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1. INTRODUCTION

In most of physically interesting hard scattering processes we have to
do beside the renormalised couplant a=§'/4u' (in terminology and nota-
tion of {1]) alsoc with various parton distribution and fragmentation
functions (called densities in the following). These are not calculable
in perturbative QCD and must therefore be extracted from experiment. In
doing so we face the problem of their precise definition in terms of
the bare parton densities, much in the same way as in the case of the
definition of the renormalised couplant a in terms of the bare couplant
a,. As a consequence of this latter freedom the couplant bacomes a fun-
ction of free parameters {y,ci,izz} appearing in the definition.

da{:2.) p(a)=-ba®(mu,c ) (1 + ca(u,e) + catlue) + ...) (1)

where b as well as c are fixed once the number n, of quark flavors is
given (we atay in massless QCDP throughout the paper). The parampeters
{u,c ,122} specify the renormalisation scheme (RS) of the couplant a,
while the subset {ci,izZ} defines the renormalisation convention (RC).
The whole theory is fixed by fixing some dimensionful quantity, as for
inetance the parameter A, specifying the solution of (1)

v _ 1 ca b 1
r=oln = 5 e eln g5+ [atey i) o ()

According to [1], changing the RS of the couplant means varying the pa-
rapeters u,c, at will, but holding A fixed. Internal consistency of the
perturbation theory then implies that the coefficienta r, of perturba-

tion expansion of some fully inclusive physical quantity R(Q) (assused

for simplicity to depend on a single external momentum Q)

R@=atn.c) {1+ r@/matm,c) + r Qe et tue) +..) (3)
ars unique functions of Q/u,c ,1i<k. For d=1 we have for inatance
r,(Q/#) = bln(u/Q) +r (#2Q) = bla(u/A) - p (Q/A)e (4)

where o, is RS invariant, i.e. is independent of the choice of u, ci.Aa
# and A enter in (2) always in ths ratio u/A, the change of the RS can
equally well be accomplished by holding v fixed by setting it equal to,
say, @ and varying A instead. In this notation it is the dependence of
a(u=Q) and r (#=Q) on A and c, which expreases the RS ambiguity. The
dependence of the couplant a and the coefficients r, on u and A are,
however, only two different sides of the same coin and so it would be




redundant to vary both # and A. For bockkeeping purposes we therefore
single out one particular RS (by specifying a(#=Q) and rk(M=Q) and let
all the RG transformations be deascribed by variations of the parameters
H,c;. Although thj(phoice of this referential renormalisation scheme
(BRRS) is completely arbitrary and has rothing to do with the RS ambigu-
ity of finite order approximations to (3) (we would have to choose scme
RRS even if we were able to calculate the full sum (3)), some gquantiti-
es, like T, (Q/u) will depend on it. On the other hand the invariant
Fn:bln(Q/A)-r‘(u=Q) is naturally independent alsc of the chosen RRS as
the explicit dependence on the associated A of the logarithm 1ln(Q/A) is
compensated by the implicit dependence of the coefficient rk(u=Q) on
the RRS (higher order p;s are Q-independent).

Having fixed the RRS as, say, M8 (8o for w=Q we get a(Q) and rk(y=Q)
as defined by the usual NS counterterms),we may now choose any M, to
evaluate R(Q) according to (3) because in the full sum (3) the depen-
dencee of the couplant and the coefficients r, on these parameters ful-
ly compensate each other ( we ignore here the complicated and pressing
problem connected with the divergence of expansiona like (3) (2,3))

The truncated approximations to (3) do, however, depend on this choice.
Various ideas [1,4-7] have been proposed to resolve this finite order
ambiguity. They stress different aspects of the problem, but there is
usually little doubt as to the form of the N-th order approximant r":
it is (3) truncated to that order. In principle one can imagine other
forms of thie approximant, like for instance

RMQ) = Jh'(Q)" = ali+a‘a+s:a:+..sua" ,a.=2r‘.a’=r:+2r’,.. (5)

i.e. we first calculate R'(Q) to N-th order and then take the square
root (5), but they are mostly rather artificial. Moreover, if we insist
on the polynomial form of the N-th order approximant then only (3) trun-
cated to that order is acceptable. Neverthelese in some cases there may
really be good reasons to modify (3} and thus also its approximants R".
This happens in the case of exponentiation of soft gluon emissions whe-
re, written schematically and apart from overall normalisation, we have
instead of (3) (8,9}

R(Q) = era[a(1+x-‘a+;:a+...)]. r=r-r etc. (8)

(r is some number) and truncate then the series in the brackets.

For processas involving parton distribution and fragmentation func-
tions perturbation theory leads to results which are more complicated
than (3). I shall in the reat of this paper discuss mostly the siaplest
case, namely that of nonsinglet nucleon structure functions as exempli-
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fied by the combinations
noxe = e - Pl (M

F)%(x,Q) = FP(x,Q) + F,° (x,Q). (8)
I drop the superscript NS and denote by F(x,Q) in the rest of this pa-
per generlcally all the NS structure functions like (7-8).

