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$ 1. INTRODUCTION

In I1.2J G.W.Harrison analyzed the mathematical model for a predator-prey

system with severa l parameters:

X = a ( X ) - f U ) g ( Y )

Y = f (X) s (Y) -c (Y) ( I )

where X ( t ) , Y( t ) are the prey and predator dens i t i e s , r e s p e c t i v e l y , and

a(X)

f(X) = j£

c ( Y ) = rY*£if*

The function a(X) i n d i c a t e s the growth rate of the prey in tne absence of the

predaLor. c(Y) i n d i c a t e s the growth ( or decreased) r a t e of the p r e d a t o r , o > 0

can be used to model predator. in t r a s p e d fie competit ion that i s not d irect

competit ion for food, such as some type of t e r n t o r i l i t y . The product f(X)g(Y)

Lfjver. the rate at which prey i s consumed. f(XJ^(YV^Y was termed the functional

response by Solomon (_ 3 } . If B =0, R(Y) reduces to the t r a d i t i o n a l form g(Y)=Y,

and i n d i c a t e s that the prey consumed ia proportional to the number of predators ,

but there i s evidence that there i s mutual in ter ference amonif predators searching

Tor food . r e s u l t i n g in decrataeri consumption per predator «s predator dens i ty

i n c r e a s e s . The product f(X)g(lf) i n d i c a t e s the numerical response of the predator

populat ion . The de ta i l ed e x p l i c a t i o n of (2) i s given i n ( . l j .

The system ( I ) i s investigated by many authors (1 ,2 , 4). Because nine parameters are

involved in ( I ) , many papers have only analyzed the existence and s t a b i l i t y of

equi l ibr ia , but did shov the qual i tat ive behaviour of solut ions to system ( I ) as the

parameters varied. In the present paper, th i s analysis i s continued and deepened.

We are mainly interested in establ ishing results on bifurcation of equi l ibr ia , Hopf

bifurcation, and global bifurcation occurring saddle connection, and global existence

and non-existence of limit cycles, and changes of the topological structure of

trajectory to system CD as parametes are varied.

All the results obtained in this paper are established in the domain

D * [ ( X , Y ) | X»O.Y*oJ, and D=t<X ,Y )( X>O,Y>oJ.
Let 'is sketch the contents of the paper. By rescall ing, me f irst reduce the

number of parameters from nine to seven. In^2 *e describe In detail the location

of the equilibria as function of the parameters, and bifurcation of equil ibria,

Hopf bifurcation, global bifurcation occurring saddle connection, and give the
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conditions for the nonexistence of limit cycle. Also, for some different parameter

sets, the corresponding equilibria are shown to be globally attractive. Some

specific cases (6=0,0 \0! or 8*0. 0=°) "ill be pointed out in^J. The results and

methods of the proof are similar to that of $2. But, at more simple conditions

of the parameters we can obtain more results: for a wide range of parameters the

existence and nonexistence of limit cycle are proved. In J 1), we discuss the

biological explanation for the mathematical results.

The calculations of the proofs for the results are lengthy but straightforward,

because more parameters are involved. So, we give only the main results and

expressions.

^.QUALITATIVE ANALYSIS TO SYSTEM (I)(ALL THE PARAMETERS ARE INVOLVED)

We firet reduce the number of parameters, by rescaling "t=Jt, Y = pY , X = X.

by further setting w =-yx- , % =*.." • °i - » • r ~~~r~ • " e transform system(I)

into(7,17,T are written by X.Y.t)

w.Y
x =

X = X{

\ A"*"—/ \ J. T I )

k-x wjr

xft[o.«J

k-* IX+JMI + Y)

Y = S, • ( ^ A ' I t t | -r, -Y>

The isocline X=0 consists of strictly increasing curve h,, (i = i

0£X*<) and s t r i c t l y decreasing curve h (Y= —-1-

Y=0 i s s t r i c t l y increas ing curve h, (Y=P(X)). Here the parameters s a t i s f y the

i n e q u a l i t i e s :

k-*>0. <rt-t -r,>0, w(-(«;.y»0

The equilibria of system (}) are (0,0), (k.O) and the intersection points of the

curves h^ , h u with the curve h((see Fig I).

