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tj 1 Introduction

A harmonic map is a critical point of the energy functional.

A harmonic map is said to be stable if for any deformation vector

field, its second variation is always non-negative. For

simplicity, we give

Definition 1. Let M be a compact Riemannian manifold. M is said

to be weakly E-unstable, if the following two conditions are

fulfilled :

(A) For any compact Riemannian manifold N there are no

nonconstant stable harmonic maps from N to M,

(B) For any Riemannian manifold N there are no nonconstant stable

harmonic maps from W to N.

Several classes ol weakly £-unstable manifolds have been

founded in recent years. A typical case is the Euclidean sphere

•S ' with n^3. It is due to i combination of Kin's result for <B) [8]

.I'V.i i,ei;r-:j's resuj. rcr (A; [ !, 1 . ruk,lng Sr as modnl manifold, one

.nig;;: **X.:JZ-ZM the woa.Uv T? -uns :>.ib •.' ity for sufficiently pinched

Riemannian mani.folHs, i . e , , fo.-. compact Riemannian manifolds whose

sectional curvatures are between the interval [̂ K , K] with

constants K > 0 and l^&>0. But Urakawa[7] shows that the identity

maps of any non-simply connected manifold with positive constant

curvatures are stable. So the condition of simply connectness is

necessary. In 1985, Howard proved the following

Theorem 1 (Howard). Let ngp3. There is a number ^i(n) with &

such that if M is simply connected with £,(n) -pinched curvatures

then for every compact Riemannian manifold N every stable

harmonic map $ ; N —» M is constant.

It means for such a manifold the condition (A) is satisfied.

This is a theorem determined only by the intrinsic geometry of

the manifold.

In this paper, we establish the following
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Theorem 2. Let n^ 3 . There is a number o^n) with i ^ o(n) ̂  1 such

that if M is a simply connected Riemannian manifold of dimension

n with £z(n) -pinched curvatures then for any Riemannian manifold

N every stable harmonic map <p : M ̂  N is constant.

Combining the above two theorems , letting o(n)= max (£,(n) , $£m

we obtain

Theorem 3. Let n^3. There is a number 5(n) with — ^ $(*$< 1 such

that if M is simply connected Riemannian manifold of dimension n

with o(n)-pinched curvatures then M is weakly E-unstable .

The proof of Theorem 2 goes in a way similar to that of

Howard. That is, we make an integral average for the second

variation formula over a continuous family of deformations and

show the result is negative.

2 Second variation formula

Let M and N be Riemannian manifolds with dimension n and m

respectively, M is compact without boundary, and V , V 7 represent

ir.be Kisi.iannian connections of M and N respectively. Suppose that

: M —* N i.s a harmonic map, <R : TM -^ TN is the induced map,

where TM and TN are the tangent bundle of M and N respectively.
• - i

can coisi*.cieT" *"P as <3 *p T N v^O UPI^ T —J^OTIP d̂ ,. \ • ̂  .

<pX, for XfTM. The induced bundle >̂"TN —* M possesses

the induced Riemannian connection as follows

where X «• TM, S t "

Choose local fields of orthonormal frames {e- } and {e'} in M
t Of,

and N, respectively, and let {w^ } and {wĵ } be the fields of dual

forms, we shall make the following convention on the ranges of

indices: lj$i,j,k,...,^n, l^o(, A_--_,^m, and use the summation

convention.
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.-I
Let W k (<f>TN) be a deformation vector field, ̂  the one

parametric family of maps generated by W, Yc" r • ̂  is well known

that the second variation of the energy functional E(<f>) is

given by

L 1 | j i * >A (2.2)
where V*^ is the trace Laplacian with respect to y , R is the

curvature operator of N, and H M is the volume element of M [6].

If we take ^ V , where VtTM, as the deformation vector, then,

using Weitzenbb'ck formula, we can rewrite (2.2) as [5]

t ^ ^ y e j ^ j , (2.3)
M

>

where Ric is the Ricci curvature operator of M, Ric

Under the map <£> • suppose the pull back of w^ is y (ŵ J) -a^- w^ .

Then the energy density of 4> is e(4>) = rZa. • , the energy of <̂> is

E(<f>)«4- \ Za^.^2M, and the tension field of fi is T = Z a ̂ e' ,

where a,-- is the covariant derivative of a ; . For harmonic map

Let V=V-e-, we compute the quantities in (2.3) as follows.

7 e V = V j ^ , V ^ V - y ^ e . - (AVy ) ej , where V.- , V.-^ are covariant

derivatives and A is the. Laplacian of M .

)f\' ,

Thus (2.3) becomes

)VJ+ 2a t f J. V..^ + a^.a^ R.;Vf V̂  ) . (2.4)

% 3 Some estimates

In this section, we shall list some useful estimates obtained

by Howard. Details can be found in [3]. Suppose V is the gradient

of a smooth function f on M. For V we define a smooth field of

linear endomorphisms of the tangent spaces to M by

-h-
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£ ( X ) V V , for XeTM^,, xfeM. (3.1)

For the gradient vector field of f a straightforward calculation

shows

<(jfx , Y>M - DXf (X,Y), (3.2)
1 y

where D f i s the Hessian of f. So{£ i s se l f -ad jo in t and has rea l

eigenvalues Xi, ... , Xyi-

From now on we always suppose M is a compact simply connected

with curvatures between £ and 1, where l ^ ^ . D u e to Klingenberct's

result, the injective radius of such a manifold is greater than %

If x £ M , let JMy) deenote the geodesic distance at y from x.

