239Pu NEUTRON CROSS-SECTIONS IN THE RESOLVED-RESONANCE REGION

A.A. Luk'yanov, V.V. Kolesov, S. Toshkov[*] and N. Yaneva[*]

ABSTRACT

The authors have determined the multi-level parameters for description of the total and fission cross-sections for 239 Pu in the resolved-resonance region up to 500 eV. A method has been developed for the construction of the elastic scattering and radiative capture resonance cross-sections using these parameters. The group-averaged cross-sections for experimental and evaluated data have been calculated in the energy region considered.

Multi-level analysis of the total and fission cross-sections

While there is a large volume of experimental data on the energy structure of the ²³⁹Pu neutron cross-sections in the resonance region, only a few of the available data sets can be used in practice in the problem of multi-level parametrization of this structure. Here, apart from good experimental resolution in a relatively wide energy range, we also need a high accuracy of cross-section measurements, especially in the region of the interference minima, which are important particularly for multi-level description of the fission cross-section energy structure. To represent the ²³⁹Pu resonance cross-sections, the evaluated data libraries at present generally use the measurement results of Blons, Derrien and Gwin [1-6] with subsequent corrections on the basis of the new data for the energy-averaged cross-sections [7-9]. These data in the region below 500 eV, where the resonances can be regarded as satisfactorily resolved, are analysed in the present paper.

The multi-level description of the cross-sections for fissionable nuclei, especially ²³⁹Pu, was performed in several studies using various scheme of the resonance reaction theory [10]. Thus, the formalism of the R-matrix theory was used for this purpose in Refs [11-15] and the so-called Adler-Adler scheme - a simplified version of S-matrix parametrization - in Refs [16-19]. The present study also uses the Adler-Adler scheme to determine the consistent set of the corresponding resonance parameters for the combined analysis of the total and fission cross-sections in the whole region of resolved levels up to 500 eV. The resonance cross-sections constructed with

[*] Institute of Nuclear Research and Nuclear Power, Bulgarian Academy of Sciences, Sofia.

the parameters found by us reproduce all the observed characteristics of the cross-section energy structure in the region considered [20].

To describe the energy dependence of the cross-sections in the resolved region, we use the general expression for collision matrix elements $s^{J}(E)$ with the given value of total moment J and parity:

$$S_{nc}^{\mathcal{J}}(E) = exp(-i\varphi_n) \left(\vartheta_{nc} + i \sum_{k} \frac{\Gamma_{kn}^{1/2} \Gamma_{kc}^{1/2}}{E_k - E} \right) exp(-i\varphi_c) \,. \tag{1}$$

The complex parameters $E_k = \mu_k - i\nu_k$ and $\Gamma_{kc}^{1/2}$ are assumed to be independent of energy, except for $\Gamma_{kn} \approx \sqrt{E}$ [10, 16]. The total and fission cross-sections are expressed in terms of the elements of the s^J -matrix;

$$\begin{split} \widetilde{\sigma}(E) &= 2\pi \lambda^2 \sum_{J} g_J \left[1 - \operatorname{Re} S_{nn}^J(E) \right] ; \\ \widetilde{\sigma}_f(E) &= \pi \lambda^2 \sum_{J} g_J \sum_{c(f)} \left| S_{nc}^J(E) \right|^2 , \end{split}$$

where g_J is the spin factor and the sum over c(f) takes into account the possibility of several channels for the fission process [10]. Substituting expression (1) into (2) and considering the effective resonance broadening due to the thermal motion of the nuclei of the medium and the finiteness of the experimental resolution, we arrive at the well-known Adler-Adler formulae for the multi-level representation of the observed resonance cross-sections [10, 16]:

$$\mathcal{G}(\mathcal{E}) = \mathcal{G}_{p} + \mathfrak{K}\lambda^{2} \sqrt{\mathcal{E}} \sum_{\kappa} \left[\frac{G_{\kappa}^{T}}{\nu_{\kappa}} \psi \left(\frac{\mu_{\kappa} - \mathcal{E}}{\nu_{\kappa}}, \frac{\nu_{\kappa}}{\Delta} \right) - \frac{H_{\kappa}^{T}}{\nu_{\kappa}} \chi \left(\frac{\mu_{\kappa} - \mathcal{E}}{\nu_{\kappa}}, \frac{\nu_{\kappa}}{\Delta} \right) \right] ; \qquad (3)$$

$$\mathcal{G}_{f}(E) = \mathfrak{R} \lambda^{2} \, \sqrt{E} \sum_{\kappa} \left[\frac{G_{\kappa}^{F}}{\mathcal{V}_{\kappa}} \, \psi\left(\frac{\mu_{\kappa}-E}{\mathcal{V}_{\kappa}}, \frac{\nu_{\kappa}}{\Delta}\right) - \frac{H_{\kappa}^{F}}{\mathcal{V}_{\kappa}} \, \chi\left(\frac{\mu_{\kappa}-E}{\mathcal{V}_{\kappa}}, \frac{\nu_{\kappa}}{\Delta}\right) \right] \,. \tag{4}$$

