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ABSTRACT

A predator-prey system, depending on several parameters, is
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31, INTRODUCTION
In {1.2] G.W.Harrison analyzed the mathematical model for a predator-prey
system with several parameters: '
X = a(X}-TX)g(Y)
Y= r(0gltr-c(y) {1

where X{t), Y{t) are the prey and predator densities, respectively, and
a{x) =§ Kmin[l. k-X
k=a | § >0, k20, u30.

w X

g s mo.gro.

g(Y) = —m (2)
> Tfﬁv ; p;o.

it

(1) = ried 5 Y20, §20.

The function a(XJ} indicates the growth rate of the prey in the absence of the
predator. c(Y) indicates the growth ( or decreased) rate of the predator.é->0

can be used to model predator.intraspecific competition that is not direct
competition for food, such as some type of territorility. The product [(X)g(Y)
vives the rate at which prey is consumed. f(xlq(ﬂ}/ Y was termed the functiomal
response by Solom?n[ )] . If P =0, g(Y) reduces to the traditional form g(Yl)=Y,
und indicates that the prey consumed is proportional to the number of predatoers,
but there is evidence that there is mutual interference amon# predators searching
for food,resulting in decreased consumption per predator as predator density
increases. The product f{X)g(¥) indicates the numerical response of the predator

pepulation. The detsiled explication of (2) is given in LI].

The system (1) is investigated by many authors (1, 2, 4}. Because nine parameters are
involved in (1), many papers have only analyzed the existence and stability of
equilibria, but did show the qualitative behaviocur of solutions to system (I} as the
parameters varied. In the present paper, this analysis is continued and deepened,
We are mainly interested in establishing results on bifurcation of equilibria, Hopf
bifurcation, and global bifurcation occurting saddle connection, and global existence
and non-existence of limit cycles, and changes of the topological structure of

trajectory to system (I) as parametes are varied.

All the results obtained in this paper are established in the domain
ﬁ=[_(x.v)| x;o.v;o]. and D=[(x.v)|x>o.v>o].

Let us sketch the contents of the paper. By rescalling, we first reduce the
number of parameters from nine to seven. h1§2 we describe in detail the location
of the equilibria as function of the parameters, and bifurcation of equilibria,

Hopf bifurcation, global bifurcation occurring saddle connection, and give the
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conditions for the nonexistence of limit cycle. Also, for some different parameter
sets, the corresponding equilibria are shown to be globally attractive. Some
specific cases (F:O.E %0t or pto. 5:0] will be pointed out in§3. The results and
methods of the proof are similar to that of§2. But., at more simple conditions
of the parameters we can obtain more results: for a wide range of parameters the
existence and nonexiatence of limit cycle are proved. Iné‘i. we discuss the
biological explanation for the mathematical results.

The calculations of the proofs for the results are lengthy but straightforward,
because more parameters are involved. So, we give only the main results and

expressions.

§2_QUALITATIVE ANALYSIS TO SYSTEM (I)(ALL THE PARAMETERS ARE INVOLVED)
We first reduce the number of parameters, by rescaling T::ft.. ?:FY. X=X.
J by 3 r

By further setting w =ﬁ- ,&:W W0 = 3 . r =—3E . We transform system{l)
into(Y,Y.T are written by X,Y,t)

K s XUty
3 xefo.u] (3),

s 5,00 ey )

T % Xf’ * -5 -t
. kX w, Y
XS ey
. T ow X Xé(o,00) (3},
T8 vyt n 0

The isocline i=o consiste of strictly increasing curve h, (T=——(—F-':(:,x‘ .

et . i (k=X){X+¢) i ; :
0£X%4) and strictly decreasing curve h“(Y_ Pu P T e « > };the isocline

1=0 is strictly increasing curve h, (Y=P(X)). Here the parameters satisfy tne
inequalities:;

k-»0, @ w, -1, >0, -'-(i.o’»O
The equilibria of system (3} are (0,0}, (k,0) and the intersection points of the
curves h  , h, with the curve h‘(see Fig I}.

Lemma I. If kg + the system (3) has only the equilibria (0,0)(is a saddle

r® crs .

