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%1 Introduction

A harmonic map is a critical point of the energy functional.
A harmonic map is said to be stable if for any deformation vector
field, its second variation is always non-negative. For

simplicity, we give

Definition 1. Let M be a compact Riemannian manifold. M is said
to be weakly E-unstable, if the following two conditions are
fulfilled :

(a) For any compact Riemannian manifold N there are no
nonconstant stable harmonic maps from N to M,

(B) For any Riemannian manifold N there are no nonconstant stable
harmonic maps from ¥ t©o> N.

Several classes of weakly E-unstable manifolds have been
founded in recent years., A typical case is the Euclidean sphere
S™ with n>3. It is due to 3 combination of Xin’s result for {B) [8]
and nenng’s resuls for (Ay LW1 L Tuking 5™ as model manifcld, one
mighi exoect the weasly Tounsiab lity for sufficiently pinched
Riemannian manaifolds,i.e., foo compect Riemannian manifclds whose
sectional curvatures are between the interval [JK , K] with
constants K»0 and 138> 0. But Urakawa[7] shows that the identity
maps of any non-simply connected manifold with positive constant
curvatures are stable. So the condition of simply connectness is
necessary. In 1985, Howard proved the following
Theorem 1 (HBoward). Let n 3. There is a number J,(n) with ;.
gsuch that if M is simply comnrected with &(n)-pinched curvatures
then for every compact Riemannian manifold N every stable
harmonic map ¢: N — M is constant.

Tt means for such a manifold the condition (A) is catisfied.
This is a theorem determined only by the intrinsic geometry of
the manifold.

In this paper, we establish the following
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Theorem 2. Let n P3. There is a number 5)_(11) with;tL_ ‘S.Si(n) &1 such

P ———— e

that if M is a simply connected Riemannian manifold of dimension

n with Sgn)-pinched curvatures then for any Riemannian manifold
N every stable harmonic map¢: M =% N is constant.
Combining the above two theorems , letting s(n)= max (84n),8§n0
we obtain
Theorem 3, Let n 23. There is a number S(n) with -a_l'-égfn.!‘-l such
that if M is simply connected Riemannian manifold of dimensioﬁ n
with S(n)—pinched curvatures then M is weakly E-unstable ’
The proof of Theorem 2 goes in a way similar to that of
Howard. That is, we make an integral average for the second

variation formula over a continucus family of deformaticns and

show the result is negative,

2 Second variation formula

—ry

Let M and N be Riemannian manifolds with dimension n and m
respectively. M is compact without boundary, and ¥, W/ represent
tPe Fisuwannian connections of M and N respectively. Suppose that

¢ t: M = N is a harmonic map,‘# ™ =2 TN is the induced map,

L
where TM and TN are the tangent bundle of M and N respectively.
We alsn can consider qﬁ as 3 d;%N valued 1-Form 4. i .=,
dtp(X):CBx, for Xe& TM. The induced bundie f’TN ~> M possesses
the induced Riemannian connection as follows

5 = VTZ’XS (2.1)
where X & TM, StP(tf'TN}.

Choose local fields of orthonormal frames {ei} and {q;} in M
and N, respectively, and let {w;} and {w ]} be the fields of dual
forms. we shall make the fellowing convention on the ranges of
indices: 1£1i,3,k,...,€n, 1K d,ﬁ,“', < m, and use the sumnation

convention.




Let W € (CP-‘TN) be a deformation vector field, ﬁthe one
parametric family of maps generated by W, 9"‘:- ¢ . It is well known
that the second variation of the energy functional E(C&) is
given by
ct E E(3, )j =T(H, W)= <v4vw + Rige,Wpe, W) Ly, (2.2)
where V.«V is the trace Laplacian with respect to ¥V , R is the
curvature operator of N, and ﬂh is the volume element of M [6].