here

 $\mathcal{G}_{\rho} = 4\pi \lambda^2 \sin^2 \varphi_n - \tag{5}$

is the potential cross-section (phases φ_n are assumed to be independent of J); ψ and χ are the resonance form functions taking into account averaging over the Gauss distribution: $\Delta^2 = \Delta_R^2 + \Delta_T^2$, where Δ_R is the width (dispersion) of the experimental resolution function and Δ_T the Doppler width [10]. The parameters in the analysis of experimental data are the values of μ_k and ν_k common to all crosssections of the given element and also

$$G_{\kappa}^{T} - iH_{\kappa}^{T} = 2g_{\mathfrak{I}}exp(-2i\varphi_{n})\Gamma_{\kappa n}/VE; \qquad (6)$$

$$G_{k}^{F} - iH_{k}^{F} = \frac{2g_{0}}{\sqrt{E^{1}}} \sum_{c(f)} \sum_{\kappa'(0)} \left(\Gamma_{\kappa n} \Gamma_{\kappa' n}^{*} \Gamma_{\kappa c} \Gamma_{\kappa' c}^{*} \right)^{1/2} / \left(E_{\kappa'}^{*} - E_{\kappa} \right),$$
(7)

The sum over k'(J) relates here to resonances of one spin and parity value (in the case of 239 Pu, s-wave resonances with J equal to 1 and 0 correspond to the resolved region).

In order to determine the parameters of the scheme from the experimental data on the ²³⁹Pu resonance cross-sections, we constructed a program of linear search with subsequent broadening of the energy region used in the analysis of Ref.[21]. As a result, we could obtain the consistent set of parameters μ_k , G_k^T , H_k^T , H_k^F , ν_k (Table 1), which enables us

Table 1. Parameters of the combined multi-level analysis of the ²³⁹Pu cross-sections.

