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1. INTRODOCTION 
In most of physically interesting hard scattering processes не have to 
do beside the renormalised couplant a=g /4n* (in terminology and nota
tion of [1]) also with various parton distribution and fragmentation 
functions (called densities in the following). These are not calculable 
in perturbative QCD and Bust therefore be extracted from experiment. In 
doing so не face the problem of their precise definition in terms of 
the bare parton densities, much in the same «ay as in the case of the 
definition of the renormalised couplant a in terms of the bare couplant 
a As a consequence of this latter freedom the couplant becomes a fun
ction of free parameters {#i,c. ,i£2} appearing in the definition. 

ddlnp C i J" ='?(a) = -baI(^.ci)(l + сл{и,о^) + с^а'^.с^) + ...) (1) 
where b as well as с are fixed once the number n of quark flavors is 
given (we stay in masslees QCD throughout the paper). The parameters 
{M,c.,i22} specify the renormalisation scheme (BS) of the couplant a, 
while the subset {c ,i>2} defines the renormalisation convention (ВС). 
The whole theory Is fixed by fixing some dlaeneionful quantity, as for 
instance the parameter A, specifying the solution of (1) 

a 

т з Ып £ = I + =1„ ^ • / (^ + j * ^ , ) dx. (2) 

According to [1], changing the RS of the couplant means varying the pa
rameters tJ,c. at will, but holding Л fixed. Internal consistency of the 
perturbation theory then implies that the coefficients r k of perturba
tion expansion of some fully inclusive physical quantity R(8) (assumed 
for simplicity to depend on a single external momentum Q) 

R(e)=ad((J.ci)[l • r^e/jiJaf/J,^) + r^Q/p.c^ )a"<M,ct) +...] (3) 
are unique functions of Ч/ц,с , i<k. For d-1 we have for instance 

r,(«/P) = Ып(м/«) +rt(fi=«> = bln(/i/A| - Pf(Q/A), (4) 
where Pt Is RS invariant, i.e. is independent of the choice of *i, ci.As 
v and Л enter in (2) alwaye in the ratio *J/A, the change of the RS can 
equally well be accomplished by holding hi fixed by setting it equal to, 
вау, Q and varying A instead. In this notation it is the dependence of 
a(>j=Q) and rt(^=Q) on Л and c. which expresses the RS ambiguity. The 
dependence of the couplant a and the coefficients r on M and A are, 
however, only two different sides of the same coin and so it would be 



redundant to vary both p and A. For bookkeeping purposes не therefore 
single out one particular RS (by specifying a(M=Q) and r. (^=Q) and let 
all the RG transformations be described by variations of the parameters 
p,c . Although the choice of this referential «normalisation scheme 
(RRS) Is completely arbitrary and has nothing to do with the RS ambigu
ity of finite order approximations to (3) (не would have to chooee some 
RRS even If we неге able to calculate the full sum (3)), some quantiti
es, like rfc (Q/AO Hill depend on it. On the other hand the invariant 
p =bln(Q/A)-r (/u=e) is naturally independent also of the chosen RRS as 
the explicit dependence on the associated A of the logarithm ln(Q/A) is 
compensated by the implicit dependence of the coefficient r (fi=Q) on 
the RRS (higher order р'.в are 0-independent). 
Having fixed the RRS as, say, HS~ (so for /J=Q не get a(4) and rv(M=Q) 

as defined by the usual MS counterterms),не may now choose any *i,c. to 
evaluate R(Q) according to (3) because in the full sua (Э) the depen
dences of the couplant and the coefficients r k on these parameters ful
ly compensate each other ( we ignore here the complicated and pressing 
problem connected with the divergence of expansions like (3) [2,3]). 
The truncated approximations to (3) do, however, depend on this choice. 
Various ideas [1,4-7] have been proposed to resolve this finite order 
ambiguity. They stress different aspects of the problem, but there is 
usually little doubt as to the form of the H-th order approximant R : 
It is (3) truncated to that order. In principle one can imagine other 
forms of this approximant, like for Instance 

R N(«) = b * < « ) N = a4l+s 1a+s laV.e Ma N .в^г^.в^г'+гг,,. . (5) 
i.e. не first calculate R (Q) to N-th order and then take the square 
root (S), but they are mostly rather artificial. Moreover, if we insist 
on the polynomial form of the H-th order approximant then only (3) trun
cated to that order is acceptable. Nevertheless In some cases there may 
really be good reasons to modify (3) and thus also Its approximants R N. 
This happens in the case of exponentiation of soft gluon emissions whe
re, written schematically and apart from overall normalisation, we have 
instead of (3) [в,9] 

R(«) = er*(a(1+^8+5*8+...)), т^т^-т etc. (в) 
(r is some number) and truncate then the series in the brackets. 

tor processes involving parton distribution and fragmentation func
tions perturbation theory leads to results which are more complicated 
than (3). I shall in the rest of this paper discuss mostly the simplest 
case, namely that of noneinglet nucleon structure functions as exempll-
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fled by the combinations 
F~"(x,«) = *(F"J(X,Q) - Г^(х.в)] (7) 

