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What follows is an account of neutron scattering studies on liquid
helium done at Oak Ridge over the last 15 or so years. As time progressed, the
measurement techniques improved considerably, but more important was our
improved understanding of the measurements. In particular, a better
understanding was gained of the difficulty of obtaining a condensate fraction
from measurements of S(Q,a>) of liquid 4He.

The idea that 4He can undergo Bose Einstein condensation at low
temperatures has generated great interest in much of the scientific community.
It is not often one can observe the effects of quantum mechanics on a
macroscopic scale. The idea behind the neutron scattering experiment to
observe Bose Einstein condensation is extraordinary simple if one uses high
enough neutron energies so that the impulse approximation correctly describes
the scattering. The experiment is done as shown in Fig. 1 by bringing a mass 1
neutron with wave vector ko and energy Eo incident on the mass 4 He and
measuring the scattering at a fixed angle. If the He is at rest, one gets a peak in
the scattering at an energy h co that is given by the energy and momentum
conservation relations for mass 4 and mass 1 particles. However, if the He is in
motion in the liquid, sometimes it moves along the incident neutron path and
sometimes opposite to it so that the neutron is Dopplf% shifted in the scattering f\*

process, and the scattering distribution is broadened. If one has a fraction of the ^ i
atoms in the He that are at rest as they would be in the case of Bose Einstein ULt
condensation, then the scattering distribution would be a sharp peak on top of %—**..
the broad distribution. * ..

In considering an experiment, the first thing to think about is how *
wide the scattering distribution S(Q,G>) is from the motion of the He atoms «, ;

in the normal liquid. It turns out that the energy width in meV of the ^ *
scattering distribution is nearly equal to the momentum transfer Q in A'1 at ' "*"
which the experiment is performed so that the width AE (meV) ~ Q(A'1).
Hohenberg and Platzman1 considered such a measurement and expressed the
need for high energy neutrons, so let us first consider the case for Q = lOOA"1. %^
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FOR 4 He AT REST
flm

FOR 4 He IN MOTION IN THE LIQUID

FOR 4He IN MOTION IN THE LIQUID
PLUS CONDENSATE

Fig. 1 Neutron scattering pattern for 4He that has undergone Bose
Einstein Condensation.

For a momentum transfer of 100A*1, we need incident neutrons of
momentum about 100A"1 or 20.75 eV in energy. The fractional energy
resolution desired is roughly given by

QAeVjwidthin meV)
20.75eV -

We really should have five resolution elements across the peak in order to
see anything interesting which means we not only have to do the experiment
with 20 eV neutrons, but we need resolutions on the order of 0.1%. This is an
exceedingly difficult, if not impossible, prospect; so let us consider an easier
experiment and try a Q of 15 A"1.



For a momentum transfer of 15A"1, we need incident neutrons of
momentum about 15 A"1 which is 460 meV in energy.

•\S(width in meV)_Q

460meV

Divide this by five to get five resolution elements, and we have resolutions of
somewhat under 1%. We can get 460 meV neutrons from reactor sources, and
the resolution is difficult but possible to achieve. In 1971, such an experiment
was undertaken2 using a triple-axis spectrometer at the High Flux Isotope
Reactor (HFIR); the results are shown in Fig. 2. Data were taken at 1.2K and
4.2K and the resolution is indeed such that about five resolution elements are
across the peak. This is really quite an extraordinary experiment as the
counting time was on the order of six months, far longer than it would be
possible to count today because of the demand for beam time on the
instruments. Rather good statistics were collected in the neighborhood of the
peak where the condensate should be visible, while less precise data were
collected in the wings of the distribution.
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Fig. 2 Triple-axis measurement of S(Q,co) for 4He at 4.2K and
1.2K.



It is obvious that no sharp condensate peak is visible on S(Q,a>)
measured at 1.2K, and indeed, as we know now, no sharp peak is expected even
for momentum transfers two or three times this value. We were then left with
the problem of extracting a condensate fraction. With the idea that S(Q,co) at
1.2K should consist of two distributions, the 4.2K and the 1.2K data were least-
squares fitted with two distributions. It turned put that the 4.2K data were well
fitted using one distribution, but the fit only gave good results with two
distributions for the 1.2K data. Assuming that the smaller of the distributions
stemmed from the condensate, a condensate fraction of about 2.5% was
determined. It turns out that this is not a good way to extract a condensate
fraction as it ignores the change in S(Q,co) in going from 4.2K to 1.2K, except
for the very top of the peak. In the paper it was pointed out that if one
considers the area between two distributions/ a condensate fraction of about
10% is indicated, and it turns out that this is a better way to analyze the data.