QCD predictions for F(x,Q) are burdened, beyond the RS ambiguity dis-
cussed above, also with the so called factorisation scheme (FS) ambigu-
ity {10-11]. But before attempting to resolve, in one way or another,
this ambiguity we must again first of all agree on the form of the N-th
order approximant. There are two different, but equally plausible al-
ternatives. The first starts with QCD predictions for the momenta

41

MORN| x"TUE(x,Q)dx (9)

of the structure function F(x,Q):

-/ ~dlrbe
F, (@)= AN[I_CG_(!HL] (treaw) = (1 + P@mawn +..), a0

+ca(M)

where a(M), a(4) are renormalised couplants, taken at generally diffe-
rent scales M and u, AN are numerical constants and d",d: are first two
coefficienta in the expansion of the anomalous dimension

N
M= %"—h’l = d%am) + i) ¢+ ... (11)

describing the dependence of the matrix element of relevant Wilson ope-
rator OV (in the proton state) on the factorisation mass M. The last
bracket in (10) corresponds to "hard scattering” part of the structure
function and is closely reminiscent of (3). While av are, similarly to
b, ¢ in (1) uniquely aspecified by n,, all the remaining coeficlents d?,
i>1 are again complstely arbitrary and define what is usually called a
factorisation convention (FC): FC:{d?}. This, together with the facto-
rimsation masa M, define the factorisation scheme (FS):FS={(M,FC}. Natu-
rally, also the coefficients r, in (10) do depend on this FC. To NLO,
to which I restrict myself in this paper, only the first two terms, ex-
Plicitely written out in (10-11) are taken into account and so in this
approximation FC={d,} and FS5={4.d.)}. To the order considered the ambi-
guities inherent in (10) are therefore connected with the freedos in
the choice of both the !S:(H.d:} and the RS5={ux}. Let me call calculati-
onal scheme (CS) the set of all parameters u,!,d:. All the information
on the long-distance properties of the proton 1s contained in the con-
stants Au. which cannot be calculated perturbatively, but must be con-
sildered 28 fre= parame‘erz to be extracted from comparieon of (10) with
experizental datar. W:te, hiowever, that A, are not equal to matrix ele-
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ments of Wilson operatore o" at some particular scale Ho, but specify
the solution of (11) by means of its asymptotic behaviour as M+w
-a"e
@[0"ip> gz A, [Sﬁﬁ] . (12)

The internal consistency of perturbation expansion (10) dictates again
the dependence of r? on 4,8 and the FC:{dT} [10]:

flamd)) = ' § o+ %:‘ + M, (13)
where " are FS-invariants, which, however, still depend on the RRS of
the couplantes a(u),a(M).

The form (10) ies a direct consegquence of the operator production ex-
pansion technique. Were the moments !N(Q) experipentally measurable, we
could compare them directly to (10). In practice only structure functi-
ong over a limited range of x-values are available and s0 we must turn
(10) into prediction for them. The other possibility of extrapolating
the measured structure function to the whole interval <0,1> in order to
calculate the moments (9) mixes experiment with phenomenological assum-
Ptions and should better be avoided.It is definitely preferable to in-
corporate such assumptions into free parameters of the theoretical for-
mulae. A nuxber of methods for translating (10) into prediction for the
Btructure functions does exist. One of them, based on the use of Jacobi
polynomials will be described in more detail in Section 4. I shall call
it the momentum based (MB) formulation of QCD predictions for structure
functione.

The alternative way of formulating QCD predictions for structure fun-
ctions, smbedded naturally ly in the parton model language {12], is to
write them as a convolution of the (nonsinglet) quark deneity q(x,M,FC)
{taken at the general scale M ) and the hard scattering croass-section
G(2,Q/M,u,FC)=6(1-2)+a(1)C*(z,Q/M,FC):

E
(x,Q) = [ 9 qtase,m,B0) [s(1-)sacict o). ()
o

The quark density iteelf is a solution of the evolution equation
[ ]

ﬁ%ﬁf—cl = £ 42 o(x/2,H,FC)P(2,a(M) ,EC)s (15)

where .
P(z,a(M),FC) = a(M)P®(2) + a'(M)P*(x,FC) (16)

and r:,d".dt,u" are moments (defined as in (8)) of C‘,P°,P’ and x=(z)

renpectiv;ly. In terms of these functions eq.(13) reads

C*(x,Q/M,FC)= P%(z)In(Q/M) + P*(5)/b + w(s). (17)


http://avoided.lt

Clearly, (11) is Jjust the Mellin transformation of (15). In thie al-
ternative language, let me call it parton model based (PB) formulation,
FC is specified by the funtion P'(z). Provided ¥ in (10) ie independent
of N and equal to M in (14), which thus is independent of x and more-
over a(#) and a(M) are exact solution of eq.(2) truncated to the NLO,
these two expressions yleld identical F(x,Q).

There 1is, nevertheless no reasons why M in (10) could not depend on M
and/or M in (14) on x. In such case (10) and (14) are no longer equiva-
valent and so express two different forme of the NLO QCD predictions
for F(x,Q), each of them s8till burdened with the CS ambiguity. Before
trying to resolve this ambiguity, we must therefore first of all deci-
de which of the two discussed formulations to adopt. Although from the
point of view of eventual applications to more complicated processes
like Drell-Yan production of massive dileptons {[13], large P, photopro-
duction or hadroproduction of photone with large p, [14,15],the
PB formulation is definitely preferable on technical grounds, there is
in fact no serious reason to prefer it in principle. At the end of Sec-
tion 4 we shall see that indeed both formulations lead to similar for-
mulae, namely the sume of exponentially improved expressions like (6),
weighted by some functions of the parameters AN.