μ, eV	G^{T} 10 ⁶ , eV 1/2	$G^{F} \cdot 10^{6}$, $eV^{1/2}$	$H^{T} \cdot 10^{6}$, $eV^{1/2}$	$H^{F} \cdot 10^{6}$, $eV^{I/2}$	V,MeV	J
-0,260	0,0	0,0	41,454	3I.960	100.0	0
μ, eV -0,260 0,269 1,580 1,580 1,580 1,580 1,44,639 1,44,639 1,44,639 1,44,639 1,44,639 1,57,628 2,288 2,558 8,57 2,558 8,57 2,568 2,578 2,568 2,578 2,568 2,578	$G^{T} \cdot 10^{6}$, eV $1/2$ 0,0 10,340 214,292 50,107 414,603 8G0,202 418,144 258,094 756,000 232,151 638,244 815,360 28,235 448,917 58,244 815,360 28,225 72,670 58,293 884,634 299,937 1345,951 369,974 262,376 2000,650 505,015 1492,228 902,246 113,579 977,362 715,369 1665,989 555,493 3414,305 10,6632 255,599 555,493 3414,305 10,6632 255,599 555,493 3414,305 10,6632 255,599 555,493 3414,305 10,6632 255,599 555,493 3414,305 10,6632 255,599 555,493 3414,305 10,6632 255,599 56,989 555,493 3414,305 10,6632 255,599 56,989 555,493 56,989 555,493 557,493 3414,305 10,6632 255,599 56,989 555,493 557,493 577,493 577,595 577,	$\begin{array}{c} G^{F} \cdot 10^{6} \cdot eV^{1/2} \\ \hline 0,0 \\ 3,595 \\ 129,318 \\ 22,183 \\ 230,186 \\ 623,722 \\ 164,613 \\ 161,463 \\ 325,263 \\ 253,136 \\ 290,233 \\ 477,964 \\ 14,579 \\ 225,867 \\ 4,699 \\ 52,741 \\ 6,110 \\ 71,400 \\ 139,449 \\ 120,529 \\ 324,595 \\ 239,689 \\ 138,103 \\ 270,773 \\ 115,950 \\ 1372,241 \\ 6558,243 \\ 593,210 \\ 263,456 \\ 71,339 \\ 948,770 \\ 538,243 \\ 593,210 \\ 263,456 \\ \hline 0,22 \\ 199,741 \\ 3,380 \\ 2592,610 \\ 236,121 \\ 269,058 \\ 9,284 \\ 88,270 \\ 64,576 \\ \hline 0,22 \\ 199,741 \\ 3,380 \\ 2592,610 \\ 236,121 \\ 269,058 \\ 9,284 \\ 88,270 \\ 64,576 \\ \hline 0,22 \\ 199,741 \\ 3,380 \\ 2592,610 \\ 236,121 \\ 269,058 \\ 9,284 \\ 88,270 \\ 64,576 \\ \hline 0,22 \\ 199,741 \\ 3,380 \\ 2592,610 \\ 236,121 \\ 269,058 \\ 9,284 \\ 88,270 \\ 64,576 \\ \hline 0,22 \\ 199,741 \\ 3,380 \\ 2592,610 \\ 236,121 \\ 269,058 \\ 9,284 \\ 88,270 \\ 64,576 \\ \hline 0,22 \\ 199,741 \\ 3,380 \\ 2592,610 \\ 236,121 \\ 269,058 \\ 9,284 \\ 88,270 \\ 64,576 \\ \hline 0,58 \\ 9,284 \\ 88,270 \\ 64,576 \\ \hline 0,58 \\ 9,284 \\ 88,270 \\ 64,576 \\ \hline 0,58 \\ 9,284 \\ 88,270 \\ 64,576 \\ \hline 0,58 \\ 9,284 \\ 88,270 \\ 64,576 \\ \hline 0,58 \\ 9,284 \\ 88,270 \\ \hline 0,58 \\ \hline 0,58 \\ 9,284 \\ 88,270 \\ \hline 0,58 \\ \hline$	$H^{T} \cdot 10^{6}$, $eV^{1/2}$ 41,454 0,0 6,072 57,415 -7,448 50,632 -2,102 -32,148 50,260 -17,961 1,877 22,730 -4,255 2,595 2,150 2,051 0,057 33,879 -12,222 37,864 26,475 19,544 10,379 71,993 -0,403 622,323 30,723 0,065 -1180,160 210,550 195,543 -71,893 231,817 2,283 398,051 1,155 -544,838 40,291 86,667 -1,110 27,172 172 172 172 172 172 172 172	$H^{F} \cdot 10^{6}$, $ev^{1/2}$ 31.960 0.0 3.458 20.490 -6.594 51.270 -33.351 -37.153 39.075 -25.966 -5.705 11.524 -4.616 -4.404 -0.267 1.990 -0.107 6.636 -8.862 -2.660 15.687 11.758 -14.768 522.363 -2.483 -14.768 522.483 -14.768 522.483 -14.768 522.483 -14.768 522.483 -14.768 522.483 -2.635 -2.483 -2.635 -0.369 399.482 -2.870 -3.6359 399.482 -2.870 -6.340 -6.340 -6.341 -5.799	V, MeV 100.0 100.0 47.1 2250.0 42.9 88.9 33.1 53.2 36.4 40.4 52.4 40.4 52.4 40.4 52.4 40.4 52.4 40.4 52.4 40.4 52.4 40.4 52.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.4 40.4 52.6 80.5 52.5 70.5	
$\begin{array}{c} 96 \\ 853 \\ 98 \\ 96 \\ 8367 \\ 103 \\ 105 \\ 8415 \\ 113 \\ 9284 \\ 113 \\ 9284 \\ 113 \\ 9284 \\ 115 \\ 9284 \\ 115 \\ 9284 \\ 119 \\ 9221 \\ 123 \\ 8240 \\ 119 \\ 221 \\ 123 \\ 826 \\ 119 \\ 221 \\ 123 \\ 826 \\ 123 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\ 825 \\ 135 \\$	528,546 1538,524 228,421 652,249 1253,704 63,145 20,939 18,394 475,961 2212,866 61,349 502,898 58,572 208,270 62,813 1102,556 534,738 1055,161	489,535 1243,382 47,755 69,742 465,199 26,277 19,974 0,562 369,520 906,462 30,132 146,495 57,761 46,890 17,017 1064,589 92,506 579,508	-II5 832 I48 61I I0 27I 29 43I 62 790 2 044 93 752 -I9 604 54 245 93 086 -22 110 -7 022 -0 356 I2 535 -I 585 -I 585 -I 585 -I 593 -I 5510 -672 458	-105,788 499,353 -3,827 -1,963 -30,667 -4,658 85,156 -20,007 -7,643 -46,784 27,758 -22,402 -15,620 -1,894 -3,640 -238,700 -3,487 -149,806	731 9 4652 9 29 29 36 4 29 5 85 7 85 7 85 7 85 7 85 7 85 7 85 7 85	

Table 1. (continued)