A real breakthrough came though with the papers of Martel et al.,3

Woods and Sears,4 and Sears, Svensson, Martel, and Woods5 who outlined a
way to deal with data like that shown above. Their method relied on
symmetrizing the data about the calculated recoil energy to minimize final
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Fig. 3 n(p) at 1.2K minus n(p) at 4.2K for the triple-axis data shown in
Fig-1-



state effects, and if low Q data are used, to average data together at a number of
Q values. The momentum distributions n(p) were then obtained from the
data, and the condensate fraction determined from the formalism given by

no = ^- p + r

where

= J \n(p)- n* {p)]pzdp
o (2)

and

(3)

where pc is the point where n(p)-n*(p) becomes negative and 7 is a
correction term that becomes large near the A temperature. Fig. 3 shows the
quantity n(p)-n*(p) needed in obtaining the condensate fraction. We note that
the result is fairly accurate, but that little information is available beyond lA"1,
as high quality data were only taken near the top of the distribution. Using the
value for 7 given in Ref. 5, a condensate fraction is obtained of about 10%.6

However, it should be noted that Griffin7 has recalculated 7 , and a smaller
condensate fraction would be obtained using his values.

It would clearly be of interest to obtain good measurements of n(p) over
a reasonably complete p range, but to do so is difficult on triple-axis
spectrometers because of the long counting times. The experiment is easier
with time-of-flight since the energy resolution can be uncoupled from the Q
resolution in this technique, and high Q resolution is not needed. A time-of-
flight spectrometer was developed that could make fast neutron pulses by
ultrasonic techniques. As shown in Fig. 4, Bragg reflection takes place from a
perfect crystal according to the relation A= 2 d s i n 6; a very narrow range of 0
corresponds to a narrow range of A, and little scattering intensity is obtained. If
a high intensity ultrasonic pulse is incident on a transducer attached to the
crystal, a band of A's is obtained from each 6, and a large neutron pulse is
achieved. Since the pulse is electronic, it can be repeated at any time in a
precise manner. This makes it possible to use the correlation technique, as
shown in Fig. 5. In a normal chopper, a pulse is made and the neutrons are
counted from this pulse over some time T long compared to the pulse. With
the correlation technique, a signal function S(t) is made incident on the sample,
and a convolution of the signal function and the function you wish to obtain,
F(t), is counted. However, S(t) can be constructed so that F(t) can be obtained
easily by the cross correlation of the counted neutrons, Z(t), with the signal
function. For a continuous source, a much improved duty cycle can be
obtained that can be 50% in an ideal case. For He, the gain is less, but is
appreciable, especially for 3He which has a very high neutron absorption cross
section.
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Fig- 4 Production of high intensity short time neutron pulses by
ultrasonic techniques.



S(T)

F(t) DUTY CYCLE j / 2 %

WITH CROSS CORRELATION TECHNIQUE

S(t)

n rm n n
S(t) CONSTRUCTED SO THAT

fs w s i t H = !S°o
= S S(t

T
F(t)

BUT

F(t) = 2 S(r)Z( t + T) DUTY CYCLE 50%
T

Fig. 5. The neutron cross correlation time-of-Fiight technique can
give a high duty cycle for steady state sources.

A problem with the cross correlation technique is that the pulse must be
of an exact shape or else distortions of the desired F(t) spectrum are obtained.
This shape cannot be made perfectly by any technique including the ultrasonic
one. However, one can correct for this by measuring the signal function that is
actually generated and constructing a new function to use in the cross
correlation that removes the distortions in the correlated data. The cross
correlation is given by



' (4)

which can be written in matrix form as

F=ZS (5)

where S is an N by N circulant matrix with elements aij = ai-j. If the signal
function as measured by a detector is given by Z, and P is the ideal shape
desired in the cross correlation, one can solve for a matrix 5 by

ZS= P . (6)

The matrix 5 is then used to cross correlate the measured data and corrects all
errors for improper pulse shape. It turns out that the ideal pulse shape can be
of any width so that choosing a narrow shape automatically deconvolutes the
resolution from the data. Of course the statistical accuracy is decreased if a
narrow width is chosen, but one is free to choose the best trade off between
resolution and statistical accuracy.

The next step is to determine how to find n(p) from data taken at
constant angle and not at constant Q. The cross section for scattering in the
impulse approximation is given by

(7)

where c is a constant, kf and k{ are the final and incident neutron wave vectors,
p is the momentum of the helium atom before the scattering event, m is the
4He mass, and h has been set equal to 1.

For constant

where p is

Q,

"mln

the density

w mi'

and

l)dS{Q (0)1 do),
(8)

with co(Q) the neutron energy transfer for the momentum Q. While for
constant angle,



1 - M - —1 cos

-1

(9)

where e . is the incident neutron energy, and 0 is the scattering angle.

With the cross correlation neutron time-of-flight operational , it was
then possible to measure n(p) with good resolution in a reasonable amount of
time. An experiment was performed with a Q of 14.79A"1 and n(p) obtained
from the measured S(Q,co) using Equation 9.8 A plot of pn(p) is shown in
Fig. 6 compared with a calculation by Kalos.9 There appears to be a peak at low
p in pn(p), but within the statistical error shown it probably more accurate to
say that there is extra scattering at low p that is indicative of the condensate.
Using similar data taken above the X point and calculating the condensate
fraction by Equation 1, a condensate fraction of about 12% is obtained. Within
the measured errors and neglecting the extra scattering at low p that comes
from the condensate, the measured and calculated pn(p) distributions are in
good agreement.
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Fig. 6 pnp for 4He at 1.2K. The solid line is a calculation by Kalos.