In the following I shall first discuss, for both formulations and in
a quantitative manner, the question of the choice of the CS5.Then a for-
malism will be constructed which allows an easy transformation from one
FS to another (changing the RS={x~} i8 in eq. (i,4)). The whole problem
of the appropriate choice of the FS5 has only very recently obtained so-
me attention in the phenomenological analyses [13-15], but merely as
far as the change of the scales x4 and M 1e concerned. I shall demonst-
rate that the proper choice of the FC is probably even more important.

The rest of this paper is organised as follows. In the next Section I
shall commnent on some of the popular choices of FS:{H,dT}, including
the one baeed on the extension [10,11] of the Principle of Minimai Sen-
gitivity to guantities like (7,8). Their guantitative comparison in the

case of the moments (8) can be found in Section 3. The explicit expres-
sion for the structure function F(x,Q) in a general FS and using both
the MB and PB formulations are constructed in Secticn 4. The generali-
sation of the resulte to more complicated processes is sketched in Sec-
tion 5. Summary and conclusions are reserved for the last Section.

2. REVIEW OF CURRENTLY USED FACTORISATION SCHEMES

Of the more or less ad hoc chosen FS the following two have been used
most freguently

PO e T A SN



2.1 The “"universal"” factorisation scheme

This is the rather unfortunate and misleading denomination for the FS
in which M=Q and d: are given by expressions first derived within the
OPE technique in [16]). The corresponding branching function P‘(z) waa
obtained in [16] by means of inverse Mellin transformation and in [12]
using directly the PB formulation . As in both techniques the resulte
(1.e. d: or P'(z)) are calculated (in dimensional regularisation) from
certain renormalisation factors, retaining at each order only the pole
terms, the denomination "MS5"” would be much more appropriate. The word
“universal” 1is misleading as 1t givea rise to incorrect impression that
only this FS can be used in all hard scattering processes. This, how-
ever, ia not the case. Any FS,that 1is,any choice of M,u and d: (or P')
can in principle be used in any hard scattering process, much in the
same way as any RS={u} can be used in (3). In complete analogy to the
couplant (1), quark density q(x,M,FC) is not a physical quantity and we
are therefore free to define it in any way consistent with (15). Phy-
sicas ie not contalned exclusively in the quark density, but rather in
ite convolution (14) with the hard scattering cross-section.
2.2 The "physical” factorisation scheme
In this FS, suggested first in [18], M ia again met equal to Q but the
function Pl(z) is chosen in such a way that

C'(z,M,FC) = 0 =» P(x,Q) = a(x,Q) (18)
identically for the structure function (7). This structure function ie
singled out owing to the fact that the associated FS-invariant x=(z) hae
the following important property
1

xt = J =(z)dz = 0~ (19)

In "phyeical” FS
P'(z) = -bx(z) 1i.e. d) = -ba" (20)
and consequently (19) implies, for the structure function (7}, fermion

number conservation sum rule
1

Ja(x,@dx = u (x,Q) - 4,(x,Q) = 1, (21)
o

where u_,d, are valence guark densities as defined in the “physical”
FS. Although the validity of (21) is not obligatory, it is certainly
preferable to preserve this basic parton model property of quark densi-
ty even in QCD, 1f only to maintain, as far as possible the intuitive
connection of the latter with the former.

It is, however, obviocus that although (18) combined with M=Q implies,
for (7) the sum rule (21), the opposite is not true. Indeed for struc-
ture function (7) the property (18) requires r:=d:/b and thus the vali-
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dity of quark number conservation sum rule (i.e.d:=0) implies r:=0, but
this does not mean that f:=o for all N, or equivalently, that C'=0
identically! Even assuming M=Q, any partition (17) of the FS-invariant
=(2) jnto P'(z) and C'(2,Q/M) which meets the condition d}=0 (i.e. P'
is a “+" distribution) guaranteea the sum rule (21), not only that de-
fined in (18). One of them is just the "unlversal” FS discussed above!

The "physical” FS is not a direct consequence of the physically well
motivated condition (21) but is based in an essential way on the rather
ad hoc assumption a::a for all N, though only d:=0 is required by (21).
In fact it is very close to the “effective charges” criterion of [41,
developed for resolving the RS ambiguity of expansions like (3).

Moreover, the “physical” FC, i.e. assuming (20) but leaving M still
free, has a rather unwelcome feature. Due to the fact that the FS inva-
variant »(z) still depends on the RRS of the couplant the choice (20)
(20) means that in this FC the branching function P'(z) is also RRS-de-
pendent. In Subsection 2.4 this feature will be shown to lead to unsa-
satisfactory results when optimisation with respect to M is performed
in the “physical” FC.