	Τ. Ο. Τ/Ο		T C T/2	E C TT/2		
_μ, eV	G'·I0 ⁶ , eV ·1/2	$G^r \cdot 10^6$, eV $1/2$	H'.IO ⁶ , eV 1/2	H" · I0 ⁶ , eV 1/2	יז , MeV	J
135,783	410,132	279,598	' IQ,999	-3I,8II	50,3	Į
I42,96I	372,204	242,185	-8,405	-26,500	20,0 40,5	I
143,476	508,134	222,585	52,049	-3,239	42,0	Ī
I46,265	650,192	107,874	71,286	-27,690	15,0	I
148,293 148,293	42,915	24,470	-9,543 -103,458	-20,200	2402 4	I
149,453	Ĩ66,72Ĩ		I6,506	-Ĩ5,3ĨŎ	26,2	Ĭ
156,089	1188,507	599.223	-21,580	-92,532	442.6	0
162,070	13,630	2,650	-5,316	-10,245	75,0	Ĩ
164,366	903,623	574,255	-290,138	79,896	8836,3	ò
167,136	681 (940 70 762	385,750 57,526	29,291 -15,050	-34,049	49,2 100'0	I
171,100	237,479	94,866	-7,234	-112,354	1500,0	Ŭ
176,008	380,248	95,944 53,809	22,398	-0,052	21,4	Ī
Ī78,935	133,438	35,279	7,033	I 274	25'I	I
155,132	742,568	544 294	-49,505	-83,717	1011,0	ģ
188,313 190,665	68,354 170,560	20,418 46,810	0,652 I3,438	0,852	29.3	I
195,359	2020,036	1677,826	178,217	99 , 271	241,5	Õ
199,443	968,621	523,756	43,033	-0,432	63 , I	İ
203,380	144 '977 2208 579	6,872 1697,919	102,762	28,169 -149,806	46,1 275,4	I
207,413	676,514	75,326	44,263	-2,785	,6	Ĭ
207,830 211,063	144,217 323,339	299,612	-114,844 183,027	170,578	1000,0 1154 , 9	Ö
213,235	38,633	19,705	21,069	10,477	104,3	Q
219,551	305,125	100,204	-29,604	-17,499	I5 ; 0	Į
220,273	797,542	207,043	-8,579	-23,243	59.3 15 . 7	Ì
224,930	142,677	35,859	10,406	9,473	17,5	Ī
227,940	1308,645	67,825	12,578	8,217	33,5	Ĭ
231,433	1089,052	117,710 22,195	97, 968 18, 175	9;714 14-381	23,2	I
234,357	909,505	183,572	80,982	0,183	35,2	Į
239,090	492,116 323,762	254,669	-265,443	-10,124	4078,5	Ō
242,922	603,007	361,628	44,873	I,619	58,2	I
247,637 248,90I	1336,733	137,637	79,992	II,2II	40,2	Ĭ
251,272	2479,667 265,924	383,373 116,212	180,962	-2,267	47,9 42.1	I I
256,151	561,266	151 094	56,995	19,687	51,9	Ĩ
259,040	3,162 3708,401	3371,561	-8,466 66,986	-25,920	3514.7	0
262,748	231,911	50,391	57,06I	23,959	46,7	I
269,150	365,756	164,232	27,802	6,967	30,5	Ĭ
272,686	2381,697	889,886 1149,870	113,980 351,354	-61,892 227,133	61 2 630 2	I
275,631	1950,245	946,435	106,315	-19,115	73,5	Ĭ
277,270	343,058 668,058	285,427	456,694 53,139	483,000 -I 133	43.3	0
282,970	2179,124	223,384	173,084	-16,473	42,7	I
288,040 292,4II	331 72 4	158,439	10,451	-20,753	63,9	ŏ
296,538	281,033	111,001 253,401	I4 (979 79, 983	-2;223 14,666	52,0 44,9	Ī
301,888	1537,871	701 3 985	122,368	-24,662	58,6	Ī
308,316 309,068	279,129 1121,458	324 331	-29,003 I40,592	56,116	47.4	Ĭ
3ĬĬ,228	68,912	34,665	0,732	9,729 T 52T	401 '0	0 T
313,692	428,225	159,113	46,109	-0,937	59,9	İ
321,850	326,689	325,577 369,287	-17,502 92,275	106;909 1.024	44 06,9 84 ,0	0
325,38I	679,309	25ĭ,202	53 , 421	-2,260	65 , 4	Ĭ

.

Table 1. (continued)

.