Leanta I. If k j f ^ ' * r , the system (}) has only the equilibria (0,O)(is a saddle

point) and (k,0)(is a sink), and (k,0) is globally attractive in the domain D.

I f k* q'w'"-r" ' t h e e1ui:Libfia (0,0) and (k,0) are the saddle points.

Proof, for k < — - 5 - 1 — , it is easy to show that (0,0) is a saddle, (k.O) is

a sink from the eigenvalues of the linearized system (3) at the equilibrium (k,0).

Now, let k= — -'-\y , the eigenvalues are X,( = - ^ - < 0 , X^^O. Jc can prove that

(k.O) is a stable node. In fact, rescaling t = (X««J)( I • 1 )(K-«O t', Xri-k, 7^Y , the

syeteoi (3) becomes (X->X, Y-* Y )

)Y* - ^f ) (*

We study the s t a b i l i t y of the t r i v i a l s o l u t i o n of CO by the centre manifold

treoren(see (5|or[6|. Tterefore, we can prove that the system CO has a centre manifold

rW| ^k~* t^ t o j f 1 ) , The flow on the centre manifold i s governed by theX=h<Y)=

equation

Y= -
k<o

{

So we get that the equi l ibrium (k ,0 ) of system (3) i s a s table node.

Now we cons ider the compact rec tangle D( =^0 ,a l x [ , 0 .n] p u t

c r - . - r , ] , choose a>k, then get Y | Y = () < 0 , X^ a < 0 fVY>0), x | t Q < n ( V Y > 0 ) , and

the Y = 0 i s the in tegra l l i n e . So D, i s p o s i t i v e l y invar iant . The p o s i t i v e trajectory

C s t a r t i n g a t t = t, goes in to D, for a l l t>i , . The e q u i l i b r i a are only saddle

point ( 0 , 0 ) and s t a b l e node (k.O) in D, . By the Poincare theorem (see [6] ) the

c losed o r b i t s around ( 0 , 0 ) and ( k , 0 ) cannot e x i s t , and a l s o the c losed o r b i t s

around (k.O) camot e x i s t because the l i n e Y=0 i s the in tegra l l i n e , hence ( 0 , 0 ) ^

J L ( C ) , ( k , O ) t J l . ( C ) , m o r e o v e r , H ( C ) = t ( k , O ) ] .

This l.emma I means that for k ̂  — r' 1— thp predator population wi l l u l t imate ly

die out , so a long-term i n t e r r e l a t i o n between predator and prey in impossible.

Therefore, from now on, the parameters i n ( } ) are assumed to sa t i s fy K> ' _'

f i r s t . It i s easy to get the fol lowing Lemma Z from the monotone of the curves
n n * ̂ it a n d h ^ >

Lemma 2. (I* ) If^g. r'**— then there exists jnly the intersection point E(a

focus-node) of the curve h(l with hj (Xt ̂ O,e(J).(the F. and (k.O) lie on the curve

and ti <p(cC), then there exists only the(2*) If«l>—?£— and ti__<p(cC), then there exists only the

intersection E of the curve h,t with ha , or exist two intersection points ^ Hnd

{}') lUf -'~ and — ,**J. >P(*) , then there exist two intersec-

tion points £ . (1*1 ,2 ,3 ) ' , and E( and E t l i e on the region CXX;«(, Ej lies on the

region X> .̂ See Fig I.

Remark. It is simple for the analysis of stabi l i ty of the equilibria in Lemma k

(1 ) , (2 ), then i t is omitted here.

Jn this paper we investigate thp existence of Hopf ant) global bifurcation

and other trajectory behaviours under the conditions:

-3-



It i s assumed that intersection points of curve hM witti h t satisfy the
equations

and

X = I i £ L l 2 2 = f , ( Y ) . (M
Any so lut ion X, YfclR of (7) and (£) corresponds to one n o n t r i v i a l e q u i l i b r i u m

of ( J ) and v ice versa . Thus , the s e t

M= [<!;,«;,w(,*,<,X,Y)j r+yy-<r«1<.O.O<X<<»,tK)f<--V^ . (6 )and ( 7 )and (8 ) are s a t i s f i e d

( 9 )

describes in a one-to-one way the nontrivial equilibria in their dependence on

parameters. The number of positive real solutions of (7) is determined (by the

sign of the discriminant A of $.=0,

The equation (7) has three simple real roots (positive real root Y,, Y.ftM,
negative real root Ŷ M) i fA<0 and r(+«; J-^w^O, one negative reel root ŶM and two
complex roots ŶM i fA>0 and r^^-ofw^O, and at most two of real roots are different
and only positive real root Y CM I f A = 0 and r»̂ <f-<rw<0.