Ir k"""‘"‘""’q .'_l... + the equilibria (0,0} and (k,0) are the saddle points.
Proof. For k¢—=22 |
——— Tw, -r,

8 sink from the eigenvalues of the linearized system (3) at the equilibrium (k,0).

it is easy to show that {0,0) isa saddle, {k,0) 1is

) R -k
Now, let k_?:.J:F: v the eipgenvalues are k|=m< 0, ";=0- ¥e¢ can prove that

{k,0) is a stable node. In fact, rescsling t:(Xo‘f)(h“(K-q)t.. Xe¥k, T-¥, the
system (3)b becomes (X3 X, Ta 1)

-

. i B R i MY e T S

X=-k (kg )X-w, Ck-m)kYs (w, C-ad ok (ko)) XY= (ke )X - (Loit ol v -y
Ve (kot) (5w, oy IXY- 8\ (k-8) (ko) (Tog IV = & (k=) (Tor 2068, (k-w) (ko) ()
- & Ge-a)xyt '
We study the stability of the trivial solution of {4) by the centre manifold
theorem (see (5] or [6]. Therefore, we can prove that the system (4) has a centre manifold

X=h{Y¥)= o (k-m)Y +o(Yrt}

ko'{

. The flow on the centre manifold is governed by the

equation

Y

. -[S"’- (k-w) (Gw -5 ) +&(K—R)(Mr)(hr,)]\’a'o(l”). ()
ka

So we get that the equilibrium (k,0) of system (3) is a stable node.

L

Now we consider the compact rectanglep =[0.a]x[0.h] put b=max eyl
1
u;u.-r.] + choose apk, then get ;ll‘{:b <o, XliaCO N0, XLOCU ¥v>0), and

the Y=0 is the integral line. Sc D, is positively invariant. The positive trajectory
C starting at t=ty, goes into D, for all t24, . The equilibria are only saddle
point (0,0) and stable node (k,0) in D, . By the Poincaré theorem (see [6] ) the
closed orbits around (0,0) and (k,0) cannot exist, and also the closed orbits
around (k.,0) camot exist becsuse the line Y=0 is the integral line, hence (0. 0)&
JLC), (x,0%R(C), moreover,SLc)=[tk,0].

This l.emma [ means that for k.s-u-_—‘:ll—‘g?— the predator population will ultimately
die out, 80 a long-term interrelation .betwe'en predator and prey is impossible.

Therefore, from now on, the parameters in(3) are assumed to satisfy K>;;3_'_'.?_
(3L} L]

first, [t is easy to get the following Lemma 2 from the monotone of the curves

ha v By
L Y

Leama 2. (17} Ifdu‘.,.'. ary

focus-node)} of the curve h" with h, (X€& O.Hl]).(the F and {k.0)} lie on the curve

h, ).

and hy.

then there existe anly the intersection point Ela

L

ol
(2%) I[“>’wr.'f‘ and %-?"ﬂ'{' p{d), then there exists only the
T [ X . . -
intersection E of the curve hy with h, , ¢r exist two intersection polnts By and 52

] w__TnY L 1 a t . , o
{37) Ifd,,'l" — and w.-(MTM,( ) . then there exist two intersec
tion points Ei(izI.e.j) , and El and E, lie on the region O<Xgd, Eg lies on tne

region Xpd. See Fig I.
Remark. !t is simple for the analysis of stability of the equilibrias in Lemma 2
1), (2,

In this paper we investigate the existence of Hopf and mzlobal bifurcation

then it is omitted here.

and other trajectory behaviours under the conditions:



r, 4 o o+
Tw,-r, °  w -«

K> dy ) b (4}

It is assumed that intersection points of curve h,, with h, satisfy the

equations

- IEN ST A RIE AR I TIRS SIS TSR L B 1 )+6g =0 . )
and

2t o, (£)

(]
Any salution X, Y&IR of (7} and (€} corresponds to one nontrivial equilibrium
of (3) and vice versa. Thus, the set

M:[(;;,.;.-'.]».-‘.x.r)l qﬁ“-ﬂ'ﬂ(O.U&XSM.U(k:ﬁi—f? J{6)and(?)and(8) are sar.isfxed_—}_

(9)
describes in a one-to-cne way the nontrivial equilibria in their dependence on
parameters. The number of positive real solutions of {7) is determined (by the
sign of the dimcriminantAof }_:o.

1 3 3 3
A =rog- (270 YL (1T -TB{5s 1) (gomp-mm ) ) e b (geqgmemm) =(521) (grag-guf

I
=TEB-A{0:’} (1)

The equation (7) has three simple real roots (positive real root ¥, Y, &M,
negative real root Y§M) ifAL O and r#%§-%w<0. one negative real root Y&M and two
complex roots Y4M ifa» O and re%y4ws<0, and at most two of real roots are differenat
and only pogitive real root '{'éH ifd:0 and r.q-ird:l"co.