Define a function f: R •*+ R by
-cost lt[<7T *

f<t.)-< (3.3)

Then f and f are continuous. For any xc-M, let V be the vector

field defined by

VX= 7 (£<=£) - f ( f t ^ . (3.4)

Then V*is continuous and smooth off the locur defined by j* »/"J,,

and V1"- 0 on the set defined by_f >7L .

Noting (3.2) and using the Hessian comparison theorem of

Greene-Wu[2], Howard gives the following estimates for the

At any point y at a geodesic distance from x ->$, with p < 7t ,

we have

cosj>< A.J, < JT sin f cotj^y , l<i<n. (3.5)

Set

g",(t,i)- middle value of { cost, 0, JjsintcotJJi) ,

c o s " t , i ' i t t ^ / J t } O t T T

, x - o, t>^>.

Then we have

g,<h£K ^ ^ gjf'i*) • (3.T)
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The other comparison theorem needed is due to Bishop and

Grittenden[l] . If ytM then let UM^ be the unit sphere in TMr

Then, letting f = j^ , and u fr UMr , we view (f,u) as polar

coordinates on M near y in the obvious way. Let ±ljjfty be the

volume density on UMr . Then on the open set M\cut(y), where

cut(y) is the cut locus of y,

where the lower bound only holds up to TC [1].

The following lemma can be found in [3].

Lemma 1 . Let Q : R11 -> R be a quadratic form, then

trace(Q) . (3.9)\ Q

^4 Proof of the Theorem 2

Without loss of generality, we can assume the curvatures of M

are between [£", 1] . Let x be a point of M and V the deformation

vector field defined by (3.4). Write the second variation

determined by Vxas 1^ ( ̂ V*, ^ V * ) * and let V*y) - vf ty)e- , Then

from (2.4) we have

2 V y > a * < ^ ? ^ j ^ e v T
(k.D

In the following, we compute the integration

and show there exists a certain constant &i(n) such that for

I5 o > ^ ( n ) , the integration is negative. Hence, at least for a

certain point x, Ix ( <J>V*, ^V*) is negative

First of all, we need to transform (4.1) into another

suitable form . Fcr simplicity, we emit the variable y, then no

confusion is caused. We have

(k.2)

Thus by divergence theorem (4.1) becomes
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Noting a^ = a ^ and v£ - Vj , from

we have

Using Ricci identities and noting R;: = - R̂ hifc , we have

( 4 l 5 )

Noting â -- = 0 due to the harmonicity of <£ , we have

- a a. V*^- . (4.6)
•*•) "I* '-(, ^

From (4.4) - (4.6) , it follows that

) . (4.7)

Now since

(4.7) becomes

Since V* is the gradient vector of the function ftjgj , at the

point y with £(y) - j> and f<7l, we have VX(y) - sinj»|s- and

since % ja- - 0 ,

V vV*(y) - cosf V*(y) . (4.9)
V*

So at the point y, with respect to the frame {e;}, we have from

(4.9)

V*V-X = cosf V? . (4.10)

Differentiating (4.10), we get

It follows

VJliVl - "VjvJ + cos^vj - V^VJI , (4.12)
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Now , us ing Ricc i i d e n t i t i e s , from (4.12) we have

Summing on t h e i n d i c e s j and i , we get

\£ \£ RV*V* (4.14)

Substituting (4.13) and (4.14) into (4.8), (4.8) becomes

+ e«f>)cosj>Vt* -

(4.15)

At the point y, we take the unit eigenvectors of (^ as {e^

and we have

*V* =K,Uj , i, j,- 1,2, . . .,n, (4.16)

where X;, is the eigenvalue of \3L, .

Now we can estimate each term of the integration (4.15) just

in thr- 5dJie way as in [3]. Using (3 ,. 5! , ( 3 . 7) , (3 . 8) and (4.16) we

[ { (-e(<f)sinly Jl^fyj^tx) ^ vol (S*"1)] e(f) j (-sin y

I' \ e(f)cosPV.*Il,(y)i?M(x) ^ vol (^ f e (<J>) { TnJTsin

(4.17)

(4.18)

(x) < voMS"1)} e (̂ >\ (-ng( (f ,J) s in jdf iyy

(4.19)
71

( 4 . 2 0 )

(-cosf^a^.V^oJ^tyjI^tx) < voKS1"1)]^ (f) { j^cosfsirfj1 df

• c o t g f d p j l ^ t y ) , (4.21)

and

5 l v \ ^
C (4.22)

Using Lemma 1 and ( 3 . 8 ) , we have
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(4.23)

From the assumption on the curvatures of M , it follows

j

(4.24)

and using Lemma 1 and the assumption on curvatures, we have

(4.25)

' a ye! !:ho Eo.n.loYjiig e;Jt.iiiiate

i n j

(4.26)

By means of the above estimates (4 .17) - (4 . 26) and Fubini theorem.,

we get

Sf^x<%^' <£V*).r^<x) ̂  voKS1 '')E(f) F(n,T ) , (4.27)

where F(n,^") is a continuous function of o given by

df - Ĵ

If

. (4.28)
f

then g( {$,£) - ga (?,£") - coŝ J- and consequently

F<n,l) - -2(n-2) ycosj-sinjdj- , (4.29)

which is negative when n > 3 .
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Set

£"i<n ) - inf {£ : £>£ and F(n,g") « 0 }. (4.30)

First note that F(nr l) < 0 and so % < ^(n) < 1 . Then (4.27)

shows that for any nonconstant harmonic map <£>: M —• N there i s a

certain vector f i e ld V^such that the second variation for V*is

negative. If V*were smooth we might conclude that *j> i s stable i f f

<f> i s constant. So the only problem i s that the vector f i e ld V i s

not smooth . But this dif f iculty can be overcome just in the same

way as in [3] . So the proof i s complete .
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