T h e i n t e r s e c t i o n p o i n t i s u n i q u e i f t h e c u r v e h u i n t e r s e c t s w i t h h t .

?. Kor kX> ma x [ -ZIL_ , ! ^ i ) , • ' * . > p<«) and r*oj<f-<rw < (), then

''1 ) . If&<U, the system {}) Ims three equilibria in the domain [J:

^

Lemma

K/X,ilf,)"« i» « focus-node, E ^ ^ e H i s a saddle, F̂( V V ^ V ^ h , . is a
<Xj<t and the occurrence of Hopf bifurcation i s impossible).

(2*). If A=0, the systea (}) has t»o equilibria in D: Ej^Y^tM =[( r.«;,
», ^ .X.Y^tMJA^O, *Y=oJ i s a saddle-node with a stable node region and a saddle
region i f 5(< —̂ Sr ; snfl with a unstable node region and with a saddle region i f

^ Y j J f i h . ^ n h ^ i s a s i n k .

Ci*), l fA>0 , the system ( l ) has only one equilibrium Î ( \,\i t h
in D which i s a sink. The bifurcation sctA=O is a saddle-node bi furcation for Xi[_0 ,«

lJroof. (I ),'.Ve linearise system (5), at the equilibrium R, , then £et the
chanicteristic equation

• here the c o e f f i c i e n t s Pj ,Qj are given by

i__n.
(x, *j)»

0

The fixed point E^ is a sink obviously, and the occurrence of Hopf bifurcation

forms the change of the stability at equilibrium E, is impossible because

P, < 0 for any parameters.

The equilibria 1̂ , E^ , Ej lie on the isocline h , by the Poincare theorem

Ejis a saddle, E(is a focus-node.

We linearize system (3) at E( and F^ , the coefficients P, ,(*, ; p v i<*t of the

characteristic equations are

XL J" Y (2Y *r,*I )

V V y ITT ,
1=1 , 2 . ( U )

<•<. = •

(2 ) . Ve l i n e a r i z e system (5) . at ht , p;et < (̂Y, )=0 and thn eigenvalues X^O

^ndX,^t) , then the codimension one b i f u r c a t i o n of e q u i l i b r i a occur. So EftfcM# =

(r^OJ.^.w, ,X,Y)tM.A=O. 5 ( Y . ) = 0 , « (Y . ) = oJ. Now we have to i n v e s t i g a t e the

belaviour of the flow in the neighbourhood of E # . Applying the transformation:

r(tlM -^rfY""? , U = Y, one

transforms the system (3) into the following from:

(Y.-I)-f ^ 3(I«Y.)X. nX, (Tw. -(r, •V = UV
Y (X t )(2Y t r » I ) i M )

(X,

-5-
-6-



By centre manifold theory, after a lengthy but straightforward calculation

we net that the system (13) has a centre manifold

~Y» ( I*YQ ) * J - , ( V * 1

The flow on the centre Manifold i s governed by the eqmtion

V* J[(h( V)VtJh l ( V) * JuV**o( V* )= LV* »ol V* )
Therefore, we eoae to a conclusion oT part(2 JtEj i s a s ink obviously).

We e a s i l y obtain the proof of the p a r t O ) •

For later use ( to determine the e x i s t e n c e of Hopf b i furcat ion and horaoclinic

o r b i t ) we give the fo l lowing Lemma.

Lemma»<. For S", >Stx the equi l ibrium E,fcM i s a s t a b l e node. For 0<f,< <J",, the

E, i s an unstable node. For J,,< J, < Stl the E, i s a focus or c e n t r e .