The intersection point is unique if the curve h,, intersects with h

x
- ol

I . F ?l" k-4 + ,

Lemma 3, For k)(}max['?-h"_r' 5 . -“'.—'T:"’_‘ﬂ 7 P(&X) and r‘w;’g-d;w.(t). then

(1%). ITA<U, the system {3) Las three equilibria in the domain D:

E{X,1}6&M is a focus-node, E{¥ %/eM is a saddle, F."(X..ﬂ)th“ﬂh‘_ is a sink(k;?
(X‘(k and the occurrence of Hopf bifurcation is impossible).
{2"). It A=0, the system (3) has two equilibria in D: E.(X..Y.JCM_=[(:'..¢:.
4
v. 9 .X.Y,G.‘Hlﬁ «0, !Y:OJ is a saddle-node with a stable node region and a saddle

. N T+Ye )
region if 3« : d wi . X ad ion if
& i "T. i and with a unstable node region and with a saddle regi Sl’
L1e¥y . .
T By (X Yy Mehy NV is & sink.

{3*). 17450, the system (3) has only one eguilibrium E(K. 9 & h, 0y
in D which is & sink.'ne bifurcation setf§=0 is a saddle-node bifurcation for )(G[O.-:(]
Proof. (1®)}.¥e linearize system (‘5)b at the equilibrium E’. then get tne
charncteristic equation
L
kﬁxp, Q=0

where the coefficienis P' 'Ql are given by

Xy (k-2 -8 Sy 2y enel) kg
PirK,Hg)(k-u) ’I.y’ <0, “,) > )

«- %y Yy (4+2% -k ) (3Yy +5-1) '5‘1«; -‘.pi Yy > o .
. X, +9)lk-a TeY, Lety LA

The fixed point E3 is a sink obviously, and the cccurrence of Hopf bifurcation
forms the change of the stability at equilibrium E3 is impossible because

£y < 0 for any parameters.

The equilibria E» ELy E, lie on the isocline h‘. by the Poincare theorem
E‘is saddle, E.is a focus-node.
We linearize system (3)a at E and E,, the coefficients P,.,&, i P, &, of the

characteristic equations are

. X i § 02y )
1 Xio? I'Yi B
I,2. (11}
S.(r*\'i)

i=
i X I, &T'Yi(eyi'““] .
i i
(2%). e linearize system H)a at b, get q{¥y)=0 and the eigenvalues A0
Aand A‘< 0, tnen the codimension one bifurcation of equilibria occur. So E &M,=
I
(ratig.m, X,Y)EM, 4 =0, EY(Y.)--O. Q(Y.):O]. Now we have to investigate the
betaviour of the flow in the neighbourhcod of E,. Applying the transformation:
— - - X - -
=@t )", XXy X, Y8Y ¥, Ved ) (X, 09) (2} orp )X JI2ETF | u:Y, one

transforms the system (3)a into the focllowing from:

v o= uv[ XolYo-L)-f  2(I+¥e )Xe _ who (€ w, —(r +¥g ) (T+2T4)-Ys(I+Y4))
t, S Y (X ¢ Y(2Y ereI)ilsY }

ot ) Rty v ) Xy (o =1) =)0y | (Ko o) (2Yy +re 1) (Leta VKs
L vt 6\’:
L]

£
- —Yi-r'f'l;%r(ﬂ;wl-(r.n',,)(lozv,)-v.(hv.)) . T?Y'? J:“.*!’“’”-".’J

& I+Ys

. X, Iy, +r: 1)

Cerean TS 2 Nl 5.‘+v‘§“ O

boyv i), UE2Y, +gelIETsY, - § 1) ~UyvtOte ol sYa ) (1020 )V, (TeYy))

x.flj Y.(x.ur‘j(a‘t. 0!;*])
{ - - +
_“a.( . (r.of.)(h&\'.‘l) Yo (1+Y 00X, +s|(x.f3)(1+5y° H;)) Perreas
L ]
=V, - -t (12)

g e



By centre manifold theory, after a lengthy but straightforward calculation ,

we get Lhat the system (I3) has a centre manifold
-Y {147, )
(X, o) (2Y, o1 1LY, = Si¥a)

+o(vd)

Uzh(V)=

The flow on the centre manifold is governed by the equation

v=f nvovelnt (V)o!“\floo(vl )=A Y vo(vP)
Therefnre, we come to a conclusion of part(2 )(E, is a sink obviously).

We easily obtain the proof of the part(3 )..