F~"(x,«) = F^(x,e) + F*p (x,e>. (8) 
I drop the superscript NS and denote by F(x,Q) in the rest of this pa
per generically all the NS structure functions like (7-8). 
QCD predictions for F(x,Q) are burdened, beyond the RS ambiguity die-

cussed above, also with the so called factorisation scheme (FS) ambigu
ity [10-11]. But before attempting to resolve, in one nay or another, 
this ambiguity we must again first of all agree on the form of the N-th 
order approximant. There are two different, but equally plausible al
ternatives. The first starts with QCD predictions for the moments 

« 
F M(«) & J xN~*F(x,«)dx (9) 

о 
of the structure function F(x,Q): 
F N < e ) = AM[i°cafil)j Cl+ca(H)) * [l + г~(в/И)а(Ю +..), (10) 
where a(H), a(/j) are renormalised couplants, taken at generally diffe
rent ecalee И and p, A are numerical constants and d ,d± are first two 
coefficients in the expansion of the anomalous dimension 

r » s dln<p|0H|p> = d » a ( H ) + d y ( M ) + . . . (11) 
describing the dependence of the matrix element of relevant Wilson ope
rator 0 (in the proton state) on the factorisation mass H. The last 
bracket in (10) corresponds to "hard scattering" part of the structure 
function and is closely reminiscent of (3). Hhile d are, similarly to 
b, с in (1) uniquely specified by n,, all the remaining coeficients d. , 
1£1 are again completely arbitrary and define what is usually called a 
factorisation convention (FC): FC={d. }. This, together with the facto
risation mass H, define the factorisation scheme (FS):FS={H,FC}. Natu
rally, also the coefficients r k in (10) do depend on this FC. To NLO, 
to which I restrict myself in this paper, only the first two terms, ex
plicitly written out in (10-11) are taken into account and so In this 
approximation FC={d t) and FS={H,d }. To the order considered the ambi
guities inherent in (10) are therefore connected with the freedom in 
the choice of both the FS={M,d4> and the RS={/u). Let me call calculati
on» 1 scheme (CS) the set of all parameters ^,M,d£. All the information 
on the long-distance properties of the proton is contained in £he con
stants A , which cannot be calculated perturbatively, but must be con
sidered -as free carame'ers to be extracted from comparison of (10) with 
experimental dati. Net», however, that A M are not equal to matrix ele-
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Dents of Wilson operators 0 at sone particular scale M Q, but specify 
the solution of (11) by Beans of its asymptotic behaviour as M-xs 

N 
<Р|0Ы|Р> й - A N [nfjj]" '. (12) 

The internal consistency of perturbation expansion (10) dictates again 
the dependence of r t on v,H and the FC={dt} [10]: 

r"(a/H,d") = d"ln | + jji + *". (13) 
where «" are FS-invariants, which, however, still depend on the RRS of 
the couplants а(р),а(Н). 
The fore (10) is a direct consequence of the operator production ex

pansion technique. Here the moments F K(Q) experieentally Measurable, не 
could compare thee directly to (10). In practice only structure functi
ons over a United range of x-values are available and so не Bust turn 
(10) into prediction for then. The other possibility of extrapolating 
the measured structure function to the «hole Interval <0,1> in order to 
calculate the aoaents (9) mixes experiment Hith phenoaenological assum
ptions and should better be avoided.lt is definitely preferable to in
corporate such assumptions into free parameters of the theoretical for
mulae. A number of methods for translating (10) into prediction for the 
structure functions does exist. One of them, based on the use of Jacobi 
polynomials nill be described in more detail in Section 4. I shall call 
it the momentum based (MB) formulation of QCD predictions for structure 
functions. 
The alternative way of formulating QCD predictions for structure fun

ctions, embedded naturally ly in the parton model language [12], is to 
write them as a convolution of the (nonsinglet) quark density q(x,H,FC) 
(taken at the general scale И ) and the hard scattering cross-section 
C(z,Q/H,u,FC)=*(l-z)+a(M)C*(z,Q/M,FC): 

t 

F(x,Q) = J £*- qXx/s,H,FC)[*(l-z)+a(»i)C1(z,e/M,FC)]. (14) 
О 

The quark density itself ie a solution of the evolution equation 
t 

d < ^diHu g C > = J H »<*/«.H.*C)P(»,a<H).FC). (16) 
о 

where 
P(z,a(M),FC) = a(H)P°(i) + a*(M)P*(a,FC) (16) 

and r^d^d",*" are moments (defined »e in (8)) of C*,P°,P* and »(z) 
respectively. In terms of these functions eq.(13) reads 

C*(«.Q/H.FC)= Рв(«)1п(Ч/И) + Р4(«)/Ь + «(ж). (17) 
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Clearly, (11) ie just the Mellln transformation of (15). In this al
ternative language, let me call it partem model based (PB) formulation, 
FC is specified by the funtion P*(z). Provided H in (10) ie independent 
of N and equal to H In (14), which thus ie independent of x and more
over a(/j) and a(M) are exact solution of eq.(2) truncated to the HLO, 
these two expressions yield identical F(x,Q). 
There is, nevertheless no reasons why H in (10) could not depend on H 

and/or И in (14) on x. In such case (10) and (14) are no longer equiva-
valent and so express two different forms of the NLO QCD predictions 
for F(x,Q), each of them still burdened with the CS ambiguity. Before 
trying to resolve this ambiguity, we must therefore first of all deci
de which of the two discussed formulations to adopt. Although from the 
point of view of eventual applications to more complicated processes 
like Drell-Yan production of massive dileptone [13], large P T photopro-
duction or hadroproductlon of photone with large p T [14,15],the 
PB formulation is definitely preferable on technical grounds, there is 
in fact no serious reason to prefer it in principle. At the end of Sec
tion 4 we shall see that indeed both formulations lead to similar for
mulae, namely the sums of exponentially Improved expressions like (6b 
weighted by some functions of the parameters A N. 

