 9- valued 1-form on M and let

B " At
Evidently , B is a 3 - valued 1-form on M .

It is known (11]} that the second variation of the Yang-Mills

functional is

4 j'» t>U-5 M.
< x V B +' R- W ( B ) -B> • w

 (5)

where d is the gauge covariant differential operator, c is the

adjoint operator of d , and ^R(B) is an operator defined by

(X) - £ [Ji(e;, X ), B(e-M , V X 6 T p ( M ). (6)

If £> B - 0 , (6) can be rewritten ([1]) as

V*B + B RicM+ 2(^(B), B > , (7)

where v * ^ i s t h e t r a c e I^placian operator

Set

(8)

where { X^} is an orthonormal base of *j , i.e. <X(l, Xfc> - tah >
 a n d

clh a r e t h e structure constants of the Lie group G .

Let V be a fixed unit vector in E . ̂  denotes the tangent

projection to M* of V . Locally , ̂  can be expressed as
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V - £ < e. , V> e: « J vcec ' v £ " < v ' et> • O )

For each V , we can define a 3 -valued 1-form B as follows.

B - I v j f * w;Xa , (10)

where {w-} is the dual base of {e;} .

It is easy to see that e R - 0 . So formula (7) applies this

case. For each V , denote the correspond second variation of w by

QW(V) and Q^(V) can be considered as a quadratic form on E*

We have ([3])

trace Q^ - J^ q^ -J { i h^ h*. f t> f;« + c2 f Af t> + * R̂ f.-k fjtl

+ 2Rk
clJ f j ^ ; . } f

where I* h,-- w;t»w.«ew is the second fundamental form of M
M in S (c)

R̂- and R^m are Ricci curvature tensor and Riemannian curvature

tensor of M"1*" .

3 Main results

Now we consider the case where M n is a hypersurface i.e.,

p - 1 . Due to the Gauss equation of M n in S^'tc) , (11) becomes

t r ace Q w - $„{ <4-n> c I ffh f ?k + i h ^ h y f y f

> •

Choose {e-} such that ht- - XtFcj , where A|,...,An are principal

curvatures of M* . From (12) , we have , setting H - £4i ,

trace Q w - \ { (4-n) c\ £*K fjk - a£ A;t\ £X + 2l^fJk f?A

It is obvious that if trace Q is negative then w is weakly

stable if and only if w is flat. So we have the following

Theorem 1. If M is a compact hypersurface in S (c) <c>0)

such that its principal curvatures Xi,...,A* satisfy

(4-n)c +Xi(2Al+ 2Aj - H) < 0, for any i^j, (14)

at every point of M*\ then M*1 is Yang-Mills instable.
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Now we give a pinching condition on the curvatures for a

compact hypersurface in S (c) (c^O) to be Yang-Mills instable.

Theorem 2. Let S (c) be an (n+1)-dimensional simply

connected space form with constant sectional curvature c^O .

Suppose that M*(n^5) is a compact hypersurface in S^'fc) of which

the sectional curvatures Riem satisfy the following pinching

condition :

c + 3aV[(n-4)c + (n-l)a] ̂  RiemM < c + a (15)

for some constant a>0 .Then M* is Yang-Mills instable.

From the Gauss equations RijC; " c +^^} > (15) is equivalent

to

aV{(n-4)c + (n-l)a] < A;Aj < a , for any i*j . (16)

Since Mfl is convex , without loss of generality, we may assume

0 < At $Ai $ ... $ Xy, • <17>

Setting

Ak - H - 2Xk . (18)

we have An3 A M $ ••• ̂ i a n d <14> i s equivalent to

2^ - Af Aj - (n-4)c < 0 , i#j . (19)

Due to (17) it is equivalent to

Aj< 4-1 A: + /"AT* 8(n-4)c ] , î j . (20)

I
Lemma 1. If 0 < X\ •$ A* < . . . <An and Ah<-j- [Aft+ 7A^+ 8 (n-4) c] ,

t h e n (14) ho lds .