If we take ﬂv, where V¢ TM, as the deformation vector, then,

using Weitzenb¥®ck formula, we can rewrite (2.2) as [5]

. R — ~ .M
(V. V) = S,ﬁ dP(G YY) -2V (aP(B V) - $(Ric(V)), ‘EVZ,QH F (2.3

where Ric” is the Riceci curvature operator of M, R:Lc(ea =R.. ;-

I
Under the map ¢ - suppose rhe pull back of w) is 4*“&) =AW,
. (T 2 L.
Then the energy density of cp is e(q\)=12a -, the energy of 3’) is
E(fb)“*‘-j ‘_,;a Q , and the tension field of#’ is T= Z .ie' .
M

where 3, 0 is the covariant derivative of a . For harmonlc map

¢ . T-0.
Let V=V£e-, we compute the guantities in (2.3) as follows.

Vev=v &5 V) ju- (AV )e, , where Vji . VJ‘JL are covariant

derivatives and A is the. Laplacian of M

H?(v_vtn-.q (AV )ef
VE(d?( V)= V&(a Voogg )= Vieeay + Via ey
= (a; (AV Yot gy oleg .
C}" (Ric (V)= RV &
Thus (2.3} becomes
IV, ?V)—j (d {AVL)V-*‘ 2a,, a,u_ % dtR:.‘}VLVc) - 2.9

§3 Some estimates

In this section, we shall list some useful estimates obtained
by Howard. Details can be found in [3]. Suppose V is the gradient

of a smooth function £ on M. For V we define a smooth field of

linear endomorphisms of the tangent spaces to M by

L=

_— — o R — - e a3 LT . -
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@/(xhvxv, for XeTM , xeM, (3.1)
For the gradient vector field of f a straightforward calculation
shows

(Fx . ¥ = pEx,v, (3.2)
where D¥f is the Hessian of f. So(i{is self-adjoint and has real
eigenvalues l,, cer o ln.

From now on we always suppose M is a compact simply connected

with curvetures between 8 and 1, where 1>S;£:.Due to Xlingenberg's
result, the injective radius of such a manifold is greater than T{,

If x¢M , let jiﬁy) deencte the geodesic distance at y from x.

Pefine a function f: R ~» R by
-cost [ 4 E T
F(r)=" (3.3)
. iel2 ]
Then f and f’ are continuous. For any x&¢M, let VFbe the vector
field defined by
V=V (fey) = £ (P) UK. (3.4)
Then V¥is continuous and smonth 2£7 the locue defined by [=j,
and V'= 0 on the set defined by § >7T
Noting (3.2) and using the Hessian comparison theorem of
Greene-Wu[2], Howard gives the following estimates for the
GtV e ol (3:: TA L
At any point y at a geodesic distance from x =, with P <7,
we have
cosP< Ay < J§sinPcotffp , 1gign. (3.5)
Set
3“t,$)= middle value of { cost, 0,JFsintcotfgt) ,

gt )= Ge, 5",  OstkR .

gt 8} = max{ codt, SsintcotFt }, O0<t<TC, (3.6)
g(t,d)= gft,d)= 0, t>W.
Then we have
o5 51 Kpc o P& . (3.7)



The other comparison theorem needed is due to Bishop and
Grittenden[l] . If y€M then let UM, be the unit sphere in TN,.
Then, letting $=F, , and ueUM, , we view (f,u) as polar
coordinates on M near y in the obvious way. Let IIUWB be the
volume density on UM, . Then on the open set M\cut(y), where
cut {y) is the cut locus of y,

si'fay Sy Qs EEEL ap Q) (3.8
where the lower bound only holds up to Ty [1].

The following lemma can be found in [3].

lemma 1 . Let Q : K = R be a quadratic form, then

S Q(u)_Q,h(u) = }Lvous“'S trace(Q) . (3.9)