In the following I shall first discuss, for both formulations and in 
a quantitative manner, the question of the choice of the CS.Then a for
malism will be constructed which allowe an easy transformation from one 
FS to another (changing the BS={AO ie in eq. (1,4)). The whole problem 
of the appropriate choice of the FS has only very recently obtained so
me attention in the phenomenological analyses [13-15], but merely as 
far as the change of the scales я and M is concerned. I shall demonst
rate that the proper choice of the FC is probably even more important. 
The rest of this paper is organised as follows. In the next Section I 

shall comment on some of the popular choices of FS={M,d }, including 
the one based on the extension [10,11] of the Principle of Minimal Sen
sitivity to quantities like (7,8). Their quantitative comparison in the 
case of the moments (9) can be found In Section 3. The explicit expres
sion for the structure function F(x,Q) in a general FS and using both 
the MB and PB formulations are constructed in Section 4. The generali
sation of the results to more complicated processes is sketched in Sec
tion 5. Summary and conclusions are reserved for the last Section. 

2. REVIEK OF CORRESTLY OSKD FACTORISATION SCHEMES 

Of the more or less ad hoc chosen FS the following two have been used 
most frequently 

5 



2.1 The "universal" factorisation scheme 
This Is the rather unfortunate and вleleading denomination for the FS 

In which M=W and df are given by expressions first derived within the 
OPE technique In [16]. The corresponding branching function P (z) was 
obtained in [16] by means of Inverse Mellln transforation and In [12] 
using directly the PB fornulation . As in both techniques the results 
(i.e. d" or P (z)) are calculated (in dimensional regularisation) from 
certain renornalisation factors, retaining at each order only the pole 
terns, the denomination "MS" would be much more appropriate. The word 
"universal" is misleading as it gives rise to incorrect impression that 
only this FS can be used in all hard scattering processes. This, how
ever, is not the case. Any FS,that ie,any choice of M,JJ and d (or P 1) 
can in principle be used in any hard scattering process, much in the 
same way as any RS={/J} can be used in (3). In complete analogy to the 
couplant (1), quark density q(x,H,FC) is not a physical quantity and we 
are therefore free to define it In any way consistent with (15). Phy
sics is not contained exclusively in the quark density, but rather in 
its convolution (14) with the hard scattering cross-section. 
2.2 The "physical" factorisation scheme 
In this FS, suggested first in [16], M is again set equal to Q but the 
function P (z) is chosen in such a way that 

c\z,H,FC) = 0 •» F(x,Q) = q(x,Q) (18) 
identically for the structure function (7). This structure function is 
singled out owing to the fact that the associated FS-invariant *(z) has 
the following important property 

l 
** = J x(z)dz = 0 • (19) 

In "physical" FS 
P*(z) = -b*(z) I.e. d" = -b«" (20) 

and consequently (19) implies, for the structure function (7), fermion 
number conservation sum rule 

t 
J q(x,Q)dx = u v(x,Q) - dv(x,Q) = 1 , (21) 
о 

where u v,d v are valence quark densities as defined in the "physical' 
FS. Although the validity of (21) is not obligatory, it is certainly 
preferable to preserve this basic parton model property of quark densi
ty even in QCD, if only to maintain, as far as possible the intuitive 
connection of the latter with the former. 

It is, however, obvious that although (18) combined with M=Q implies, 
for (7) the sum rule (21), the opposite is not true. Indeed for struc
ture function (7) the property (19) requires r =d /b and thus the vali-
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dity of quark пиюЬег conservation sua rule (i.e.d =0) implies r =0, but 
this does not шеап that r"=0 for all N, or equivalently, that C*=0 
identically! Even assuming H=Q, any partition (17) of the FS-Invariant 
*(z) }nto P*(z) and C*(z,Q/M) which meets the condition d*=0 (i.e. P 1 

is a "+" distribution) guarantees the sum rule (21), not only that de
fined in (18). One of then is just the "universal" FS discussed above! 
The "physical" FS is not a direct consequence of the physically well 

motivated condition (21) but Is based in an essential чау on the rather 
ad hoc assumption d"=0 for all N, though only d*=0 is required by (21). 
In fact it is very close to the "effective charges" criterion of [4], 
developed for resolving the BS aabiguity of expansions like (3). 
Moreover, the "physical" FC, i.e. assuming (20) but leaving M still 

free, has a rather unwelcome feature. Due to the fact that the FS inva-
variant »(z) still depends on the RES of the couplant the choice (20) 
(20) means that in this FC the branching function P*(z) is also RRS-de-
pendent. In Subsection 2.4 this feature «ill be shown to lead to unsa-
satisfactory results when optimisation with respect to H is performed 
in the "physical" FC. 