μ , eV	$G^{T} \cdot 10^{6}$, eV $1/2$	$G^F \cdot 10^6$, eV ^{1/2}	$H^{T} \cdot 10^{6}$, eV $1/2$	$H^{F} \cdot 10^{6}$, eV ^{1/2}	V, MeV	J
$\begin{array}{c} \mathcal{U}, \mathbf{eV} \\ 329, 750 \\ 336, 037 \\ 338, 336, 037 \\ 338, 336, 037 \\ 338, 336, 037 \\ 338, 336, 037 \\ 338, 336, 037 \\ 338, 336, 037 \\ 338, 336, 037 \\ 338, 339 \\ 357, 910 \\ 357, 910 \\ 357, 970 \\ 357, 109 \\ 357, 970 \\ 357, 109 \\ 375, 109 \\ 375, 109 \\ 375, 109 \\ 375, 109 \\ 3775, 109 \\ 378 \\ 397, 359 \\ 391, 500 \\ 375, 109 \\ 3775 \\ 383 \\ 394 \\ 500 \\ 775 \\ 383 \\ 394 \\ 500 \\ 770 \\ 000 \\ 10$	$ \begin{array}{c} G^{+} \cdot 10^{6}, e^{\sqrt{1/2}} \\ 337, 833 \\ 417, 463 \\ 1139, 586 \\ 611, 051 \\ 266, 902 \\ 1186, 893 \\ 391, 278 \\ 1592, 396 \\ 305, 720 \\ 331, 184 \\ 256, 102 \\ 96, 438 \\ 26, 896 \\ 246, 359 \\ 64, 185 \\ 1260, 358 \\ 204, 185 \\ 1260, 358 \\ 204, 162 \\ 176, 681 \\ 127, 582 \\ 1260, 358 \\ 204, 162 \\ 176, 681 \\ 127, 582 \\ 1260, 358 \\ 204, 162 \\ 176, 681 \\ 127, 582 \\ 120, 557 \\ 71, 686 \\ 466, 683 \\ 167, 681 \\ 132, 5657 \\ 71, 686 \\ 466, 683 \\ 167, 681 \\ 132, 5657 \\ 71, 686 \\ 466, 683 \\ 167, 522 \\ 228, 999 \\ 126, 557 \\ 71, 686 \\ 466, 583 \\ 167, 522 \\ 228, 999 \\ 126, 458 \\ 417, 865 \\ 119, 982 \\ 617, 522 \\ 228, 999 \\ 126, 458 \\ 417, 865 \\ 119, 982 \\ 617, 522 \\ 228, 999 \\ 126, 458 \\ 417, 865 \\ 119, 982 \\ 617, 522 \\ 228, 999 \\ 126, 458 \\ 417, 865 \\ 119, 983 \\ 132, 504 \\ 45, 149 \\ 87, 982 \\ 617, 522 \\ 228, 999 \\ 126, 681 \\ 184, 683 \\ 167, 681 \\ 172, 904 \\ 45, 149 \\ 87, 982 \\ 617, 522 \\ 228, 999 \\ 126, 657 \\ 71, 686 \\ 352, 704 \\ 237, 554 \\ 74, 004 \\ 370, 695 \\ 903, 427 \\ 268, 454 \\ 104, 803 \\ 133, 546 \\ 174, 990 \\ 251, 773 \\ 711, 075 \\ 17, 497 \\ 2, 963 \\ 3469, 086 \\ 689, 867 \\ 68$	$ \begin{array}{c} G^{F} \cdot 10^{6}, eV \\ 1/2 \\ 192, 732 \\ 711, 703 \\ 262, 749 \\ 102, 853 \\ 105, 494 \\ 356, 127 \\ 316, 354 \\ 630, 963 \\ 964, 566 \\ 199, 542 \\ 191, 942 \\ 50, 938 \\ 17, 551 \\ 242, 685 \\ 24, 968 \\ 14, 241 \\ 979, 401 \\ 41, 903 \\ 79, 796 \\ 10, 278 \\ 4, 994 \\ 179, 767 \\ 238, 627 \\ 19, 853 \\ 33, 475 \\ 241, 416 \\ 108, 591 \\ 39, 948 \\ 994, 248 \\ 827, 773 \\ 179, 844 \\ 15, 439 \\ 39, 948 \\ 994, 248 \\ 827, 773 \\ 179, 844 \\ 15, 439 \\ 37, 951 \\ 25, 445 \\ 314, 554 \\ 37, 951 \\ 25, 445 \\ 314, 554 \\ 37, 934 \\ 566 \\ 44, 723 \\ 33, 423 \\ 20, 063 \\ 44, 723 \\ 33, 44, 838 \\ 310, 224 \\ 838 \\ 310, 224 \\ 838 \\ 310, 224 \\ 838 \\ 310, 224 \\ 838 \\ 310, 224 \\ 838 \\ 310, 224 \\ 838 \\ 310, 224 \\ 838 \\ 310, 224 \\ 838 \\ 310, 224 \\ 838 \\ 310, 224 \\ 838$	$\begin{array}{c} H' \cdot 10^{6}, ev^{1/2} \\ -41,404 \\ 36,020 \\ 83,993 \\ 41,524 \\ 10,560 \\ 97,851 \\ 40,550 \\ 97,851 \\ 40,550 \\ 97,851 \\ 40,560 \\ 97,851 \\ 40,560 \\ 97,851 \\ 40,560 \\ 97,851 \\ 40,560 \\ 97,851 \\ 20,296 \\ 867 \\ -151 \\ 272 \\ -7,812 \\ -3,625 \\ -296,867 \\ -21,504 \\ -44,539 \\ 24,646 \\ 255 \\ 926,867 \\ -21,504 \\ -44,539 \\ 24,646 \\ 255 \\ 504 \\ -44,539 \\ 24,646 \\ 255 \\ 546 \\ 16,957 \\ 21,374 \\ 19,224 \\ 38,328 \\ 25,546 \\ 16,957 \\ 21,374 \\ 19,224 \\ 38,328 \\ 25,546 \\ 16,957 \\ 21,374 \\ 19,224 \\ 38,328 \\ 25,546 \\ 15,764 \\ 21,374 \\ 12,3200 \\ -313,3700 \\ -38,039 \\ -12,400 \\ -34,646 \\ 75,165 \\ 91,337 \\ -0,039 \\ 43,019 \\ -12,400 \\ -34,646 \\ 75,186 \\ -186,390 \\ -44,546 \\ -39,626 \\ 300 \\ -44,781 \\ 45,536 \\ -18,626 \\ 300 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -44,781 \\ 45,536 \\ 003 \\ -9,649 \\ -28,790 \\ 281,464 \\ -319 \\ 987 \\ -18,67 \\ -28,790 \\ 281,464 \\ -319 \\ -28,790 \\ 281,464 \\ -319 \\ -28,790 \\ 281,464 \\ -319 \\ -28,790 \\ 281,464 \\ -319 \\ -28,790 \\ 281,464 \\ -319 \\ -28,790 \\ 281,464 \\ -319 \\ -28,790 \\ -$	$H' \cdot 10^{6}$, eV -30, 643 8, 396 2, 320 -4, 982 -6, 492 -17, 427 44, 942 -22, 217 -0, 630 -8, 859 -32, 094 -11, 204 -5, 5503 -14, 204 -5, 5503 -14, 204 -164, 0041 -6, 634 -2, 798 -2, 703 164, 0041 -6, 634 -2, 798 -2, 798 -2, 760 -2, 397 2, 7711 8, 006 -9, 999 -14, 729 -29, 451 -33, 521 139, 999 -14, 432 -5, 5208 31, 570 -33, 521 139, 999 -14, 432 -5, 521 -331, 570 -33, 521 -331, 570 -30, 438 -36, 5514 122, 284 -5, 725 -331, 275 -33, 522 -12, 284 -5, 514 122, 284 -12, 3322 -12, 284 -12, 3322 -12, 284 -12, 3322 -12, 284 -12, 3323 -12, 399, 9355 -12, 999 -10, 929 -10, 288 -12, 284 -12, 399, 9355 -12, 284 -12, 399, 9355 -12, 938 -12, 938 -12, 938 -257, 934 -253, 934 -257, 938 -257, 934 -257, 938 -257, 934 -257, 934	ν , MeV 2109,53 41,34 459,00 554,759,53,00,55,000,00,00,00,00,00,00,00,00,00,00	7 0HHHOHOHHOOOOOOHQOOOHOHHOHOOHHOOO HHOHHOOOOHOOOH