Proof. Applying the transformation: t=(X*^)(I*Y) t ' , X=X, *X~, T=Y, +Y, the

r.ystem (3) becames as (the new v a r i a b l e s X ,Y here are wri t ten as X,Y)
B

X - X . U + T, )X- — —
I*Tfi

XY«(I*Y,
Y,

ft-fr, - ( r . Y , M I + 2 Y , ) - Y , I X¥

<f)Yi -J.XY3 (U)

T h e e i g e n v a l u e s X o f t h e c o r r e s p o n d i n g e q u i l i b r i u m ( 0 , 0 ) o f t h e s y s t e m ( 1 3 ) a r e

k , - 5 «, x, ( " " i f - Y ^ Y , • r , * 1 ) ) > °
Let

f ( 5", ) = P , t - ' » Q , = S, Y J " ( X ( • J J * ' l 2 Y , + r , * I ) *$, ( 2 X , Y , { 1 * 1 , ) ( * , -

- i . 0 ; w<fx, ) t x l ( i * i . J *=o

r x
S o l v e t h e e q u a t i o n < 1 5 ) , w» c a n show t h a t t h e r e e x i s t two v a l u e s °i> and " n

s u r h t h a t f ( ^,J = f ( S t j i O . T h e r e f o r e , f o r 0 < J 1 < 5 ' , ( a n d St>4t^i f ( « ( » O , t h e

e q u i l i b r i u m K, i s a n o d e ; for $„<$, <Stl, f t ^ X O . t h e E, i s e c e n t r e o r f o c u s .

As i s wall knowifor ^ t > 5 , K i s a s i n k ; l o r S , < j " e K( in a s u n n : " . '.•<> »<• o b t a i u Lrn'

c o n c l u s i o n o f Lffmnia't,

Theorem 1 . ( 1 * ) . In c a s e ° t ^ - * " , f > - r ' ' th ' 1 . s y s t e m ( 'i) nm. no c l o : . « - l n r t i i t

(Z ) . In e a s e q(fr ~ ' t h e s y s t e m ( J ) h a s nn c l o s p ' l tirbLt. uroui i ' l

in D.

t h e s i n k t .

f . T » k e D u l a c ' s f u n c t i o n B ( X . Y ) = (XY)"' . f rom ( } ) we ^ t by a s h o r t

c a l c u l a t i o n

Let.

L (1 .Y)(Xt^)* (x.*)U*7)* J ( I D )

«, x-, . U j H * * J < w , x- S / x . * ) 1 f ( x )

It follows that for •t-'<31f<0, f(Xk,O. Therefore, div' < 0.

Rescaling t = (k-«O(I + Y)<*•»)t', we transform system ^J ) into
• b

J-«( (k-*)XY

( 1 7 )

Take Du lac ' s f u n c t i o n B(X .1 J = <XY ) " * . f-rom ( 1 7 ) w e o b t a i n by a s h o r t c a l c u l a t i o n

• » ( » ! ) < 0 . ( I f i l

Krom (16) and (IB) we obtain that for J,> - £ - the system (}) has no closed orbit

in D. from (18) we get that the system (3) has no closed orbit around E..

Theorem 2. If the parameters s a t i s f y : r-<T<p>0, w -Y>0, k><>naxf r'*t IlllLl
' 1 ' I ' i»vn 2 J '

w, -{^I«l * P('*> a n d A<0. By further assuoiini!; that the system (3) has no closed

orbit around the node E, . Then

(I ). There exists a Hopf bifurcation value 5B:

c x. (i*r, ) , <•
°t~~—(x +t»)(̂ Y—+ r«I ) (respect to the central parameter o, )

such that for 5, < 5 . suf f i c i ent ly close to So , tnere ex is ts a small osc i l latory

attract inK(subcrit ical) Hopf limit cycle around E, . Moreover, J,, < $a < J ,

Se*^s- - Here E, i s a sink forS",<j". , and K, i s a source torS,>S0 .

(2 ) . There e x i s t s a global saddle connection bifurcation value§* such that

for d", = J* saddle loop LQC L/E^ )f\ L* (E^ ) occurs.

(5 ) . There ex i s t s a value

.-ind lor 5, < S° • the saddle loop L Q is u unstable; and for 5, >$* , the L is a

stable. Further, if r.-o, > 0, w,- > 0, then A 0 < *„.