2.3 The "zero" factorisation convention 
In some sense opposite to the "physical" FC is the FC in which P*(z)=0 
by definition. While in the former FC all of the NLO corrections to 
structure function (T) were included ("exponentiated") in the definiti
on of the Q-evolved quark density, none is in the latter, as they are 
all shifted into the hard scattering cross-section, which in the "aero" 
FC has therefore the form 

C'd.e/H) = dMln(«/H)) + «(z). (22) 

The evolution equation for the quark density q(x,H) is the same as in 
the LO. This FC has so far not been used in phenomenological analyses, 
though as we shall see later it is very close to the one prefered by 
the PHS criterion. It is also not far from the results of the conven
tional "nonexponentlated" formula 

F H(Q) = * N ( c a W ) " * 'b(l+a(H)rdHln(«/H)+«(z)+dNc/b]) (23) 
which results from expanding, wherever possible, the r.h.s- of (10) in 
powers of a(H) and retaining the first two terms only [19]. 
2.4 Defining factorisation scheme through optimisation 
The idea [10,11] of choosing the RS={p) as well as the FS={M,d"} at the 
stationary point of the function F N(Q) as given in (10) is a direct ex
tension of the original PHS criterion of [1]. In [10] each of the mome
nts F H(Q) is optimised separately and consequently the optimal FS and 
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HRS turn out to be N-dependent: FS<*l={H(N) ,3^(Н)}, mapl=lulH)}. The 
optimisation with respect to ju yields the condition [11] 

r" = 0 (24) 
which when combined with equations resulting from optimisation of (10) 
with respect to M and d t elves (in the approximation са(Я)«1) 

g(H)=Aexp[|U - у = «expfj^ - fg) (25) 

M(H)=Aexp(**VdN)=B(H)exp(c/2b) (26) 
d"=-d"c/2 (27) 

so that H 

C"«» = *w[irlt$f "Ь(1+=а(Н)/-. (28) 
As the quantity *"awK+dMln(e/A) in (25-27) is both FS and RRS Invariant 
(the dependence of * on the RRS is compensated by the explicit depen
dence on A of the second term), the ratio H(N)/A is manifestly RRS-in
dependent and consequently (28) unique. 
Two features of the optimised result (26) are noteworthy. First, for 

c=0 the optimal FC°pt={3^} is just the "zero" FC of the prev!jue Subsec
tion and in fact even for realistic values of с these two FC are, for 
the same H, numerically practically indistinguishable. Secondly, 
the optimal M, though for fixed N proportional to Q, is rapidly decrea
sing function of N for fixed Q, roughly like вН"*". Although in both 
the optimised and "physical" FS r t=0, the ways in which thia is achie
ved are vastly different. In the optimised formula (26) moat (for c=0 
all) of the HLO corrections are incorporated in the dependence of the 
factorisation mass H on N, while in the "physical" FS they are fully 
shifted into the HLO anomalous dlmanaiona d" , or equivalently Into 
the NLO branching function P (*). The quantitative difference between 
these two realisations of the condition r (=0 la significant aa will be 
discusaed in the next Subsection. 

Closer examination of the formula (26) shows that the stationary po
int determined by eqs. (25-27) is not a local extreme but rather a sad
dle point. Thla is clear already froa the fact that for H and d" at the 
stationary point F M(Q) does not depend on f, (r"=0 there) which la a 
property typical for a saddle point. It la also evident that full opti
misation, i.e. optimisation of all moments F (Q) is possible 
only for structure function like (7) for which the F8-invarianta a ha
ve the property «*=0. Recall that although » K do, for general N, depend 
on the RRS, a* doaa not as « change by a term proportional to d N when 
the Ю » la varied and d £=0. 
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Although the optimisation of (10) with respect to FC=(d >) Is an Inte
gral part of the optimisation procedure and may In fact be the most im
portant part thereof, не вау for some reasons Hlsh to fix It and opti
mise with respect to the scales p and И only. In this case не again get 
the condition (24), but Instead of (25) не find for the optimised fac
torisation mass n "(N) the formula 

Г-С-Л-,^ • £„-) - ,exp£ • £ ] 
and consequently 

_ . w t sxt tK. i -d sb , _ -d •'be 
F» ( e , = A " [ l S ^ , ] Ь««(И-)) ' - (30) 