2.3 The “zero" factorisation convention

In some sense opposite to the "physical” FC is the FC in which P'(z)=0
by definition. While in the former FC all of the NLO corrections to
structure function (7) were included (“"exponentiated”) in the definiti-
on of the Q-evolved quark density, none ia in the latter, as they are
all shifted into the hard scattering cross-section, which in the “aero”
FC has therefore the form

C'(s,a/M) = d"1n(Q/M)) + =(z)- (22)

The evolution equation for the quark density q(x,M) is the same as in
the LO. This FC has so far not been used in phenomenological analyses,
though as we shall see later it is very close to the one prefered hy
the PMS criterion. It is also not far froa the results of the conven-~
tional “nonexponentiated” formula

N
F Q) = A, (ca(M)) ™ (1+a()[d"1n(Q/M) +x(2)+d"e/b])  (23)

which results from expanding, wherever possible, the_r.h.s. of (10) in
powers of a(M) and retaining the first two terms only [19].

2.4 Defining factorisation scheme through optimisation

The idea [10,11] of choosing the RS={u} as well as the !S:(H,d:} at the
astationary point of the function ¥ _(Q) as given in (10) is a direct ex-
tension of the original PMS criterion of [1]. In [10] each of the mome-

nts !"(Q) is optimised separately and consequently the optimal FS and

RPN v =
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RRS turn out to be N-dependent: FS°P'={N(N),d.(N)}, RE™™':=(F(N)}. The

optimisation with respect to 4 yields the condition [11]
r, =0 (24)
which when combined with equations resulting from optimisaticn of (10)

with respect to M and h gives (in the approximation ca(H)«1)
1

N N
HoW)=aexp§n - 55) = Qexn(3v - 55) (25)
H(N)=Aexp(s" /" )=H(H)exp(c/2b) (26)
dV=-d"c/2 27

so that

Q)= A, 1%%%}] *(1rea(@)” (28)

As the quantity «"=x"+d"1n(Q/A) in (25-27) ie both F5 and RR§ invariant
(the dependence of »" on the RRS is compensated by the explicit depen-
dence on A of the second term), the ratio H(N)/A is manifestly BRS-in-
dependent and consequently (26) unique.

Two features of the optimised result (28) are noteworthy. First, for
c=0 the optimal FC°"={3:} ie just the "zero” FC of the prev! ,us Subsec-
tion and in fact even for realistic values ol c these two FC are, for
the same M, numerically practically indistinguishable. Secondly,
the optimal M, though for fixed N proportional to Q, is rapidly decrea-
sing function of N for fixed Q, roughly like QN . Although in both
the optimised and “physical” FS r:=0. the ways in which this is achie-
ved are vastly different. In the optimised formula (28) moat (for c=0
all) of the NLO corrections are incorporated in the dependence of the
factorisation mass M on N, while in the “physical” FS they are fully
shifted intc the RLO anomalous dimensiona d: ; or eQquivalently into
the NLO branching function P'(z). The quantitative difference between
these two realisations of the condition r:=0 is significant as will be
discussed in the next Subsection. '

Closer examination of the formula (28) shows that the stationary po-
int determined by eqa. (25-27) is not a local extreme but rather a aad-
dle point. This is clear already from the fact that for M and d at the
stationary point F_(Q) does not depend on M, (r, M-0 there) 'hich is a
property typical for a saddle point. It is also evident that full opti-
misation, i.s. optimisation of all soments l.(Q) is possible
only for structure function like (7) for which the FS-invariante »™ ha-
ve the prop.rty u'=0. n.c.n that although »" do, for general N, depend
on the RRS, u® does not as change by a tera proportional to d -h.n

the ERS 1is varied and dt=0.
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Although the optimisation of (10) with respect to FC=(d:} is an inte-
gral part of the optimisation procedure and may in fact be the most im-
portant part thereof, we may for some reasons wish to fix it and opti-
mise with respect to the scales u and M only. In this case we again get
the condition (24), but instead of (25) we find for the optimised fac-
torisation maema Hﬁ'(N) the formula

" N N N N
ﬂ“"(u)=Aexp[:—N . %3'7] = aexp[d'—'; . 33'7] (29)
and consequently

: N N
pLix (Q):A"[ ca H'::, ] “7® (recacl™y) (30)
1+ca(H ™)
Provided d” is fixed independently of the RRS, the ratio H'/A ia RRS-
invariant and mo is therefore also (30). As mentioned at the end of the
Subsection 2.2, this provision is violated in the “"physical” FC. So in
this FC the reault (30) of optimisation with respect to w and M remains
still ambiguous as it depends through d?:-bzN on the RRS of the coup-
lant a(Q) ((28) implies H*=Q in this FC). Of course, the dependences
of a(Q) and ™ on the BRS mutually cancell to the NLO, but numerically
{30) does depend on it. This in itself is nothing wrong, but in (30) we
have already optimised with reapect to both y and M. As, however, chan-
ging M or the RRS are merely two different ways of realising the same
renormalisation group transformation, this is clearly unsatisfactory.
The source of this unwelcome feature is clearly the vary definition of
the "physical” FC, namely the fact that by setting d'::-b-N we force
these parameters to depend on RRS.