(4°). a°<«*<V °
(5 ). From (I -i, ) we conclude that for 4,>*i the topological structure

of the trajectory is illustrated in Fig.l; for 4j<«0 sufficiently closed to 6

there^exists a small oscillatory attracting Hopf limit cycle; as i. decreases

to f, the unstable manifold L^ and stable manifold L, form a loop

L0 Li ( E2' L4^ E2' aitd t h e hfopf limit cylce disappears (is "swallowed" by L Q);

as 4j exceeds 6 the loop Lo breaks up. The topological structures of the

trajectory are illustrated in Figs.1-4 as S, is varied.

-7-
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Proof. (I*). From (ID we set P, =0, we readily find that S, and P(y

(13) we calculate tJ, (the formula is derived oy Andornov, see ['ij).

)<0. For

- . . X . N r , , - r , - 3 i f - 2 Y , ( r ^

- 2 r , • , < $ * X , * , ( I + Y,

w ^ r * * , )(!•!, )(X,{T,-n-J)*2x)-(I*y, f (X^Y, - D ^ / v ,

3«-.«. T<C"S, (UY, f - J ^ - Y ' . ' x . H -2X,»d.Y, * ^ . . ^ .Cr .Y . )(I,Y,

Now, we have to investigate the sign of «j or equivalently. If ot.^O, then the

following two cases can occur. Case I. *f< 0, In this case for Kt<S. sufficiently

close to S #, there exists an attractive (subcritical) Hopf limit cycle. Case 2. <*,>

In this case for 3(>£, sufficiently close to J^there exists a repelling

(supercritical) Hopf limit cycle.

To calculate analytically the zero set of *t seems rather difficult, since
a3 is a function of the independent parameters^, wt , a., r , J" , while (X ,Y )eM

*e can, however, prove that the only possible case is *{<0 from the conclusion of

the following (2*) and <J #).

(2 ). Let us firat establish some properties of the unstable manifold C d ^ )

and stable manifold L4,(E,). The changes of the vector fields are indicated (Kig j)

in D. The variable is X2 and Yj instead of X, and Yj in (13), then we obtain (13V. The

equation, characterizing directions of the manifold for the saddle point Lt ,

lias the form from (13)'

«•«• <; Y, ) =0 ( 1 9 )

The two roots 3, and S^ of (19) are positive; it follows that the segments of

(he manifold near Et lie in subreglons I - 6 <see Kig I ) . Taking into

consideration the direction of the field of the systea (}), the configuration of

the manifold li{i=il2,3,^,
 n e a r E2 ca" be represented as follows:

Choose Ya= and k, then get i'y = y < 0, Y ^ y « 0 and < 0.

We
' m n jn

consider the compact region D̂  = [U.Y)|x*0, Y=0, X = X , Y = Y ], X=O and Y=0

are the integral lines. The trajectory goes into Dt eventually as t-» •«».

The manirold L^ goes to Ej as t->»o, . Because E 4 is a sink snd has no closed

orbit around E, (see Theorem 1(2*)) . The manifold L? goes to infinite or crosses

the subregion 6, and goes to infinite as t -» -«. The manifolds Lj and L,
merge into a loop which is impossible, because there is no closed orbit arount E,,

The bahaviour of the manifolds L, and L̂  i s changing as the parameter St i s
varied. For 0<S. <51 E, i s ai unstable node ani assume that there is no closed
orbit around E, , in this case L, goes to Et as t-» - 00 j L̂  crosses the isoclines
h1( and ht , crosses the subregion 6 again, goes to Ej finally as t —> • Co ,
and L^ l i e s outside L, (see Fig 't). for J, j J l t , E, i s a stable node , and assume
that there i s no closed orbit around E, , In this case L̂  goes to E( as t -> •Co .
and L, crosses the isocl ines hfc , h,, , does to infinite finally as t -> -00.
and L, l i e s outside L. {sew Fig I ) . By the continuity of the solution with respect
to the parameter S, , we conclude that there exists a value 0* such that the
nanifolds L, and L̂  merge into a loop LQC L* (E t) A