Provided d" Is fixed Independently of the RRS, the ratio tf**/A Is RRS-
invarlant and so Is therefore also (30). As mentioned at the end of the 
Subsection 2.2, this provision Is violated In the "physical" FC. So in 
this FC the result (30) of optimisation uith respect to v and И remains 
still ambiguous as It depends through d =-b« on the RRS of the coup-
lant a(Q) ((29) implies Н*г,=в In this FC). Of course, the dependences 
of a(Q) and * on the RRS mutually cancell to the HLO, but numerically 
(30) does depend on it. This In Itself Is nothing wrong, but in (30) не 
have already optimised with respect to both И and И. As, however, chan
ging M or the RRS are merely tvo different ways of realising the same 
renormalisation group transformation, this is clearly unsatisfactory. 
The source of this unwelcome feature is clearly the very definition of 
the "physical" FC, namely the fact that by setting d t=-b* не force 
these parameters to depend on RRS. 
So far all the optimisation concerned exclusively the moments F M(Q) 

of structure functions. He can take the results (2B) or (30) and Invert 
them to find the corresponding structure function itself. However, as 
the optimisation procedure does not commute with the Inverse Mel1In 
transformation, the in this way obtained F(x,Q) Hill in general not be 
the same as if optimisation is applied directly to formula (14). Onfor-
tunately, this is technically rather involved and practically impossi
ble to do. But in any case не must first of all find an analogue of ex
pression (10), which Hould explicitly exhibit what should be held fi
xed when varying the FS={H,P*(*)). From (14-15) this is not obvious. 
But even after constructing in Section 4 such an expression, не shall 
s«-o that It Is practically hopeless to try to optimise It with respect 
to FC={P (a)}. So some experience gained from optimisation of the mo
ments Hill be Invaluable. 
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3. NUMERICAL COMPARISON 
In this Section the resulta correepondlnc to various options dlecueeed 
In the previous Subsections are quantitatively compared. first, Fig. 1 
displays the dependence of F M(Q), ae given in (10) and normalised to 

N 
the common LO expression AH(ca(Q)) , on the ratio Ч/А for several 
lowest moments of the structure function (7). In all cases the BBS of 
the couplant is chosen to be BS\ The curves in Fig. 1 separate into two 
distinct groups. The first contains those of the "physical","universal" 
and "zero" FC, all supplemented with the choice H=Q, together with the 
conventional nonexponentiated formula (23). Within this group the "phy
sical" FC leads consistently to highest values of '„(4) *nd exhibits 
also the steepest dependence on Q/Л, while the lowest and least steep 
curve is that of the "zero" FC. The differences are, however, rather 
small and of little phenomenologlcal significance. Once we let и and И 
vary and optimise with respect to them the situation changes as is de
monstrated by the three upper curves, corresponding to optimisation 
in the "universal" and "xero" FC as well as the fully optimised result 
(28). The optimisation with respect to H in the "physical" FC gives 
n "=Q and so leads to the same results as already shown there. 

Several conclusions can be drawn from Flg.l. First, the relevance of 
the optimisation with reapect to f and И depends sensitively on the 
chosen fixed FC. While no change (relative to the case H=Q) occurs in 
the "physical" FC, there is a significant Jump in the "aero" FC, lea
ding to results which are also practically Indistinguishable from those 
of the full PMS procedure. But also when optimisation is performed in 
the "universal" FC do we come much closer to the latter than in the 
"physical" FC. Secondly, the upper three curves are also much steeper 
than the lower ones. This is further demonstrated in Fig.2, which dis
plays the ratio * H(Q)/A H for N=3,4,5. «bile for И=« the difference bet
ween curves corresponding to the "physical" and "sero" FC can, for each 
moment N, be approximated by a uniform shift along the x-axis equiva
lent to the change of A by an N-dependent factor in the interval (1.OS, 
1.2>), no such simple change of A Is capable to describe the relation 
between the fully optimised F H(Q) and any of the lower four curves. 
Qualitatively, this steeper increase of (28) at low в/А haa similar af
fect as the addition of higher twist terms to the latter curves. 
The results presented in Figs. 1,2 are instructive, especially if we 

prefer the PMS approach, but strictly speaking they concern the moments 
of structure function and cannot be straightforwardly generalised to 
other processes or even to the direct analysis of structure functions 
themselves. Nevertheless the results displayed in Figs.1,2 show that 
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the "physical" FC is certainly not the only plausible choice of the FC. 

4.FACTORISATION SCHEME AMBIGUITY IH PARTON MODEL BASED FORMULATION 
In the case of the deep Inelastic scattering, and so lone as не do not 
attempt to optiaiee, there is neither a principal nor a practical rea
son for preferlne the FB foraulation to the MB one or vice versa. If 
optinisation is perforaed then, however, the PB foraulatlon is defini
tely preferred. The PB foraulation is also prefered, although поя on 
on practical grounds, if other, aore coapllcated processes (DT dilepton 
production, photoproduction of large p T hadrons or hadroproductlon of 
large p T real photons) are considered in the № 0 approximation. It is 
therefore vital to have at our disposal general foraallm for analysing 
within the PB formulation, any hard scattering process in arbitrary FS. 
To BY knowledge such a foraalisa is not available in the literature. 
In the rest of this paper a siaple construction of such a foraalisa 
«ill be discussed, starting with the case of the nucleon structure fun
ctions (7-8). 