So far all the optimisation concerned exclusively the moments F_(Q)
of structure functions. We can take the results (2B) or (30) and invert
them to find the corresponding structure function itself. However, as
the optimisation procedure does not commute with the inverse Mellin
transformation, the in this way obtained F(x,Q) will in general not be
the same as if optimisation is applied directly to formula (14). Unfor-
tunately, this is technically rather involved and practically impossi-
ble to do. ﬁut in any case we must first of all find an analogue of ex-~
pression (10), which would explicitly exhibit what should be held fi-
xed when varying the !S:{H.E’(z)). From (14-15) this is not obvious.
But even after constructing in Section 4 such an expreseion, we shall
s«0n that it is practically hopeless to try to optimise it with respect
to !C:{P’(a)). So some experience gained from optimisation of the mo-
ments will be invaluable.



3. NUMERICAL COMPARISON

In this Section the resultes corresponding to various optione discuesed
in the previous Subsections are quantitatively compared. First, Fig.1l
displays the dependence of F, (Q), as given in (10) and normalised to
the common LO expression A"(cl(ﬂ))qrbb. on the ratio Q/A for several
lowest moments of the structure function (7). In all cases the RRS of
the couplant 1s chosen to be HE. The curves in Fig.l separate into two
distinct groups. The first contains those of the “physical”, universal”
and "zero” FC, all supplemented with the choice M=Q, together with the
conventional nonexponentiated forsula (23). Within this group the "phy-
sical” FC leads consistently to highest values of F_(Q) and exhibits
also the steepest dependence on Q/A, while the lowest and least steep
curve is that of the “szero” FC. The differences are, however, rather
small and of little phenomenological significance. Once we let u and M
vary and optimise with respect to them the situation changes as is de-
monstrated by the three upper curves, corresponding to optimisation

in the "universal” and “zero” FC as well as the fully optimised result
(28). The optimisation with respect to M in the “physical™ FC gives
ﬁﬁ'=q and so leads to the same results as already shown there.

Several conclusions can be drawn from Fig.l. Firat, the relevance of
the optimisation with reapect to u and M depends aensitively on the
chosen fixed FC. While no change (relative to the cese M=Q) occurs in
the "physical” FC, there is a significant jump in the “szero” FC, lea-
ding to resultes which are also practically indistinguishable from those
of the full PMS procedure. But also when optimisation is perforaed in
the “universal” FC do we come much closer to the latter than in the
"phyaical” FC. Secondly, the upper three curves are also much steeper
than the lower ones. This is further demonstrated in Fig.2, which dis-
Playe the ratio P (Q)/A, for N=3,4,6. While for M=Q the difference bet-
neen curves corresponding to the “physical” and “sero” FC can, for each
moment N, be approximated by a unifora shift along the x-axis equiva-
lent to the change of A by an N-dependent factor in the interval (1.05,
1.2>), no such simple change of A is capable to descride the relation
between the fully optimised F _(Q) and any of the lower four curves.
Qualitatively, this steeper increase of (28) at low Q/A has similar ef-
fect as the addition of higher twist terms to the latter curves.

The results presented in Figs.1,2 are instructive, especially 1if ue
prefer the PMS approach, but strictly speaking they concern the momente
of astructure function and cannot be straightforwardly generalised to
other processea or even to the direct analysis of structure functions

themselves. Nevertheless the results displayed in Figs.1,2 show that
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the "physical” FC is certainly not the only plausible choice of the FC.

4 ,FACTORISATION SCHEME AMBIGUITY IN PARTON MODEL BASED FORMULATION

In the case of the deep inelastic scattering. and so long as we do not
attempt to optimise, there is neither a principal nor a practical rea-
son for prefering the PB foramulation to the MB one or vice versa. If
optimisation is performed then, however, the PB formulation is defini-
tely preferred. The PB formulation is also prefered, although now on
on practical grounds, if other, more complicated processes (DY dilepton
production, photoproduction of large Py hadrone or hadroproduction of
large p, real photons) are considered im the NLO spproximation. It is
therefore vital to have at our disposal general formalism for analysing
within the PB formulation, any hard scattering process in arbitrary FS.
To my knowledge such a formalism is not aveailable in the literature.
In the rest of this raper a simple construction of such a formalisa
will be discussed, starting with the case of the nucleon structure fun-
ctione (7-8).

The PB formulation of QCD predictions for the structure function
F(x,Q) is embodied in eq. (14~15). The moments of the quark density
q(x,M) are given explicitly as

- -

and the result of the convolution (14) is equivalent to (10), providsd
in both (10) and (14) ¥ is a constant, independent of either N or x.
Nevertheless this provieion is not mandatory and so we allow for pos-
gible dependence of M in (14) on x.