For later use (to determine the existence of Hopf bifurcation and homoclinic
orbit) we give the following Lemma.

L.emmal, For S.)Sn the equilibrium E &M is a stable node. For o0<di<d;, the
F, is an unstable node. ForS.{.&( Juthe E, is a focus or centre, -

Proof, Applying the transformation: t=(K~?)(I+1’)t'. X=X, +X, Y=Y, +Y, the

system (3} becames as (the new variables X.Y here are written as X,¥)
’ a

. =] )= 1
Xex, (11, )xe 2B ye 20D v, ooy ot oy
1.y, Yu

i:"u;(w"? qu x- S;YI (Il'?)(a’l 'ru*l“'\cr' . -(R.Yl 1124, )-Y' (I‘Y‘ ))5::“

- § 0 ) (13 oI - FU1e3Y, en)ay' - .Tn’ -3 a7 (13)
The eigenvalues X of the corresponding equilibrium (0,0} of the system {I3) are
-1 T 14)
)\.11_2—(?‘ ;J.ﬁ; -4q, ) (
where

PyX, (1t 181, (X, +9)(2Y, +rel)
29w, (T-¥p(2Y, 4re1)) > 0
Let
£C8,)apPtoug, = 05 (X, #9482y, era D) +§, (20, ¥, (1+¥, ) (4, +§) 20, oo 1)
-4 wa, Jex}(10Y, 10 (15)
Solve the equation (15}, we can show that there exist two values é-n and sn.
such that f(ﬁ,):f(é‘u)ﬂ]l. Therefore, for D(SI-(&' and J.’le_' r(‘;;»O‘ the

5.
equilibrium E, is a node; for 3y <J, ‘54!.' f(J;)‘CD. the E, 1s a centre or focu

As is vell enfor &5 3, &

S, 18 8 sink; for S..;S. K, is a sowrce. Do we abtsis Lo
conclusiaon of Lemmal,
Pheorem 1. (1%). In case d;-k—;f. 6">-'L'?-:,hn system (49} nws ono cloned orbdit
in D,
(2°). In case d,;—k.-—:r- the system (3) has no closed arbit arcund

the sink E‘ .

Proof. Take Dulacs function B(X.Y) - (x)™ . From {3) we pet by & short
RO u

calculation

L
] ) =“‘_.’[.'§1-§§§)((?))‘”'L - r‘—r(’r'rr—x'u: T .]
(37, *T X'T * (In)
Let
w X B X U< X G 00 =100
It follows that for w‘-‘ifS'TO:O. f(X)}0. Therefore, div(” <o,
Rescaling t=(k--()(1¢‘!)“o'f)t'. we transform system f’})b into
C =X (k-a (LY ) (X4 )mm, (k-)XY
=8 gw, (k-a)XY- 3, (k-a)¥ {ra¥) (1+¥)(Xs9) : (17)
lake Dulacs function B(X.¥J=(X¥)~', From {I7) we obtain by a short calculation
-t -t
. . Cav.e) - .
dxvl(}) v (e (e-2x - (Xep) e (2Yage 1)< 0 (18)

b
(Vdpo, xe['-‘-:f- o))

2
From (16) and (I8) we obtain that for&) -E:—? the system (3) has no closed orbit

in D. From (I8) we get that the system (3} has no closed orbit around Ey.
Theorem 2. If the psarameters satisfy: r‘-CQT)O. " -T)O. k)(bnax[a___i'f_..' k_;iJ
= e - w

R '

ol +? :
;,-:m‘, P(«} and ACQO. By further assuming that the system (3) has no closed
orbit around the node E,. Then

{(1°). There exists a Hopf bifurcation value S_:

_ X, (I+Y, )
So' Y%, -HTTQY. 0r.+1) (respect to the contral parameter S.)
such that for 5.4_8. sufficiently close to 3, v tnere exists a small oscillatory

attracting(subcritical)} Hopf limit cycle sround E, Moreover, S-" <S,<

n'
S,SL—:&-'— . Here E, is a sink for §,¢Jdy . and E, is a source ford, »8, -

(27). There exists a global saddle connection biflurcation valueé' such that

s -

for§I=5" saddle loop LOC LE N L“(E‘) occurs,

(3*). There exists a value

60‘ Ay LEeYy )
¥ (X #§2i2vy 45e1)

and for 5.(8" » the saddle loop Lo is a unstable; and (or 3.)5. . the LO is a

stable. Further, if r, -o >0, w.- >0, then 60 < 4§,

171 I 4]
®
(4. 5% <.
(5%). From (1°-4%) we conclude that for 61>61 the topological structure
of the trajectory is illustrated in Fig.l; for 61<60 sufficiently closed to 60,

there*exisl.s a small oscillatory attracting Hopf limit cycle; as 61 decreases
to &  the unstable manifold L‘,. and stable manifold L1 form a loop

S
Ly LitEy) Lz(EZ) _*and the Hopf limit cylce disappears (is "swallowed" by Lg)s

as 4§, exceeds & the loop L, breaks up. The topological structures of the

0

trajectory are illustrated in Figs.l-4 as § is varied.