Proof Since , for any k, we have

\ - A^ - ( H - 2Ajt)
1 - ( H -

h t H -A^-Aj.) > o ,

hence for any i , k /

*C<A.»,< ^- [ A H + y A;+ 8 (n-4 )c ] < -^l A k + y A\+ 8{n-4)c

The Lemma i s proved.
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Lemma 2. If

— [ H + J H* + 16(n-4)c ], (21)

then

An+ J A*+ 8(n-4)c ]. (22)

Proof From (21), we have

4X r
B- AhH - <n-4)c < 0 .

It follows that

( 6 Xn - H )*• < An+ 8(n-4)c .

Consequently,

4*n< ( H - 2Xn) + J A* + 8(n-4)

So

An< *%•[ An+ J Aj,+ 8(n-4)c

Now let

b •£ A;Aj< B , i¥j , (23)

where b,B are positive constants.

Lemma 3. If \ t b and b,B in (23) satisfy

B*- Lb + (n-l)bX- 0 , (24)

where

L - J- [ 7(n-l)b + J (n-l)V+ 12(n-4)c ] , (25)
b

then (21) holds.

Proof Since -Mrf: B , from (24) we have

**< T * T " L " (n-l)b . (26)

From (25) , we have

3"L"- 7(n-l)bL + 4(n-l)XbX- (n-4)c - 0 . (27)

Hence

L - (n-l)b - - [ L +J !?•+ 16(n-4)c ] . (28)
8

Thus
1 /T
-i-[ L + V L + 16(n-4} ' ] . (29)

If L ̂  H , then (29) implies (21) . Suppose L > H . Set L - H - K
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We have

Xv- H - 5 Afc < H - (n- l )b - L - (n- l )b - K
Mi , i—i

- 4-[ L + 7 L + 16(n-4)c - 8K ]

- y [ H + 7 Ll+ 16(n-4)c - 7K ] . (30)

On the other hand, i t i s easy t o see

( J H*+ 16{n-4)c + 7K )*> L*" + 16(n-4)c . (31)

Hence

l + 16(n-4)c - 7K < J HX + 16<n-4)c . (32)

From (30) and (32) , we s t i l l have

X*< •=•[ H + J H*+ 16{n-4)c ] .

The Lemma is proved.

Lemma 4. If n > 5 and (24) holds, then (21) is true.

Proof It suffices to prove the Lemma in the case of \j< b .

Since n > 5 , there exist \t and Ai (€A3) such that A.tAi£ b .

Construct

Then

( X[ )x = 4- (A, + Ai )l ̂
~ t t

so that A'( > b . Obviously we still have A,-AJ^AJ and

i, +\+ t^^ " H unchanged. Thus , applying Lemma 3 to the case

where 0 <^t~K$^< ••• <*«<• w e c a n prove this lemma.

The proof of Theorem 2. (15) is equivalent to

3aV{(n-4)c + (n-l)a] <Xc*i < a . (34)

Set

b*- 3a*V[(n-4)c + (n-l)a] and B - a . (35)

we have

3a1- <n-4)cba+ ( n - D ^ a . (36)

Thus

a - -^[ (n-l)b + J (n-l)*b* + 12(n-4)c]

(n-lfbX + 12(n-4)c] - (n-l)bX . (37)
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It follows from (35) and (37) that

BX- bL + (n-l)b1 - 0 , (38)

where

L - -g-[7(n-l)b + J (n-l)b* + 12(n-4)c ] . (39)

Now applying Lemma 4 we complete the proof.

Corollary. If n > 5 and Mnis a compact n-dimensional

hypersurface in the Euclidean space E1"1"' satisfying the condition

3a/(n-l) < RiemM < a ,

for some a > 0, then Mnis Yang-Mills instable .

Remark. The constant a can be replaced by a positive
c

function afcC(M) such that the pinching condition holds at every

point x € M .
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