The PB foraulatlon of QCD predictions for the structure function 
F(x,Q) is embodied in eq. (14-15). The aoaents of the quark density 
q(x,B) are given explicitly as 

and the result of the convolution (14) is equivalent to (10), provided 
in both (10) and (14) M is a constant, independent of either N or x. 
Nevertheless this provision is not mandatory and so не allow for pos
sible dependence of M in (14) on x. 
As we want to vary all the parameters *i,B,F*(s) specifying the CS, me 

must first of all decide what should be held fixed in the process.Star
ting froa eqe.(14-15) the answer is not obvious as In the case of '„(в) 
in (10). Indeed, in this respect the moments of structure functions are 
more primary quantities than structure functions threaselves, as they 
are directly related to the -orreeponding Hllson operators. This con
nection tells us that it is the constant A H in (31) which must be fixed 
when we vary M and the FC={P*(s)}. However, as already stressed these 
constants do not characterise quark densities at any fixed M 0, but rat
her specify their asymptotic behaviour as M«°. On the other hand, it is 
the quark density q(x,H 0) at some initial H 0 which is usually used to 
specify the solution of (IS). But it is obvious from (33) that by chan
ging M and/or P£(z) (and thus d") while holding A M fixed, we change 
F H(Q) for all Q. This means that variation of the FS in (14-19) does 
not only change P*(z) In (15) and M and (^(s.Q/M) in (14), but implies 
also the change of the Initial condition q(x,H0)i 
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So If не want to uae the reaulta (i.e. Л and q(x,M 0)) of a particular 
analysis of aoae hard scattering process, perforaed in a given FS, for 
working out QCD predictions (for the s » e or other processes) in a dif
ferent FS, не aust inevitably кпов alao the associated change of the 
boundary condition on (IS). This intonation is, however, essentially 
equivalent to the explicit knowledge of the solution q(x,H) of (IS) as 
a function of both И and P*(s). Me can «rite down the evolution equati
on, including the boundary condition, for the quark density in the пен 
FS only provided we know its explicit expression in teras of the mo-
aents (31) because only for these aoaents do we know what aust be held 
fixed when M and P*(s) change.It is, however, clear that once we have 
such an expression at our disposal there is no further need to solve 
the evolution equation in the new FS as this expression itself repre
sents the aost general solution of it. 
He therefore seek an explicit solution of (IS) in teres of moments 

(31), which aoreover allows an easy transformation of the initial con
dition q(x,H 0), eaployed in all existing analyses, into the information 
on A H. An efficient way of doing this is based on the use of orthogonal 
Jacobi polynomials as suggested in [20]. The numerical accuracy of thla 
way of solving the evolution equation (15) has been studied in detail 
in [21] and turns out to be very satisfactory (better than IX for all 
x and Q of interest). Following [20] we write the aolution of (15) in 
the form 

q(x.H)=xa(l-x)'? £ eP0,(x)«(*,,<II.FC) (32) 
kso 

and so obtain for the structure function F(x,Q) the expression « e 

l(x,Q)--j|i а а(1-ж) Р E < * ( « ) a f (H.rC)[«(l-|)+a(p)[p0(|)l4+»(|) 

•b*' (f>)]- ( 3 8 > 

In (32-33) e/~(s) are the Jacobi polynomials and the Jacobi" momenta, 
/За a k (H.FC) are defined by means of the moments q H(H,FC) (31) as 

а£"(И,ГС)= E cffq.(M,FC={d*'}) , (34) 
ail where cjT are numerical coefficient» (for their explicit values aa well 

aa for the exact definition of e£*(s) see [20-21]). To fix (33) unambi
guously, a and P aust first be specified. This is done in such a way ao 
as to approximate the basic shape of the structure function F(x,Q) al
ready by the lowest term in the series (32).For the nonsinglet structu
re functions it is quite sufficient [21] to take et-o.5,4=3. 
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Formula (33) represents the basic form of QCD prediction for F(x,Q) 
which allows for the variation of the FS={M,P (z)} and specifies what -
namely the constants A N- aust be held fixed. These constants aust then 
be, together with Л, extracted froa phenoaenologlcal analyses of expe
rimental data. They represent the aost natural paraaetrlsatlon of non-
perturbatlve, long-distance properties of the nucleon. Furthermore, In 
contrast to the quark density q(x,M 0) at some initial H 0, which is not 
a physical quantity and is thus ambiguously defined, the constants A H 

are unique, independent of the CS used. Employing (33) as the theoreti
cal formula, It is then straightforward to compare any two (or more) 
phenoaenological analyses of any given structure function, perforaed in 
different, completely arbitrary FS. Recall, how it is sometimes diffi
cult to compare results of published analyses, when these are done (as 
is usually the case) in different FS, using different paraaetrisations 
of q(x,H 0) at different H o. 
Furthermore It is frequently near to impossible to find out from pub

lished papers which FS has in fact been employed. Take for instance re
cent extensive analyses of nucleon structure functions, done by EMC 
[22], BDCMS [23] and CDHS [24] Collaborations. In none of thea does one 
find a reliable information concerning the FS used. In [22] reference 
is made to a paper of Abbott et al. [25] which, however, contains only 
the LO analysis, while in [23] only a vague statement that "the program 
of Abbott and Barnett was used" can be found. In [24] the evolution 
equation for noneInglet structure function is written in the fora sug
gesting the use of "physical" FS, but when specifying the NLO branching 
function P (i) the reader is referred to paper [12], the results of 
which correspond to the "universal" FS with p=H. In order to avoid such 
unnecessary complications, I recommend the use of eq. (33) as the gene
ral form of the NLO QCD predictions (in the FB formulation) for any 
structure function and in arbitrary FS. Once A and A M are fixed froa an 
analysis of one particular process in a given CS, it is trivial to use 
thea to write down predictions for other structure functions ( or any 
other hard scattering process ) in arbitrary calculatlonal scheme. 