54 Prcof of the Theorem 2

Without loss of generality, we can assume the curvatures of M
are between [§,1]. Let x be a point of M and v¥the deformation
vector field defined by (3.4). Write the second variation
determined by V*as T, (},V*, $,V*}, and let V(y) = Vi (y)e; . Then
from {2.4) we have
IV, RV = -jm§ 8, (V) 8 (V) LAVE () V) (y) +
23, N AW VEIVEY) + 3,0 3,0 Ry (0 VXV (0 Q.
(L.1)
In the following, we compute the integration
MENE S YRl
and show there exists a certain constant &ﬁn} such that for
125l>5;(n), the integration is negative., Hence, at least for a
certain point x, I, ($V, V™) is negative
First of all, we need to transform (4.1) into another
suitable feorm . Fcr simplicity, we cmit the variable y, then no
confusion is caused.We have
236, 35 Ve = 20@0AViVE i 230 % Va % T 223 Voo 2353V Vi
(4.2)
Thus by divergence theorem (4.1) becomes
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I (eV, ¢V*) = {aa

- aﬁauRgV?Ve }.QM(y) . (4.3)

x® -
Noting a LT A and Vi = V; ., from

L < ) S
W Vet 23,V Ve 2380 e

- - W § _ = _ x x _ X
280 NV = (33N Ve e Ageaai Ve T aae Ve T Y
we have
) E S S 4
25:4‘,?113«:" VVel(y) = ~fy(ace 3%V e e Ay - (4.

Using Ricci identities and notlng Ri;= - R;g)g , we have

b N
Vie -

S T ol >
T T «(( ct) Yk Brgje Ve
]
u) d( vif V( + E&J_%(le\f:\?{ . (4.5)
Noting ay = 0 due to the harmonicity of ¢ , we have
R x* WX
% 3 Vo = (3% uvl)f} A CYERIR SN A
X
= (a fu. Jt )’l - a."’a,l\(;\i\f:- - a}.,ax.lx‘{:‘(l’) N (4.6)
From (4.4) - (4.6) , it follows that
x ) = - - LVAVE - Vv
LRV ., V) “Sm{y; Y “)V“V{ 2q‘)aﬂvi.’%) adjaot.'.\,’j;c A
+ 2a aﬂcv“vh IECNCI (4.7)

Now since
n . - X ! L. x L' b4 x
At = e @ Ui = PV g - e@IVEV] - e@ViVR
(4.7) becomes

. - » i x » - LU x__X
IRV, V) ‘S”l})e(“z")vaee Ve + e (PIVaV - 2358V Wj

aLa VEVT s %8, e, TN () i
ELERVI O SRS G,

Since V* is the gradient vector of the function fefi , at the

ar
b ]

point y with £(y) =§ and P<T, we have viy) = sinj’g}- and

simcevgP %7 =0

'V;_xv"(y) = cosp V¥(y) . (4.9)
So at the point y, with respect to the frame {e; }, we have from
(4.9)
xX A X
Differentiating (4.10), we get
e 4 o x k- x
ViV, * ViVie = -V Vj + cosP Vv . (4.11)
It follows
L X _x K3 LS 4 .
ViYL = =V V) o+ cospVig - ViVii (4.12)

-T-



Now , using Ricci identities, from (4.12) we have

x R L X x
VigVi = SVVi o+ cosPVy - (VL - VaVRejei - (4.13)
Summing on the indices j and ¢ , we get
% % PN X
Ve Ve = -sin’f + cosfVy - V(‘{( - R‘kv'_ . (4.14)

Substituting (4.13) and (4.14) into (4.8), (4.8) becomes
I (?V’ V) j y{ -e(?)smf+ e(cp;cosyv“ - e (v, d..u

-et?m,- Vit e (DI Ve - 23,80V + 38V Y
-cosp a V + 3a, a«‘ dv,:l + %a..,._VkV(Rkjié }.D.h(y)
(4.15)
L9

At the point y, we take the unit eigenvectors of (ﬂ’ as {e;},

and we have

x - ..
V,-}- =l\;~.-’._ji . i,9,= 1,2,...,n, (4.16}
where A;is the eigenvalue of (L

Now we can estimate each term of the integration (4.15) Just
in the sare way as in [3). Using (3.5),(3.7},(3.8) and (4.18) we
gec _

5 D e g e (-sing dp O (y)

Lu) f-]l)(u e(‘f’)suuy) ..H(y) m(x) & voll( e A § dy)id,

(4.17)
SIHJ\.’)