1

“8-



Proof.(1%). From (I1) we set P, =0, we readily find Lhats and PS (8 1¢0. For
(I3) we calculate of, (the formula is derived oy Andornov, see[ ]).

dj_ﬁ[?g(lfY » (rey, 2(x, (Y 9= Y}A - ‘Ts X (1Y, Y(Ior o3, )0 Y, 1) g

-w,xl(r- -1 )‘( =2y, (nl))-w x (I+Y, Yo w, -r- 51 -gy {re1))
-2, .,‘5_ X, ¥, (I+Y, )Ux L) (Loresy, & o2w, xb 1oy, )
'n,TS X (1 +$)(Lene 3%, V(0 w, ~p-31) -er(nl))
+29, %) (1Y, Fex, 4 Tere 3y, M w.-r-}‘f -2Y, (gel))
w ?S(r.y )(mr YK, (Y, -1)- T)vzx (1s¥, t (x (y, -1)-3)/\'.
30w gk, (Loy, P osateiet $y v, -2x|’(1d )‘.z.,?s (£e¥, )(1ey, )
-aw..?;‘x (M }(Teresy, ye2§,x} (T+Y, f(n;.sv,)
Now, we have to investigate the sign of ﬂ,or equivalently, If nl‘a;o then the
following two cases can occur, Case I. 3( 0, In this case for 8'(;' sufficiently
close to 8., there exists an attractive (subcritical) Hopf limit cycle, Case 2, %,>
In this case for 5.)3 sufficiently close to J.there exists s repelling
(supercritical) Hopf limit cycle.
Te calculate analytically the zero set of ®; seems rather difficult, since
oy is a function of the independent parameters g . -.,?. roy, J; s while (X ,Y )M,
We can, however, prove that the only possible case is -(’(0 from the conclusion of
the fallowing (2°) and (3*),
{2*). Let us first establish some properties of the unstable manifold L (&,
and stable manifold L (E,). The changes of the vector fields are indicated ng J)
in D. The variable is %, and Y2 instead of Kl and Y, in (13), then we obtain (13)*. The

equation, characterizing directions of the manifold for the saddle point E/
has the form {rom (13)*

t S[ X, (I+Y, )oI. Yl(xl,y)(zy‘.r..x)](;.y‘) . gu;S‘ Yy (1+¥,)
"X X, (X +9)

=0 (19)

The two roots 3, and 5, of (I9) are positive; it follows that the segments of

the manifold near E, lie in subregions I - 6 {see Fig I}, Taking into -
consideration the direction of the field of the system (3), the configurstion of

the manifold Li(i=I.2.3.’U near E2 can be represented as follcws:

o (#e9) o ‘ )
Chooae Ym-m and X =k, then get xY:Yﬂf O, ¥ aY:' 0 and XX:XMC o.

We consider the compact region D‘= [(I.YJI)(:(), Y=0, x:xm, '{:Ym], X=0 and Y=0

dre the integral lines. The trajectory goes into D, eventually as t—2 +on.

The manifold L2 goes to E’ 85 t«>+ 0p . Because Ey is a sink and has no closed

orbit around E, (see Theorem I{2%}) , The manifold L3 goes to infinite or crosses

the subregion 6, and goes to infinite as t -+ -=, The manifolds L2 and L3
merge into a loop which is impossible, because there is no clesed orbit arount E3.
The behaviour of the manifolds L, and l‘la is changing as the parn.net_gr J‘ is
varied. For 0(8‘{-_8“, E, is an unstable node and assume that there is no closed
orbit around E,, in this case L, goes to E as t—»-pa ; |, crosees the isoclines
h,, and h, , crosses the subregion 6 again, goes to Es finally a5 t ==+ 0O ,

and L, lies outside L, (see Fig 4). For §,23,, + E, is a stable node , and assume

b
that there is no clesed orbit around E, , In this case Lh goes to E. as t — +00 .