 LV^*' • ( s e e F1* 5 ) > M o r e o v e r <

(}*) . Let us consider the "saddle quantity"
V(Xl,YJ)=Xjl*Yt )-J(Y1(Xl»«f)(2Yli*r.*I)

S e t V(Xx,Yl)=O, g . t ( ' ' V ^ X ^ H ^ ' y n . r o r 5 , < r the saddle loop Lo is

unstable, and Tor ?, >5* the saddle loop LQ is stable. We can prove S. >& . In
f a c t . S . f e N , . [ ( r , , - ; , • , , ^ , X . Y ) | ( X , ,Y, * [ {

(X. ,Y. ) tH , HkO, < i , * 0 ] . so r l ,

P,=0, t ,> N^ = [< r , T, ,W, , f.X ,Y

(2Y,

.here
Let us try to establish the relation between O and d, • * e study the function

F(Yl = Y *Y(I»f.q; w, ) ^ _ (20)

we obta in
. [- ( r /1 )-2 «j (w, -V] Y1 - ( 2 1 )

Therefore, for «, -^>0 and f> O, F(Y)<0(TY>0). Because Y«Yt . i t turns out that
F(Yt X K(Y, ) . Thus w« have fi° < «Q.

(4°). If V>0, than LQ is unstable, we thus have 6*<4n- At Sj"**, the point
(X,,Y2) is stable, and there is no closed orbit in the saddle loop LQ. The case is
impossible. If V<0, then Lfl is stable, the following arrangement is possible: 4 >6Q
or «°<«*<A0. If 4S><S0, at 6^4*, the point (XJ.YJ) is an unstable focus, and LQ

is stable; there is no closed orbit in the saddle loop hn. This case also is
impossible. Therefore, we A <fi*<4

(5°). Finally, ve obtain (5) by ( l ) - (4

This completes the proof of Theorem 2.

'0'
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I;.). ii AiJ/.L.'UIJ TO jJYiiTifiiJ ( • • u r i . . ; ;

Caiif ( I ) . jivO, «.'='.'.

Jif I^IU, «T =0, II (> .•.,:.; Loin( I ) jn cocao into

-t- ) Alln [I, —J - J ^ J ^ — p

[ore tlie parameter:; [;ati.;!'j the i n e q u a l i t i e s :

(2/1

Tr-c u L ; u i l i b r j u of :;j-utum (^2) a r c ( 0 , 0 ) , (k. ,0) and U e i n t e r s e c t i o n p o i n t s oi t i n cu rves

. | t h ^ w i t l . tJiU curvt; } .

^ For uyattim ( i !2) , bj> iu;ing a n o l o p j u s methods t o § 2 , wt can (;et U.u f o l l o w i n g r e s u l t s

M.icli a r c s i m i l a r t o t h a t ;> i ' ^2 ,

( I ) II" ^ - s - - ^ - , tt:i; :;;/ntiim ( ^2 ) has o n l ^ t h e e f j u i i i b r i a ( 0 , 0 ) ( i ^ & u a d i i l u - p o i n t ) and

k,O) i s ^ lu l jaLl j a t t ra i . - lLvo Ln U,

Tlie p r o o f of ( I ) i s s i m i l a r t o Lemma I . The r e s u l t ( I ) means t h e t f o r p * O ,

S = O i f k j - J - l — , then t h e p r e d a t o r y p o p u l a t i o n w i l l u l t i m a t e l y d i e o u t .

( I I ) . If k>-IiS-, and (2}) i s sat i s f ied , then
* r

(I ). I f il< ' 1 , there exists only the intersection point E of the curve

), E is a focus-node.

( 2 * ) . I f < * > — £

h l t with h u

, " r , • »,-<••<[)
, there exists only the intersection V, of

, there exist two intersection points E, (saddle(5-). i f O ; - ^ - * * *

point) and Et ( focus-node)

(<t ). If *>--ffi . -L t»l ^ l>*'t^' ttlere e l c i 5 t a t m o s t three intersection points

Kj ( i s l , 2 , } ) , and E, and Ej lie on the region 0<Xt«l, Kj l i e s on the region X >« .