As we want to vary all the parameters u.!,P‘(a) apecifying the CS, we
pust first of all decide what should be held fixed in the process.Star-
ting from eqa.(14-15) the anawer is not obvious as in the case of l"(Q)
in (10). Indeed, in this respect the moments of structure functions are
more primary quantities than structure functions thremselves, as they
are directly related to the ~orresponding Wilson operatora. This con-
nection tells us that it is ihe constant A" in (31) which msust be fixed
when we vary M and the FC={P'(z)}. However, as already stressed these
constants do not characterise quark densities at any fixed M , but rat-
her specify their asymptotic behaviour as M+, On the other hand, it is
the quark density q(x,H,) at some imitial M, which is usually used to
specify the solution of (15). But it is obvious from (33) that by chan-
ging ¥ and/or P*(z) (and thus d}) while holding A fixed, we change
F,(Q) for all Q. This meane that variation of the F5 in (14-15) does
not only change P'(s) in (15) and M and C'(3,Q/M) in (14), but implies
also the change of the initial condition g(x,Mg)!
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80 if we want to use the results (i.e. A and q(x,ﬂo)) of a particular
analysis of some hard scattering process, parformed in a given F§, for
working out QCD predictions (for the same or other processes) in a dif-
ferent FS, we muet inevitably know aleo the associated change of the
boundary condition on (15). This information is, however, essentially
equivalent to the explicit knowledge of the solution q(x,M) of (15) ae
a function of both ¥ and E’(:). We can write down the evolution equati-
on, including the boundary cordition, for the quark deneity in the new
FS only provided we know its explicit expremsion in terms of the mo-
monte (31) because only for these moments do Wwe know what msust be held
fixed when M and P'(z) change.It is, however, clear that once we have
esuch an expression at our disposal there ie no further need to solve
the evolution equation in the new FS as this expression itself repre-
sents the most general solution of it.

We therefore seek an explicit solution of (15) in terms of moments
(31), which moreover allows an easy transformation of the initial con-
dition q(x,!o), employed in all existing analyses, into the information
on A,. An efficient way of doing thie is based on the use of crthogonal
Jacobi polynomials aes suggested in [20). The numerical accuracy of thias
way of solving the evolution equation (15) has been stidied in detail
in [21] and turns out to be very satiefactory (better than 1% for all
x and Q of interest). Following [20]) we write the solution of (15) in
the form

[ ]
a(x,1)=x"(1-0)" £ of*(x)al*(u,¥C) (32)
kso

and so obtain for the structure function F(x,Q) the expression
)
I

_ a i et flon x o X x

roo=f3E a%1-n) k!:od;"’(:).,‘ . 70) [s(1-Zy+acm [ B 1nfenc)
1ne . x

+#*®)]- (33)

In (32-33) Cf“(:) are the Jacobi polynomials and the "Jacobi” momenta,

af*(M,EC) are defined by of the te a,(M,FC) (31) as
k
-f"(u.rc)=’:: cifa,m,rc=(a}) (34)
20
of?

where c,; are numerical coefficients (for their explicit values as wall
as for the exact definition of Gfa(s) see [20-21]). To f£ix (33) unasbi-
guously, o and # must first be specified. This 1s done in such a way so
as to approximate the basic shape of the structure function ¥(x,Q) al-

ready by the lowest term in the series (32).For the nonsinglet structu-

re functions 1t is quite.iafficieit [él] to take a=-0.5,8=3.

S 13



Formula (33) represents the basic form of QCD prediction for F(x,Q)
which allows for the variation of the FS:{H.P‘(:)} and specifies what -
namely the constants A - must be held fixed. These constants muat then
be, together with A, extracted from phenomenoclogical analyses of expe-
rimental data. They represent the most natural parametrisation of non-
perturbative, long-distance properties of the nucleon. Furthermore, in
contrast to the quark density q(x,M,) at some initial !o. which ia not
a physical quantity and is thus ambiguously defined, the constants AN
are unique, independent of the CS used. Employing (33) as the theoreti-
cal formula, it is then straightforward to compare any two (or more)
phenomenological analyses of any given structure function, performed in
different, completely arbitrary FS. Recall, how it is sometimes diffi-
cult to compare results of published analyses, when these are done (as
is usually the case) in different FS, using different parametrisations
of q(x,H,) at different M.

Furthermore it is frequently near to impossible to find out from pub-
lished papers which FS has in fact been employed. Take for instance re-
cent extensive analyses of nucleon structure functions, done by EMC
{22], BDCMS [23] and CDHS [24] Collaberatione. In none of them does one
find a reliable information concerning the FS used. In [22] reference
is asade to a paper of Abbott et al. (25] which, however, contains only
the LO analysis, while in (23] only a vague statement that "the program
of Abbott and Barnett was used” can be found. In [24] the evolution
equation for nonsinglet structure function is written in the form sug-
gesting the use of "physical” FS, but when specifying the NLO branching
function P‘(:) the reader is referred to paper {12], the results of
which correapond to the “universal” FS with u=M. In order to avoid such
unnecessary complications, I recommend the use of eq. (33) as the gene-
ral fors of the NLO QCD predictions (in the PB formulation) for any
atructure'function and in arbitrary FS. Once A and A" are fixed from an
analysis of one particular process in a given CS, it 1s trivial to use
them to write down predictions for other structure functions ( or &ny
other hard scattering process ) in arbitrary calculational schesse.