and L, crosses the isoclines h, , h, . does to infinite finally as t —~» -p0,
and L,lies outside Lu {sea Fig I). By the continuity of the solution with respect
to the parameter 3, , we conclude that there exists 8 value 5 such that the

manifolds L, and L, merge into a loop LOC. Ll (El)!\Lh(E‘). (see Fig 3). Moreover,

{3"). Let us consider the "saddle quantity"
VXY )=X (100 28X, (X, +4) (2, e 5ed)

Set X (I+ Y, )
SO A S ACLE
unstable, and for S »0* the saddle loop Lo is stable. We can prove 8. >é .
ract, 8y €N, <[ (r, w0 X O] (X, ¥, WM, B 20, & >oj 5 n _[(r. T v XY )l

'y
of, ' +Y, (L+®e O w )03 Y +¥y (LeSso w, )+ .
(% JeMy B30, 460 ], 50 5 A $ o oW T, (20 e ne D) 3

o w ¥ (2, ~roI)

For 5.(5' the saddle loop LD is

where ‘1 *r- U'lf)O.
Let us try to establish the relation between J andé' . We study the [function

_ ™ J(Io‘}oﬂ‘ w )+§ (20)
FlY) = Y(EY*rl;I)l I
we obtaln - - -
F‘”):[-(r‘ol) 29 (w!-r)l\‘t-’-c:\’-(tpl)? (21)

ﬂ(zhnl)l
Therefore, for w, —?)0 and?)o F(Y)(O(V‘DO). Becsuse Y<¥, . it turns out that

F(Y, < ¥(¥,), Thus we have 60 < 60

(4°). If ¥»0, then Ly is unstable, we thus have 6"‘(60. At Gl=6*. the point
(XZ'Y?.) is stable, and there is no closed orbit in the saddle loop L,. The case is
impossible. If V<0, then |

. EY
0 is stable, the following arrangement is possible: & >60
or GU<6*<6

o 1f 8785, at &
is stable; there is no closed orbit in the saddle loop LO' This case also is

impossible. Therefore, we 6005*(60.

=4%, the point (XZ'YZ) is an unstable focus, and L,

(5%). Finally, we obtain (5) by ([)-(4).

This completes the proof of Theorem 2.

_10_



\ Nie QUALITATIVE AALISTS 10 Syatiid (1) (s aoverres e )
' vase (T} :h:(}, S=t
ir :\‘U, J =0, ihLe . gulem{l) acecome into

- Wit
St |1, 2 (TR
Y 20, k2, A2 (<)
7= TAXY -
N iIHF‘T)T;h—ﬂ '
lere the parameters satisty the inequalities:

k- p0, w, -y W, -{44g)> 0. (N= .‘j:., w, =) (23)

The LL,ullxbmu of system (22) are (0,0), (k,0) and tte intersection points of tie curves

< hawith tle curve by.
"l #or uystem (22), by wiing anclogeus methods to 22, we can get the following results
el are similar e that or §2

(1) 1r —'—; , the

k,0) 15 plobally attraciive in D

tem {22} has only the equilibria {G,0}{(1s a saddle-point) and

The proef of (I) is similar to Lemma 1., The result (1) means that l'orFtO.
§-=0ir k(—l-‘f—. then the predatory population will ultimately die out.
(11}, If k)——ls-. and (23) is satisfied, Lhen

l L2y
(1® ). If 1(.__.1. , there exists only the intersection point E of the curve
b, with h (x:.-[o.a] Y. E ia & focus-node.

ny e |
(2*). 11> o ._“*)c

™
P(e), there exists only the intersection E of

 ha WAth by .
! (3%). 1r-t>-—7- = P(R), there exist two intersection points E, (saddle
. -7, w,-td iﬂ

I
point) and E, (rocus—uode).

oh . .
(%7, rol> _:: “—_E;;_‘n)wll). there exist at most three intersectionpoints

Ej(i:I.e.jl. and EI and El lie on the region O<KXg4, l']s lies on the region X>om .