Table 1. (continued)

<u></u> , еV	$G^{T} \cdot 10^{6} eV^{1/2}$	$G^{F} \cdot 10^{6}$, eV $^{1/2}$	$H^{T} \cdot 10^{6}$, eV $1/2$	$H^{F} \cdot 10^{6}, eV^{1/2}$	u, MeV	J
516,720 518,130 520,401 524,360 525,642 526,150 527,530 530,730 596,905	35,653 72,807 906,819 2053,283 6139,813 33,011 34,663 3081,960 119,267 2017,571	35,454 17,940 362,349 382,787 4993,523 9,987 9,987 9,987 756,912 113,829 1353,805	-3,159 -4,661 46,014 257,619 -351,683 36,569 31,493 133,752 541,737 -1824,245	I 997 I6,650 -38,381 8,948 -588,712 85,822 51,007 -200,268 285,164 -635,841	I60,9 218,8 83,2 45,5 558,2 47,2 33,9 77,2 I374,8 7527,8	0 0 1 0 1 0 0 0 0

Table 2. Values of the average ²³⁹Pu fission cross-sections in specific energy intervals.

Energy.	$\vec{\mathcal{O}}_{f} = \frac{1}{\Delta E} \int_{\Delta E} \mathcal{O}_{f}(E) dE$						
eV	Gwin, 1976 [3]	Gwin, 1984 [7]	Weston 1984 1980 . 787	. Wagemans, 1980 /9/	ENDF/B-IV [#]	Kan'shin 1982 /5/*	Present work
6-9	60,7	59,6+0,6	-	60,6	60,9	61,4	59,8
9 - IŹ,6	137,5	I40,I+I,3	-	138,4	139,7	135,9	137,5
12,6-20	73,4	70,7+0,7	-	73,8	73,9	66,7	72,5
20-24,7	47,7	46,2+0,6	-	47,5	47,7	43,9	46,6
50-100	56,96	-	• 56,56	57,4	56,9	60,75	55,7
100-200	17,96+0,04	-	17,98 <u>+</u> 0,03	18 ,9	18,4	19,22	I8,7
200-300	17,90+0,05	-	17,23+0,04	17,9	17,7	17,69	I7,9
300-400	8,48+0,03	-	8,064+0,022		-	9,43	9,I
0,0253	741,6	-	741,7	741,9	741,7	741,7	741,6

Calculated from the file.