From practical point of view it is esaential that only 6-7 terms in
the sum (32) are necessary for very accurate (typically better than 1%)
approximation of q(x,Q). That is more than the four parameters usually
employed for the description of q{x,M) at some initial lo in the fora

a(x,M ) =Ax>(1-x)" (147x) (35)

but as in the case of (35), which of course is merely some ansats, we
may assume certaln dependence of A. on N and in this way still lower

14

RELTS A WL SVRLIT NS N

.



the number of parameters required in the truncated form of (32). For
instance we may use the resultas of the conventional parametrisation
(36) to determine A in terms of A,a,A,r,H,,d,

b SRR o e e etl] o) o

Unfortunately it is presently impossible to use (36) for a reliable de-
ternination of the constants A . This is in part due to the mentioned
lack of reliable information on the FS used in analyses like those in
[22-24], but there is also anothe:r reason. In wost of the phenomenolo-
gical analyses using the evolution equation (15) in some FS, the boui-
dary condition is specified not, as would be appropriate with respect
to the equation (15), by q(x,M ), but rather by the full structure fun
ction F(x,Q,) at some Q. Consequently this parametrisation must first
be transformed into the one for q(x.Q,) by unfolding the convolution
(14) (except in the "physical” FS, where F(x,Q)=q(x,Q) by definition),.
As tlLe papers contain usually no information how this step was done, I
preferred to use (36) for merely a semiquantitative estimate of A" by
rlugging into it the LO parametrisation of ref. [22], corresponding to
(35) with A=0.97,0=-0.65,3=3.18,»= -0.13,H:=5GeV’. Accordingly I set
dfza in (36). 8s d" can be extended to any N>O, AN can be calculated
for any real N>0, not only integers [27]. The results, shown in Fig.3,
indicate a smooth dependence of A, on N which can be parametrised with
sufficient accuracy as

p 2A, A zexp(h_+h N+h N"+h N®). (37)

Without any efforte to find the beat
values of h s, we see that h =1.4,
h,=-1.55,h,=0.168,h,=-0.007 give a
very satisfactory dzscription of all
AN.NSIU. So again, as in the case of
the initial condition (35), four pa-
raneters are sufficient for the pa-
raretrisation of nonperturbative
properties of the nucleon. Phenoxe-
nological analyses would then result
in the determination of A and h.,1=3
The above formula can also be used

T s & + i r ¢ § o 1in another way. We do not have to
Pig.l.Aq a8 & function of N ac= employ (33) and may follow the con-
cording to (36{(—), (37)(—--)e ventional procedure of solving, in
some FC:{P‘(z)], (15) with the initial condition (35) at some ¥_ . Choo-
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sing different Ho in (35) and different FS:(H.P‘(z)}in (14), we shall
in general get different values of A,a,3,r. Nevertheless, if these are
substituted into (36), they muast, for various approximations to be mu-
tually consistent, yleld the same AN.

Starting with (33) we may now attempt to optimise it, for a given
X, with respect to u,M as well as FC:{P‘(z)}. There are no serious pro-
blems with optimisation s ith respect to u and M, but they turn up when
we want to find the optii.ised P’(z). The reason for it is that even if
we take only the first few terms in (33) and 8o only a few of lowest
moments d: of P'(z) are needed to calculate q(x,M) according to (32),
the presence of P’(z) in the convolution (33) implies that we muat vary
P‘(z) in the whole interval (0,1). To my knowledge there ie no way of
even formulating some kind of equation for the optimised P‘(z) which
would realise the formal condition 6F(x.Q)/6Pl(z)=0.

For the deep inelastic scattering we can, within the MB formulation,
first optimise separately each of the moments F,(Q) according to (28)
and then turn them into the corresponding structure functions ueing the
general expansion

F(x,Q)=xa(1-X)ﬁk; ofx)El* @), (38)
where analogouely to (34} °

k
a0
2k (Q)_,'Eocf?FJ(Q)' (39)

Substituting (28) into (39) we see that the result cf the PB formulati-
on (33) has the same structure as (38): they are both given as a sum of
exponentiated moments qﬁQ) (31), weighted by certain functions of M
and P‘(z), depending in (33) on x and in (38) on N.

5. BEYOND THE NUCLEON STRUCTURE FUNCTIONS

For other, more complicated processes, like those mentioned at the be-
ginning of the previous Section, only the PB formulation is of practi-
cal use. However, as the optimisation with reepect to the FC of various
parton distribution and fragmentation functions is hopeleas, we must in
practice choose some FC:{Pl(z)} (for each parton leg in principle sepa-
rately) and optimise, if we wish so, with respect to remaining parame-
ters 4 and M only. For inatance, in the case of hadroproduction of pho-
tons with large p,, the differential croas~gection (in the noneinglet
channel) as a function of x_, p, of the produced photon reads

de -
&_dp, =q(x,,H ,FC )oK(p_,x_,M .M ,FC,FC ,u)eq(x M4 ,FC)), (40)

where q(x, M, ,FC ) 1=1,2 are the nomsinglet quark densities of the two
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colliding hadrons, as defined in (15) in factorisation conventions FC,,
taken at the scales N . and the function K, the generalisation of
C(z,Q/M,FC) in (14), describes again the “hard acattering” of two par-
tone. For exact definition of the convolution ® ses [13]). In practice
we are forced to assume H‘=H'=H and choose some moreless ad hoc FC =
FC,=FC. This later choice is inevitably subjective, but at least eome
lesson can be drawn from the discussion of the previous Section. Thers
the optimal FC wes shown to practically coincide with the “zero” FC of
Suhsection 2.3 and even the "universal” FC lead, after optimisation wi-
th respect to u,M, to results which were much closer to the fully opti-
mnised ones than those of the "phyaical” FC. Although this feature is
very probably specific to structure functions (7-8), it seems reasona-
ble to carry out any analysis (including the cptimisation of (40) with
respect to i and M) at least for all the three aforementioned FC. The
eventual discrepancy of in this way obtained results represents, in my
view, a plausible measure of the theoretical uncertainty associated
with (40).