(111}, The intersection points of curve h,, with h; satisfy the eguations

i(! .r " X)= X o(rvT w )XtrT =0 (24}

X(i -n)-r,Y

"_'F(T(‘:?T“ =f, (1) (25}
. : . . k-
~ The intersection points Y. 0€ H.r[(W. .r‘.T‘X.Y)|k>i; max(-;.“-‘f—l_-‘;?)- grg-w< Oy
| ocxgm & (w, .r‘.?.xi)zo. v-l=r,‘(xi)]‘

[ The set A Jn‘
ror x€fo,a).
"y, IfA) O, this system (22) has three eguilibria in D: E (X .Y, )€ M (is
a focus-node) (X, .Y, )& M (is a saddle point), {x, Y ¥ n, AN {is a sink, and

—‘u‘.’f =) is a saddle-~nede bifurcation{codimension one)

-—‘r«X,(k, moreover, the occurrence of Hopf b1furcnt10n is impossible at (X, % ).
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2%y, ir A =0, the system (Eel?has two equilibria in D: (X, ,Ya) is a saddle-
W -rey _ L Eme(P-%Ya ) , . :
node(X = p v Yo =f0X ), Y, = 1oy, xo‘? =0}, (»(s.‘l' )t-hu{\ h, is a sink.
(3*). If &.¢0, then the system (/) has only one equiliorium B &b, 21y in B
which is a sink.

(R ). ¥e have

(1*y, lr&;# ana G, > ="te ?

(2%, 1f J\J;I'-(;J— y then the system (2”?) has no closed orbit around t! In fact,

« then the system (22) has no closed orbit in D.

settins Dulac's function B{X .Y):(f)h?)x\')-l . From (’.")a we get by 8 short

calculation

; - x-Gn(x 4g) .
d”l(aa)B 4““?“‘] = Xoip < Ov(V“’.’n:‘—?. OKER) o

Yy setting Dulac's function B(X,Y) = (XY)~', fram (ez)b we Jet

dxvl
(.32)b

=800 LK) (e-2x-p- Gt (=) ()< 0, (F ey BTy KT

(V), This is similar to the conclusions af Tneorem ?, i.e.there is a Hopf

. w, Y . .
hifurcation valuye Cl; =IY:-:1§|71— ani a ¢lnbal saidle connection bhifurcation value

°T:<r|t<°-‘, moreover, T (T (.U'.urhere [ ‘r‘_h ;‘ . For ®< 0, sufficiently cloge

to ¥, there exists a small oscillatory attracting(subcritical) Hopf limit saddle
around E,. As T, decreases toQ" the limit cycle disappears and the saddle loop
occurs. As U, decreases continuocusly, the saddle loop disappears. The topologic

structures of the tragectory are similar to Figs.I-4 as the parameter &7 isvariable
Case (II). B-0, 3&0 -

By rescaling ‘r'x \ =§ v the system (1) becomes inte
Y

X=X [g--"_.]
b ] wrxefo,a]d.

vedr[et o oY) (25),

=[€(k -X) ._.1__]

X+?

P=Sy[ e -, -v]

Y

For the system (26), by using analogous methods to§2. we can get the following

(Yxe(a, 00))
lzb)b

results which are similar to that of§2.

(1. 1t k"-—‘-’_—;— + the aystem (26) has only the equilibria{0,0}{is a saddle
I

point) and (k,0)(is a sink), moreover, {k,0)} is globally attractive in D.

amn. 1r k)&-'_?.! v then the system (26) has three equilibria (xi'Yi)e "s=

Lggwioor, o, Y)lk) S ﬂ__”‘:? ,_._.::'; -5 . WG weg)-28P20, OcXEx,

13=rxlf(2?Y"*(q w-r, J)x.gThr‘tf .:0].(1;1.2)‘ and (X, ,¥% Jeh,A b, in D.

-{2-



1
[he set A‘=(U:w-§ ) -hf€1'=0 is a saddle-node bifurcation{codimension one)
for xelo, ).
(1*. 1r &,>0, the system (26} has three equilibria in D: focus=-node B, (X 0
€ HS' saddle point E, (X,,Y, )€ ¥y, sink E‘(Xl.Y‘)ehltnhL.
(293, ITA, =0, B (X, .¥q)eM;(saddle-nade]}, Eje¢h by (sink),
(3 ). 148,40, Efeh,Ahy (sink).

(111}, If k>,—:'-'f-
(] —rl

(1*). Forod) l-‘-innd 0> o= . then the systea (26) has no closed orbit in D.
2 *Ghene 8
(2%). Ford;Eég , then the system (26) has no closed orbit around %.