( I I I ) . The intersect ion points of curve h,, with h t sat isfy the equations

The i n t e r s e c t i o n p o i n t s ( X i ,Y )fc H, - [ ( «, , r ( , * ,X ,Y ) |

1 i,(», .r^.X^.O, V^f^X-jJ.

The s e t

f o r

s t ^ ^ - " , ) - ' •r ,^ =0 i s a saddle-node bif urea tion( codimension one)

]
(I*). I fA,> 0 , t h i s system (22) has t h r e e e q u i l i b r i a in D: E, (X( ,¥, ) t K ( i s

a focus-node ) , (X t ,Yt ) t M ( i s a s add l e p o i n t ) , (» ,Y, ) t h , A h , ( i s a s i n k , and
R-f * * *R-f

) * " ' m o l " e o v e r , t h e o c c u r r e n c e of Hopf b i f u r c a t i o n i s i m p o s s i b l e a t (X, ,Y, ) .

- 1 1 -

(2*). If A, = O, the system ii2) has t«o equilibria in D: (X. ,Y. ) i s a saddle-
n o d e ( X = ,0 ) , sink.

(} >. If A,<O, then the sjrstem (<V) lias only one equil iDnum ELfe.h / In, in I)

"Inch in a s ink .

! 5t ». Ve have
( I * ) . If <*.£i£ andCT;

o(2 ). If
'?

then the system (^^) has no closed orbit in D.

, then the system (2?) has no closed orbit arouni t . In fact

setting Dulac's function B(X ,f) = ( (X*<j)XY)"' . Yroa (??) we ffet by a short

calculation

) =[(x.T»xJ , ; * V < o , ( ^ > A - ,
a T t T

ii.V settinp; Dulac's function B(X,Y) = (XY)"', from

. T h i s i s s i m i l a r t o t h e c o n c l u s i o n s of Tnefirem ?. , i . e . t h e r f i s a Hopf

sa t d l p rr>n n**c t i nn b i f u r c a t i o n v a l u e

Yi

b l f u r c j i Mori va lue O^ =• I \J)C " n '

<̂  = <r"<<i; . moreover, <r* < (T*<(r., where <r* = "> *i \ k . For«i<0; suf f ic ient ly cloee

to <̂  there exists a small oscillatory a 11 r&c t in^( subcritical) Hopf limit saddle

around E, . As ^decreases to<T*, the limit cycle disappears and the saddle loop

occurs. As 0", decreases continuously, the saddle loop disappears. The topologic

structures of the trajectory are similar to Figs, I- << as the parameter^ is variable

Case ( I I ) . p = 0 , J *0 .

By r e s c a l i n g : « ; = . , r ( = | , t h e s y s t e m ( t ) becomes i n t o

For the system (26) , by using analogous methods to $ 2 , we can net the following

r e s u l t s which are s i m i l a r to tha t of $ 2 .

( I ) . If k t ^ - L t _ _ , the system (26) has only the equi l ib r iB(0 .0><is a saddle

po in t ) and ( k , 0 ) ( i s a s i n k ) , moreover, (k ,0 ) i s S l o b a l l y a t t r a c t i v e in D.
( I I ) " U k>o;w-7^ ' t h e n t h e system (26) has three e q u i l i b r i a <X .Y >* *̂  =

( X , . Y , h ^ in D.
-12-



t = ( ITw-r, ^ f =0 is a saddle-node bifurcation(codimension one)rhe set ^
for Xfc(p, -tj .

( I ) . H A t > 0 , t h e s y s t e m ( 3 6 ) h a s t h r e e e q u i l i b r i a in I): f o c u s - n o d e t (X t ,
v

*s Hj , s a d d l e p o i n t E t ( X t ,Y, ) * Hj , s i n k E ( X, ,Y, ) * h | 4 rth t .

( 3 ° ) . I f A ^ O . E . ( X . , Y j ) t H j ( s a d d l e - n a d e ) , E j t h . ^ h , , ( s i n k ) .

(3 ) . I f A i < 0 , E | t h , , A h , ( s i n k ) .

( I I I ) . I f i

(1*), Forctj —^and 0> xja « then the system (26) has no closed orbit in D.

o k-f
(2 ). Forotj—~ , then the system (<?6) has no closed orbit around L .