×

Table 3. Values of the average neutron radiative capture cross-sections for 239 Pu in specific energy intervals.

Energy,	$\overline{\vec{G}}_{c} = \frac{1}{\Delta E} \int_{\Delta E} \vec{G}_{c}(E) dE$					
eV	Gwin, 1976 [3]	ENDF/B-IV	Kon'shin, 1982 /5/*	Present. work		
6-9	51,3	51,0	44,7	45,2		
9-12,6	75,3	75,8	67,0	74,7		
12,6-20	61,7	58,I	58,I	59,I		
20-24,7	37,4	32,0	30,8	30,6		
50-100	35,88	36,3	35,25	36,7		
100-200	15,70	17,I	15,02	16,3		
200-300	16,79	17,5	I4 ,4 8	I6,I		
300-400	9,83	-	8,54	9,5		
0,0253	271,3	270,2	271,3	271,3		

* Calculated from the file.

	$\overline{\alpha} = \overline{\overline{\alpha}}_c / \overline{\overline{\alpha}}_f$					
Energy, eV	Gwin, 1976 [3]	ENDF/B-IV [#]	Kon'shin 1982 _5/*	Present work		
6-9	0,85	0,83	0,73	0,76		
· 9-I2,6	0,55	0,54	0,49	0,54		
12,6-20	0,84	0,79	0,87	0,82		
20-24,7	0,78	0,67	0,70	0,66		
50-100	0,63	0,64	0,58	0,66		
100~200	0.87 <u>+</u> 0,0I5	0,93	0,78	0,87		
200-300	0,94 <u>+</u> 0,0I	0 ,99	0,82	0,90		
300-400	1,16+0,014	-	0,91	1,04		

Average vales of $\bar{\alpha} = \bar{6}_c / \bar{6}_f$ for ²³⁹Pu in specific energy intervals

* Calculated from file.

with the appropriate choice of Δ to reproduce by formulae (3) and (4) virtually all the observed characteristics of the energy dependence of $\sigma(E)$ and of $\sigma_{f}(E)$ right up to 500 eV [20].

Parameters of the elastic scattering and radiative capture cross-sections

The analysis of the total cross-section (3) for a particular spin identification of resonance enables us to find not only parameters G_k^T and H_k^T but also neutron widths Γ_{kn} (6). Using these values, we can directly construct two more cross-sections determined by the diagonal elements of the S^J-matrix (1). These are the neutron absorption cross-sections

$$\mathscr{E}_{\alpha}(E) = \mathfrak{K} \lambda^{2} \sum_{\mathfrak{I}} \mathcal{Q}_{\mathfrak{I}} \left[1 - |S_{nn}^{\mathfrak{I}}(E)|^{2} \right] =$$

$$\mathfrak{K} \lambda^{2} \mathcal{V} \overline{E} \sum_{\kappa} \left[\frac{G_{\kappa}^{\alpha}}{v_{\kappa}} \psi \left(\frac{\mu_{\kappa} - E}{v_{\kappa}}, \frac{v_{\kappa}}{\Delta} \right) - \frac{H_{\kappa}^{\alpha}}{v_{\kappa}} \chi \left(\frac{\mu_{\kappa} - E}{v_{\kappa}}, \frac{v_{\kappa}}{\Delta} \right) \right], \qquad (8)$$

where

$$G_{\kappa}^{a} - iH_{\kappa}^{a} = (G_{\kappa}^{\dagger} - iH_{\kappa}^{\dagger})exp(2i\varphi_{n}) - i(H_{\kappa}^{\dagger}G_{\kappa'}^{\dagger} - H_{\kappa'}^{\dagger}G_{\kappa'}^{\dagger}) - i(H_{\kappa}^{\dagger}G_{\kappa'}^{\dagger} - H_{\kappa'}^{\dagger}G_{\kappa'}^{\dagger})$$
(9)

and the elastic scattering cross-section

$$\tilde{G}_n(E) = \tilde{G}(E) - \tilde{G}_a(E) . \tag{10}$$

Using the found values of parameters G_k^T and H_k^T (see Table 1) for each possible value of spins J, we can find the absorption cross-section parameters G_k^a and H_k^a (9) and construct cross-sections $\sigma_a(E)$ (8) for Δ corresponding to the measurement results given in Ref.[3].

For neutron elastic scattering cross-section $\sigma_n(E)$ (10) there are virtually no direct experimental data on energy dependence in the resonance region, and we give only the calculated dependence $\sigma_n(E)$ for T = 300 K. Thus, $\sigma_a(E)$ and $\sigma_n(E)$ obtained from the total cross-section parameters contain all the characteristic features of the resonance structure in the region under consideration, the errors of reproduction of these features being of the same order as in the case of the total cross-sections measured with the best resolution [19].