(IZ). If4&,» 0, for the system (26) there exists a Hopf bifurcation value

§ -k d n global saddl fon bif i lue 8°<J
._riT:-jl and a global sa ¢ connection bifurcation value 6 o+ moreover,

-
n(g\-( . * .hel"eé =rﬁ§%’|. B ForJ(é. sufficiently close to §° there exists

a8 small oscillatory attracting Hop{ limit cycle around F_. As the parameter& is

varied, the limit cycle occurs and disappears, and the saddle loop occurs and

disappears-the changes can be aeen in Figs. I-4 alao.
Case (III). e=0.8=o.
For ?:3:0. the aystem (I) cen be written ss (I) . If kg —3- . then (1)
a S oew-r Q

has only a saddle point (0,0) and & global attracting equilibria {k,0) in D.
Ir ka;E;? + the (I)o has an equilibrium (X, ,Y, ) except the saddle point (0,0}

and (k,0) in D, moreover, for 0‘;'%511 y the equilibrium (X, ,¥,) is a source,

r . .
and for T (Xa¥,) is a sink.

For the system (I) we get the following global results.
Theorem_3. (I®), For 0(;*-53—5“. the system (I)o has at least one Llimit (k,0)

cycle in D.

(2*). For ;53—)q. the system (I | has no closed orbit in D. Moreover,

-r
is a global attractive in D.

Proof, (I}, The line X=k is & line without contact, in fact, kl el L3 <
X=k k+?
U(VY)O), again, we consider the line h=®X+Y-A, and
h‘h-o =ex(fer)-ra. (¥xefo.a]d (27)
. X{k-X
hL:O =ﬂk—_;-—2 +roeX-ri, (V X&(al, 0O) ) (28)

Now taking

A>max[ max € S(Pve)x), max  (CIXUK-X) wx).t_(.i‘_'x_)j
[chsa ! d< e TUE=) aw

~13-

We well know that {27) end (28) are always negative. So the line h=0 is a line
without contact for X(b.k]. The outer boundary of the annular region ofPoincaré
Bendixscon is formed by the lines h=0, X=k and X=Y=0 in D. The equillbrium(xuﬂb)
is & source. Therefore, we know that the system (I)o has at least one limit
cycle in D.

(2. Fur‘ﬂ%£¥;< k, the equilibria lie in always the region Xj>d.
Hy rescaling t=(K+‘!)(k-lﬁ)t'. the system (1)0 becomes into

X=$ X (kXD (Xo9 b-w(k-%)XY

?:ww(k~ﬂ)l¥-r(k-¢)(1¢’)¥ (29)
Paking Dulac's function B(X.Y):(X‘!)_‘ . then we get

div

3 k-
l29) -Y(k-zx-lr)q:. 0. (Vxe(—z'! )},

If this is a closed orbit, then the closed orbit crosses the line X:-E;! for

.
two time. But this is Y€0 at the life region of vertical line. So existence of
closed orbit in D is impossible, Therefore we get Lhat (X..Y.) is unique w-
limit set in D.

The detailed proofs of the systems {(22) and {25) are given in [7, 8].

We will study the codimension two bifurcation in & separate paper.

4. BIOLOGICAL EXPLANATION,

The biological implications for these two different classes of eguilibrium
{the equilibrium on the Y-axis and in D} and the limit cycle and the saddle loap
are quite different, which indicate different results of the interaction ol a
predator-prey system., (We call the equilibrium on the Y-axis as the extinct
equilibrium, csll the equilibrium in D as the compromise equilibrium).

(I}). If the trajectories tend to extinct =quilibrium {k,0) as t =5 +vo, then
this means that the predator population will ultimately tend to extinction, and
prey population with different initiative condition will ultimately get to Lhe
balance’s density k.

(I1}. If the trajectories tend to two stable equilibria (X, .¥, J) and {(X,.,%)
a5 t —» +ga, Lthen this means that the predator-prey interactions will ullimately
tend to the balance's behaviour. Moreover, the trajectories with different
initiative condition will ultimately tend to different equilibrium, and the
predator population coexist with prey population at different equilibrium where
production of prey equals consumption of prey and hence the system (1) regulation
are the more likely to make two of the equilibria stable.

(iIl1). If there will be three equilibria, then it means that for some prey
density X constant hredator consumption exceeds production, but for some large
prey density X production exceeds consumption because production has increased,

but predator intraspecific competition keeps consumption in check.

_Ia_
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(I¥), If the stable limit cycle around the equilibrium (X, .Y, } arises, then
this indicates that the predator coexists with prey at ancther balance's benaviour

(V). If the Hopf bifurcation and global saddle connection bifurcation arise as
the ocntral parameter is varied, then these biological interpretations for the
procedure are similar to the case stated above, but the variant procedures of

the biclogical phenomenons are very complex and interesting,
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