Froa practical point of view it is essential that only 6-7 tens In 
the sua (32) are necessary for very accurate (typically better than IX) 
approximation of q(x,Q). That is more than the four parameters usually 
employed for the description of qJx.B) at some initial H a in the form 

q(x,H0)=Axa(l-x)'*(l+rx) (35) 
but as in the case of (35), which of course is aerely some ansats, we 
aay assume certain dependence of A H on N and in this way still lower 
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the number of parameters required in the truncated form of (32). For 
instance we may use the results of the conventional parametrisation 
(36) to determine A in terms of A,«,/»,»-,B ,d 
. . Г(Н+<»)Г(/?+1)Г H+c. 1Г V A P(H+i+^+i) l1** H+a+^+lJ [i 1+ca {§»}] (l+ca(M0)J * • (36) 

Unfortunately it is presently Impossible to use (36) for a reliable de
termination of the constants A N. This is in part due to the mentioned 
lack of reliable information on the FS used in analyses like those in 
[22-24], but there is also another reason. In most of the phenonenolo
gical analyses using the evolution equation (IS) in some FS, the boun
dary condition is specified not, as would be appropriate with respect 
to the equation (15), by q(x,H 0), but rather by the full structure fun
ction F(x,QQ) at some Я0- Consequently this parametrisation must first 
be transformed into the one for q(x:<3a) by unfolding the convolution 
(14) (except in the "physical" FS, where F(x,Q)=q(x,Q) by definition). 
As the papers contain usually no information how this step was done, I 
preferred to use (36) for merely a semiquantitative estimate of A H by 
plugging into it the LO parametrisation of ref. [22], corresponding to 
(35) with А=0.97,а=-0.65,/5=3.1в,г= -0.13,M*=5GeV*. Accordingly I set 
d"=0 in (36). As d can be extended to any N>0, A N can be calculated 
for any real H>0, not only integers [27]. The results, shown in Fig.3, 
indicate a smooth dependence of A H on N which can be parametrised with 
sufficient accuracy as 
-*A U A^expd^+hjH+h^+h^")- (37) 

Without any efforts to find the best 
values of tiTs, we see that h D=1.4, 
hJ=-1.55,h2=0.168,hI,=-0.007 give a 
very satisfactory description of all 
AN,H£10. So again, as in the case of 
the initial condition (35), four pa
rameters are sufficient for the pa-
rametrisation of nonperturbative 
properties of the nucleon. Phenome-
nological analyses would then result 
in the determination of A and 1^,133 
The above formula can also be used 
in another way. He do not have to 
employ (33) and may follow the con
ventional procedure of solving, in 

some FC={P*(z)}, (15) with the initial condition (35) at some И . Choo-

Plg.3.Aj, a» a function of К ac
cording to (36)( ), (37K ) . 
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sing different H 0 in (35) and different FS={H,P*(z)}in (14), we shall 
in general get different values of k,a,p,f. Nevertheless, if these are 
substituted into (36), they must, for various approxinations to be mu
tually consistent, yield the sane A . 
Starting with (33) we nay now attempt to optimise it, for a given 

x, with respect to м,И as well as FC={P (z)}. There are no serious pro
blems with optimisation v ith respect to ц and M, but th«-y turn up when 
we want to find the optimised P (z). The reason for it is that even if 
we take only the first few terms in (33) and so only a few of lowest 
moments df of P (z) are needed to calculate q(x,M) according to (32), 
the presence of P (z) in the convolution (33) implies that we must vary 
P (z) in the whole interval (0,1). To my knowledge there is no way of 
even formulating some kind of equation for the optimised P*(z) which 
would realise the formal condition <5F(x,e)/<5P*(z)=0. 

For the deep inelastic scattering we can, within the MB formulation, 
first optimise separately each of the moments F H(Q) according to (23) 
and then turn them into the corresponding structure functions using the 
general expansion 

ot> 
F(x,«)=x a(l-xr E в^"(х)Р^ а(в). (38) 

where analogously to (34) 
Ff\e)= E cj*Y(Q). (39) 

j = o 
Substituting (28) into (39) we see that the result of the PB formulati
on (33) has the same structure as (38): they are both given as a sum of 
exponentiated moments q (Q) (31), weighted by certain functions of H 
and P*(z), depending in (33) on x and in (38) on N. 