In practice further eimplification is forced upon us. The optimieation
of (40) with respect to » and M cannot be done analytically, but the
stationary pcint muat be found by mapping (40) as a function of m and
M. The optimised result is, however, also a function of the unknown
constants AN. To determine these constants as well as A by fitting (40)
to experimental data would require on one hand much better accuracy of
the data and on the other large amount of computer time. In practice,
the constants A, must therefore be taken fron other processes, like the
deep inelastic lepton-nucleon scattering. This ie quite legal to do but
we must be carefull to use in (40) the correct quark density q(x,M) and
hard scattering cross-section K(x’,p,H.FC), corresponding to the FS a-
dopted. It ie inconsistent to proceed as in [13-i56] where the approxi-
mate {(though phenomenologically quite succesfull) but essentially only
LO parametrisation {27] of q(x,HM) was used in convolution of the type
(40) with truly NLO hard scattering cross-sectiocn K.

6.5UMMARY AND CONCLUSIONS

In the previous Sections we have discussed various ambiguities appear-
ing at the RLO in the theoretical description of hard scattering proce-
sses involving narton distribution and fragmentation functions. Two dif-
ferent formulations, one starting from the moments of structure functi-
ons, the other working directly with the evolution equationa for parton
densities, were shown to be in principle equally plausible representa-
tions of NLO QCD predictions for the nucleon structure functions. There
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ie no obvious way of resolving this ambiguity, if we do not inseist on
optimisation, which naturally prefers the latter formulation. In both
of these formulations we are still faced with the ambiguities connected
with the choice of the FS={M,FC} as well as the RS={u}. Various curren-
tly used choices of the former were reviewed and quantitatively compa-
red. The quark densities were argued to play a role quite similar to
that of the renormalised couplant a(u). In particular there is no natu-
ral definition of the FC={P‘(z)}, very much as there is in QCD (cBnt-
rary to QED) no natural definition of the couplant a(u). The "best™ (in
whatever senee we mean this) FC is furthermore expected to be procese
dependent. In the case of nucleon structure functions the fully optimi-
sed momente FNturned out to practically coincide with those of the “ze-
ro" FC combined with optimisation with respect to ~ and M and quite far
from those of the “physical” FS.

The nain aim of this paper was to construct a general expression for
the NLO QCD predictions in arbitrary ES:{H,d:}. Such an expression al-
lowing easy and straightforward transforpation from one FS into another
ie necessary if we want to use the results of existing phenomenological
analyses of data on deep inelastic scattering for working out QCD pre-
dictions for other, more complicated processes in general FS. Jacobi
polynomials turned out to be very convenient for this purpose as they
lead to siqple but simultaneocusly rather accurate expressions. An impor-
tant aspect of the whole construction is a new parametrisation of the
nonperturbative properties of the hadrons. Contrary to the conventional
way of parametrising the uncalculable properties of the hadrone by mea-
ns of the quark desity q(x,M) at some referential M, the use of cons-
tants AN has an important advantage: they are independent of the chosen
calculational scheme.
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Xuna H. E2-88-293
KecTkHe mnponeccH B ofmeill cxeMe ¢aKkTODHSAIHH

PaccMaTpuBaeTca npobneMa omnpepeneduna byHKnHHA pacnpene-
JIeHHs1 KBapKOB 8B afpoOHaX B BRICHHX IIOPAAKAaX TeOPHH BosMyme-
mait /KXHO/. Crpomnresa dopmanusM, nMosBonAwEHI NMPOCTHM oGpasoM)
NepexofHThs OT ONHOrO TAaKOTo onpeneneHms /cxemn daxropusa-
wa/ K OpyroMy. 9ToT $opManusM IPHBOSHT K HOBOMY BHMAY na-
pPaMeTpH3alHKX HenepTypOATHBHHX CBONCTB aApoHOB, KOTODIk L
B OTJAHYME OT OOLYHOIO BHAA, HNCNONbIyWHEro SHaueHue QYHKILHH
pacnpegeneHua nps safaHHOM HadanbHoM Qo, OfHOSHadeH.

PaGora BmmonseHa B JlafopaTopHH TeopeTHHecko#l GHMIHXK
OHdH.,

Coobmeune O6remtieniioro RHCTHTYTa AnepHME Necnenosamtih. JyGus 1988

Ch¥la J. E2-88-293
Hard Processes in General Factorisation
Scheme

The problem of defining quark distribution functions
in higher orders of perturbative OCD is reviewed, A forma-
lism is constructed, which allows simple transformation
from one such definition (factorisation scheme) into ano- K
a ther. This formalism leads to a new way of parametrising ;
« | the nonperturbative properties of hadrons, which in cont- B
rast to the conventional way, emplcving quark distributior# :
functions at some referential o, is uniqe.

The investigation has been performed at the Laboratory &
of Theoretical Physics, JINR. X
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