{1 SH ($) cospV; QH (Y1 2,(x) < vol (" )f e ) {j nJf sinfcosfeot Ff(— ‘{j‘
gty
i ncosj»(s'“'f) dj’}S)ﬂ(y) p {4.18)

{5 ce@VIQun 00 g vors™| e(«y)j ~ng, (£,3) singdp Q(y)

Mel ML) "I” ()
(4.19)
e () G0, (1.0, (x) € vol (S e<¢)jr;g (P.5) &% Ef)df_q,(y)
"“S" i ) o (4.20)

~ L
5 (-eosPa, &, V) 2 (y) D0 < VOl(SM)_sHte(‘P){51-20053}‘sinﬂj-| df
S ] :
+3§' 2ifsinPcosycotfFy (m"f‘) df

-

+5 —”J{smfcosgcot;\'j’d? Qﬂ(y), (4.21)
"F

(3

S

i)

J 2,3,V Vi (V) Q0 € vol(S )5 emfzg (£, ("Lf.;é'yn(y)

Mey
7ot (4.22)
Using Lemma 1 and (3.8), we have

-8~
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_L § 2V V0,000, < Swda A S'Mi)d?Q_Ju))ﬂﬁ(y)
A =Sugt ), VoL (S Siak)- sin’ (%ﬁéym (y)
= vol(s" )j (4‘) S 2 sxn’_)’(s;‘?’ )djr).f],.'(y}
(4.23)

From the assumption on the curvatures of M , it follows

—j [ e@ RV, 02,0 & jem (-1 555 20x) Oy(y)
My M)
< -vol(s" )jM e(p)j (n-1)§ singdp) 2y}, -
B/
(4.24)

and using Lemma 1 and the assumption on curvatures, we have

VeV

3\1“‘8”“" 4ok tth H—H(X) ) =

% 7
< vor (g™ (‘T’)S 2L iy a0y . (4028
HW: )

Lo At 2wy co oygel the Followiag ostinmate
_ij,jﬁw%ﬁuﬂ%nﬂ(x)“‘"(y) < :ol(s )_L e(#’){l -4ncos_fsmydy
E-éngs:.ny cot TP df +jn. -4n]:'31nj-cosycotl'$jdj'}£2”(y) .
) i (4.26)
By means cf the above estimates (4.17)-(4.26) and Fubini theorem,
we get
_')mez(q;v’, PV )L (%) € vol (S HE(@IF(n, T) , (4.27)
where F(n,£) is a continuous function of & given by
e Lo {1- 3.1,\ ’-5 Al siafconrcot{Ey i:”_f'.‘.‘?j.)r"
+S: ncosy(-’ :&' fd'r —S‘Rngl (Y,S)sin 3 dy
iy, (5.5 (ﬂf—ydr + 55 Feany indr Mg
-_L (n- l)Ss:LnydP S& 2cos‘}s:.n ¢d§
f‘-’Zs:.nj’cosjcotE}’ (smwy )“d]' ‘g. ZE’s:Lnfcosj’cotlfj’dj‘
+T6g, (£.5) cL‘L.“l)dy +5r——";'- si nf(‘%*-)d?
-5 4ncostsin fdp -j: 4n¥ sifpcot’ydp

1‘:4nf551nj*cosfco\;z-)’d? . (4.28)
).".
If S_’- 1, then g, (§.8) = g, (¥,&) = cos’]— and consequently
[ 2 "
F(n,1) = -2(n-2) { cos}sinfaf (4.29)

which is negative when n > 3



Set

S(n ) = inf (§:§>F and F(n,&) ¢ 0 3. (4.30)
First note that F{(n,1l) < 0 and so i’ ,S&(n) < 1 . Then (4.27)
shows that for any noncenstant harmonic map<#: M -9 N there is a
certain vector field V' such that the second variation for V is
negative. If Viwere smooth we might conclude that.?’is stable iff
¢> is constant. So the only problem is that the vector field ins
not smooth . But this difficulty can be overcome just in the same

way as in [3] . So the proof is complete
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