5. BEYOND THE NUCLEON STR0CTOBK FUNCTIONS 
For other, more complicated processes, like those mentioned at the be
ginning of the previous Section, only the PB formulation is of practi
cal use. However, as the optimisation with respect to the FC of various 
parton distribution and fragmentation functions is hopeless, we must in 
practice choose some FC={P (z)} (for each parton leg in principle sepa
rately) and optimise, if we wish so, with respect to remaining parame
ters tJ and И only. For instance, in the case of hadroproduction of pho
tons with large P T, the differential cross-section (in the nonsinglet 
channel) as a function of x r, P T of the produced photon reads 

д/др =9(x f.H 1.rc i)«(p T,x r,M l,M l,FC f,FC l,/0*i(x l,M l,FC 1b <«>) 

where q(x. ,H, ,FC.) 1=1,2 are the nonsinglet quark densities of the two 
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colliding hadrone, as defined in (15) in factorisation conventions FC, 
taken at the scales H., and the function K, the generalisation of 
C(z,Q/M,FC) in (14), describee again the "hard scattering" of two par-
tone. For exact definition of the convolution • see С13). In practice 
не are forced to assune M =в^=М and choose sone morelees ad hoc FCt= 
WCZ=FC. This later choice le inevitably subjective, but at least eone 
lesson can be drawn fro» the discussion of the previous Section. There 
the optlnal FC wee shown to practically coincide with the "zero" FC of 
Subsection 2.3 and even the "universal" FC lead, after optimisation wi
th respect to f,H, to results which were much closer to the fully opti
mised ones than those of the "physical" FC. Although this feature is 
very probably specific to structure functions (7-8), it seems reasona
ble to carry out any analysis (including the optimisation of (40) with 
respect to p and H) at least for all the three aforementioned FC. The 
eventual discrepancy of in this way obtained results represents, in my 
view, a plausible measure of the theoretical uncertainty associated 
with (40). 
In practice further simplification is forced upon us. The optimisation 
of (40) with respect to p and H cannot be done analytically, but the 
stationary point must be found by mapping (40) as a function of A» and 
M. The optimised reeult is, however, also a function of the unknown 
constants A . To determine these constants as well as A by fitting (40) 
to experimental data would require on one hand much better accuracy of 
the data and on the other large amount of computer time. In practice, 
the constants A H must therefore be taken from other processes, like the 
deep inelastic lepton-nucleon scattering. This is quite legal to do but 
we must be carefull to use in (40) the correct quark density q(x,M) and 
hard scattering cross-section K(xp,p1fi,FC), corresponding to the FS a-
dopted. It is inconsistent to proceed as in [13-15] where the approxi
mate (though phenomenologically quite succesfull) but essentially only 
LO parametrisation [27] of q(x,H) was used in convolution of the type 
(40) with truly NLO hard scattering cross-section K. 

6.SUMMARY AHD COHCL0SIOHS 
In the previous Sections we have discussed various ambiguities appear
ing at the NLO in the theoretical description of hard scattering proce
sses involving pirton distribution and fragmentation functions. Two dif
ferent formulations, one starting from the moments of structure functi
ons, the other working directly with the evolution equations for parton 
densities, were shown to be in principle equally plausible representa
tions of HLO QCD predictions for the nucleon structure iunctions. There 
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1в по obvious way of resolving this ambiguity, if we do not insist on 
optimisation, which naturally prefers the latter formulation. In both 
of these formulations we are still faced with the ambiguities connected 
with the choice of the FS={M,FC} as well as the RS={AJ}. Various curren
tly used choices of the former were reviewed and quantitatively compa
red. The quark densities were argued to play a role quite similar to 
that of the renormalieed couplant a(p). In particular there is no natu-
ral definition of the FC={P (z)}, very much as there is in QCD (cont
rary to QED) no natural definition of the couplant a(^). The "best" (in 
whatever sense we mean this) FC is furthermore expected to be process 
dependent. In the case of nucleon structure functions the fully optimi
sed moments FHturned out to practically coincide with those of the "ze
ro" FC combined with optimisation with respect to p and H and quite far 
from those of the "physical" FS. 
The main aim of this paper was to construct a general expression for 

the HLO QCD predictions in arbitrary FS={M,d"}. Such an expression al
lowing easy and straightforward transformation from one FS into another 
is necessary if we want to use the results of existing phenomenological 
analyses of data on deep Inelastic scattering for working out QCD pre
dictions for other, more complicated processes in general FS. Jacobl 
polynomials turned out to be very convenient for this purpose as they 
lead to simple but simultaneously rather accurate expressions. An impor
tant aspect of the whole construction is a new parametrisatlon of the 
nonperturbatlve properties of the hadrone. Contrary to the conventional 
way of parametrising the uncalculable properties of the hadrons by mea
ns of the quark desity q(x,M) at some referential M Q the use of cons
tants A H has an important advantage: they are independent of the chosen 
calculational scheme. 
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Жесткие процессы в общей схеме факторизации 

Рассматривается проблема определения функций распреде
ления кварков в адронах в высших порядках теории возмуще
ний /КХД/. Строится формализм, позволяющий простым образом 
переходить от одного такого определения /схемы факториза
ции/ к другому. Этот формализм приводит к новому виду па
раметризации непертурбативных свойств адронов, который 
в отличие от обычного вида, использующего значение функции 
распределения при заданном начальном Qo, однозначен. 

Работа выполнена в Лаборатории теоретической физики 
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Hard Processes in General Factorisation 
Scheme 

The problem of defining quark distribution functions 
in higher orders of perturbative OCD is reviewed, A forma
lism is constructed, which allows simple transformation 
from one such definition (factorisation scheme) into ano
ther. This formalism leads to a new way of parametrising 
the nonperturbative properties of hadrons, which in cont
rast to the conventional way, employing quark distribution 
functions at some referential <\o, is uniqe. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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