(.TZ ). I f 4 l > 0 , for the system (26) there exists a Hopf bifurcation value

o =>v • "•--1, and a global saddle connection bifurcation value O < dc • moreover,

S*<5*<J»' where 5 -ri, • u • Ford<5» sufficiently close to dB there exists

a small oscillatory attracting Hopf limit cycle around R, . As the parameter^ is

varied, the limit cycle occurs and disappears, and the saddle toop occurs and

diaappears-the changes can be seen in Figs. I-*4 alao.

Case (III). ^=0. S=0.

For 0=5=0, the system (I) c«n be written as (I) • If k< ~^$- , then (1)
\ o ^w-r o

has only a saddle point (0,0) and a global attracting equilibria (k,0) in D.

Ir k^^T^ , the (I)Q has an equilibrium (X, ,Y. ) except the saddle point (0,0)

and (k,0) in D, moreover, for 0<-£&-$*. , the equilibrium (X..Y.) is a source,

a n d f o r ia

For the system (I) o we get the following srlobal results.

the system (I) has at least one limit (k,0)
o

Theorem }. (l" ). For 0 < — ^ - j .
Tw-r

cycle in D.

(2 ). For ^ g 7 r ><t > the system (I ̂  has no closed orbit in D. Moreover,

is a global attractive in D.

Proof. (I*). The line X=k ie a line without contact, in fact, X
X = Jt

O ( V Y > O ) J again, we consider the line hs«"X»Y-A , a

-wkY

nd

(28)

We well know that (27) and (28) are always negative. So the line h=0 is a line

without contact for Xt(3(kj. The outer boundary of the annular region ofPoincare

Bendixson is formed by the lines h=0, X = k and X=Y=O in D. The equilibrium (XQ.YQ)

is a source. Therefore, we know that the system (I) n a s a t least one limit

cycle in D.

(2 ). For **—-1j;< k, the equilibria lie in always the region X>o< .

by rescaling t = ( X+<*) (k-<) f , the system (1) becomes into
* ' o

Y=irw(k-«.)XY-r(k-*)(Xty)Y

Taking Dulac's function B(X,Y)=(XY)

(if 9)

then we

If this is a closed orbit, then the closed orbit crosses the line X» ' for

two time. But this is Y<0 at the life region of vertical line. So existence of

closed orbit in U is impossible. Therefore we get lhat (X,,Y,) is unique *-

limit set in D.

The detailed proofs of the systems (22) and (25) are given in [7, 8|.

we will study the codinension two bifurcation in a separate paper.

»>. BIOLOGICAL EXPLANATION.

The biological implications for these two different classes of equilibrium

(the equilibrium on the Y-axis and in D) and the limit cycle and the saddle loop

are quite different, which indicate different results of the interaction of a

predator-prey oysteu. (We call the equilibrium on the Y-axis as the extinct

equilibrium, call the equilibrium in D as the compromise equilibrium).

(I). If the trajectories tend to extinct equilibrium (k,O) as t —% 'to, then

this means that the predator population will ultimately tend to extinction, and

prey population with different initiative condition will ultimately ?et to the

balance's density k.

(II). If the trajectories tenH to two stable equilibria (X, ,Y, ) and (XJ.YJ )

as t —>*(o, then this means that the predator-prey interactions will ultimately

tend to the balance's behaviour. Moreover, the trajectories with different

initiative condition will ultimately tend to different equilibrium! and the

predator population coexist with prey population at different equilibrium where

production of prey equals consumption of prey and hence the system (1) regulation

are the more likely to make two of the equilibria stable.

(III). If there will be three equilibria, then it means that for some prey

density X constant predator consumption exceeds production, but for some large

prey density X production exceeds consumption because production has increased,

but predator intraspecific competition keeps consumption in check.

-14-
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(IV). If the stable limit cycle around the equilibrium (X, ,V, ) arises , then

this indicates that the predator coexists with prey at another balance's behaviour

(V). If the Hopf bifurcation and global saddle connection bifurcation arise as

the central parameter i s varied, then these biological interpretations Tor the

procedure are similar to the case stated above, but the variant procedures of

the biological phenomenons are very complex and interesting.
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