At this time, substantial improvements were made to the spectrometer.
First, a large crystal in conjunction with a convergent slit was used to pulse the
beam, as shown in Fig. 7. The crystal was placed in such a way that the longer
wavelength, or lower energy neutrons, were reflected from a place on the
crystal nearer the sample so that they arrived at the detector at the same time as
the faster neutrons that started farther away from the sample. This meant that
a much bigger wavelength spread could be used resulting in much higher
intensity without increasing the energy resolution. Also, additional pulsing
crystals were used, as shown on the bottom of Fig. 7, permitting an even bigger
wavelength spread. It is only necessary to delay the pulse chain to each crystal
by the proper amount so that all neutrons arrive at the detector at the same
time. Also, at this time, more detectors were added to the spectrometer giving
32 separate detector banks of 5 detectors each. This makes it possible to take
data at 32 separate Q values simultaneously.
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Fig. 7 A convergent slit and multiple pulsing crystals can greatly
increase the neutron intensity if the pulse timing is such
that all neutrons reach the detector at the same time.



With these improvements, it became possible to measure S(Q,o)) for
4He with good resolution at 32 separate Q values at reasonable counting rates.
Figure 8 shows measurements of n(p)-n*(p) for three temperatures. n(p) was
obtained by symmetrizing S(Q,G>) at a number of Q's and adding the
calculated momentum distributions. A condensate fraction of about 10% was
obtained at the lowest temperature10 in good agreement with other results.
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The spectrometer improvements made it possible to perform detailed
measurements on 3He for the first time.11 3He has an absorption cross section
for neutrons of about 10,000 barns, making the measurements very difficult, so
of course the data obtained is not nearly as good as with 4He. Measurements
were first made at a temperature of 1.2K which is too high to observe any
Fermi-liquid effects. In this case, S(Q,G>) should be nearly Gaussian, and Fig. 9
shows one of the measurements for a scattering angle of 81.6K. The solid line
is a least squares fit to two Gaussians, one centered at energy transfer zero
stemming from the sample container, and the other from the 3He. From data
like these, the peak widths and positions were determined. The top of Fig. 10
shows the width divided by Q as a function of Q. Oscillations in this curve
have been found for 4He that can be traced back to the oscillations in the 4He-
4He scattering cross section. The curve for 3He looks like it may have a dip in it
at a Q of around 5.5A"1 although the statistics are probably not inconsistent
with a straight line. The minimum for 4He occurs at 4.5A"1 and this is
certainly not observed. A more accurate experiment is needed, but the
indications are that the w i t h oscillations are different for 3He than for 4He, as
might be expected, since the oscillations in the atomic scattering cross sections
are different in the two materials.
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Fig. 9 S( Q, a) for 3He at 1.2K for the detector bank at 81.6 deg.
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Fig. 10 Measurements of the relative width and position of S(0,o>>
for 3He at 1.2K as a function of Q.

The bottom of Fig. 10 shows the energy difference between the observed
peaks in S(Q,o)) and the calculated position given by the impulse
approximation. This difference is a maximum at 4.5A'1 for 4He but appears to
be near a minimum for 3He. It again would be desirable to do a more accurate
experiment, but it appears that if there are oscillations in the positions of the
S(Qo>) distributions as a function of Q for 3He, the oscillations have a

different phase than they do for 4He.



The most interesting effects in 3He occur at low temperatures where the
material is thought to have properties that can be described in terms of a Fermi-
liquid. The sample of 3He was cooled to 0.37K, which was the low temperature
limit of the experiment, and S(Q,eo) determined for 32 different
Q values. n(p) was then determined by symmetrizing the S(Q,co) data and
averaging the results for different Q values as was done earlier for 4He. The
result is shown in Fig. 11. The solid line is a least squares fit by an ideal Fermi-
gas distribution for Tp = 1.8K. Again, because of the difficulty of the
experiment, the error bars are larger than would be desirable. The Fermi
surface is not expected to be sharp because of broadening by temperature and
final state effects. Further experiments should be done at a lower temperature
so that the final state effects can be isolated. Nevertheless, the experiment gives
a result for the Fermi temperature that is in good agreement with generally
accepted values.

3He T=0.37 K

1.2 1.4

Fig. 17. n(p) for 3He at 0.37K.



We see then that we have come a long way in the last 15 years in our
ability to produce reliable neutron scattering results* for the quantum liquids
4He and 3He. Part of that gain, particularly for 3He, has been the substantial
improvement in instrumentation. A very important factor in the
determination of the Bose condensate has been a better understanding of how
to analyze the data. Probably more work needs to be done on this, but at least
an analysis procedure now exists that gives consistent results for a wide variety
of measurements. Measurements are only beginning on 3He, but at least they
appear to be possible. Certainly we can look forward to much better results in

the next few years. Finally, it is very important to be able to evaluate the effects
of final state effects on the measurements. It is obvious that a lot of progress
has been made in this regard, but it is equally obvious that more remains to be
done.
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