It is obvious that, constructing the absorption cross-section and having reliable fission cross-sections $\sigma_{f}(E)$, we can also determine the resonance dependence of the radiative captive cross-section with the corresponding accuracy:

$$\mathcal{G}_{c}(E) = \mathcal{G}_{a}(E) - \mathcal{G}_{f}(E) = \mathfrak{K} \lambda^{2} \sqrt{E} \sum_{\kappa} \left[\frac{G_{\kappa}^{c}}{\nu_{\kappa}} \psi \left(\frac{\mu_{\kappa} - E}{\nu_{\kappa}}, \frac{\nu_{\kappa}}{\Delta} \right) - \frac{H_{\kappa}^{c}}{\nu_{\kappa}} \chi \left(\frac{\mu_{\kappa} - E}{\nu_{\kappa}}, \frac{\nu_{\kappa}}{\Delta} \right) \right]$$
(11)

with $G_k^c = G_k^a - G_K^F$, $H_k^c = H_k^a - H_k^F$ [22, 23]. The available experimental data [3] agree qualitatively with the results of our calculation of $G_c(E)$ (11). It is important that in this method of construction there are possibilities of correcting the total and fission cross-section parameters (see Table 1) and of more reliably determining the resonance spins. The most interesting are the regions near some interference minima, where the use of not sufficiently accurate total and fission cross-section data may lead to a discrepancy of results for our scheme (11). This can serve as an indication of the nature of errors in experimental data.

Comparison with integral data

The fission cross-section resonance parameters given in Table 1 were normalized to the last evaluation of σ_f = 748.1 b for 0.0253 eV

 $(\sigma_c = 269.3 \text{ b})$ [24]. The group-averaged fission and neutron-radiative-capture cross-sections and $\vec{a} = \vec{\sigma}_c / \vec{\sigma}_f$ were compared with the available experimental data [3, 7-9] and contemporary evaluations (Tables 2-4). Here the normalization of the fission cross-section was taken to be the same as in Ref.[3].

From a detailed and consistent analysis of the whole set of 239 Pu resonance cross-sections in the proposed multi-level parametrization scheme we can draw specific conclusions regarding the degree of accuracy and consistency of the available experimental data. The differences from experiment and also the possible inconsistency of the different experiments obviously point to the need for further studies on the cross-sections both in direct measurements and in measurements of transmissions and self-indication cross-sections for relatively thick samples [25]. By refining these data with broadening of the range of the target thicknesses used it will be possible to make a further correction of the resonance parameters (mainly H_k^F and H_k^T) sensitive to the minima in the cross-sections.

A unified approach to the description of all cross-sections in the resolved region involving the direct use of the property of unitarity of the S^{J} -matrix (1) gives a useful interrelationship between the parameters of the different cross-sections, which can be used ultimately to solve the problem of unambiguous description of the resonance cross-sections. The scheme can be applied to other fissionable nuclei with specific resonance spins.

REFERENCES

- [5] ANTSIPOV, G.V., KON'SHIN, V.A., SUKHOVITSKIJ, E.Sh., et al., Nuclear Data for Plutonium Isotopes, Nauka i Tekhnika, Minsk (1982) 168 (in Russian).
- [6] ABAGYAN, L.P., BAZAZYANTS, N.O., NILOLAEV, M.N., TSIBULYA, A.M., Group Constants for Calculation of Reactors and Protection, Ehnergoizdat, Moscow (1981) (in Russian).
- [10] LUK'YANOV, A.A., Neutron Cross-section Structure, Atomizdat, Moscow (1978) (in Russian).
- [13] KIRPICHNIKOV, I.V., IGNAT'EV, K.G., SUKHORUCHKIN, S.I., "Interference effects in fission cross-sections", At. Ehnerg. <u>16</u> 3 (1964) 211-218.
- [18] TOSHKOV, S., Multi-level Analysis of the ²³⁹Pu Fission Crosssection. Author's abstract of the thesis for the degree of Candidate of Physical Sciences, Sofia (1980) (in Russian).

- [20] KOLESOV, V.V., LUK'YANOV, A.A., The Parameters of Multi-level Analysis of ²³⁹Pu Cross-sections in the Resonance Region. Report FEhI-1404, Obninsk (1983) (in Russian).
- [21] KOLESOV, V.V., "A program for multi-level analysis of resonance cross-sections" in: Problems of Atomic Science and Technology. Ser. Nuclear Constants No. 3(38) (1980) 17-20 (in Russian).
- [22] KOLESOV, V.V., LUK'YANOV, A.A., "The ²³⁹ Pu neutron absorption cross-section in resonance region", At. Ehnerg. <u>58</u> 3 (1985) 197-198.