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A B S T R A C T 
Thr two major effects from the interaction of e ~ e + 

brants — bcamsWahlung and disruption — are reviewed, 
with emphasis on flat beam collisions. For the disrup
tion effects we discuss the luminosity enhancement factor. 
tliv maximum and rms disruption angles, and the "kink 
instability". All the result* are obtained from computer 
simulations, and scaling laws based on these are deduced 
whenever possible, For the beamstrahlung effects, we con
centrate only on the final electron energy spectrum and the 
deflection angle associated with low energy particles. In 
addition to the generic studies on the beam-beam effects, 
we also list the relevant beam-beam parameters obtained 
from simulations on two sample designs: the TLC and the 
1LC. As an addendum, the newly discovered phenomenon 
of coherent beamstrahlung pair creation, together with the 
incoherent process, are discussed. 

INTRODUCTION 

Then- are two major phenomena induced by the beam-
beam interaction which are important to the design of 
high energy linear colliders. Namely, the disruption pro
cess where particle trajectories are bent by the field pro
vided by the oncoming beam, and the iearastmMunj pro
fess where particles radiate due to the bending of the 
trajectories. The most important impact of disruption is 
the deformation of the effective beam sixes during colli
sion, which causes an enhancement on the luminosity. In 
addition, the disruption angle affects the constraints on 
the final quadrupole aperture. When the two beams are 
colliding with certain initial offset, the disruption effect 
between the two beams would induce a kink instability, 
which imposes a constraint on beam stability. Ironically, 
this instability helps to relax the offset tolerance for flat 
beams, because the offset beams tend to find each other 
during the initial stage of the instability. Under a multi-
bunch collision mode, however, the kink instability will 
largely degrade the luminosity through the relatively long 
growth time. On the other hand, the direct impact of 
beamstrahlung is the loss of the available energy for high 
energy events, and the degradation of beam energy reso
lution because of the stochastic nature of the radiation. 

* Work supported by the Department of Energy, contract 
number DE-AC03-76SF00515. 

Most of the issues raised above can be studied In 
decoupling the disruption and the beamstrahluiig effects. 
The energy loss due to beamstrahlung may modify the lu
minosity enhancement but this effect can be ignored since 
we are only interested in the case where the average energy 
loss is small. Conversely, the average energy loss and the fi
nal energy spectrum can be studied by assuming no disrup
tion without compromising too much on accuracy. There 
is, however, one issue where the two effects are strongly 
coupled. This is the maximum disruption angle associated 
witli the Urge deflections from particles that have suffered 
severe energy loss. 

In this report we summarize what has been studied on 
these issues with emphasis on flat beam collisions. Tin-
computer simulations are performed using the code ABEL 
(Analysis of Beam-beam Effects in Linear colliders) de
scribed in Ref. 1, but improved considerably since it was 
first written. Some results given here are still preliminary 
and will be refined in later papers, but their qualitative 
features wilPnot he changed. 

LUMINOSITY ENHANCEMENT 

Our primary interest is the enhancement or luniiims 
ity due to the mutual pinching of the two colliding beams. 
The details have been discussed in Ref. 2 for round beiuns 
and will be given in Ref- 9 for flat beams. As was pointed 
out in Rcf. 2, the luminosity is infinite if the initial beam is 
paraxial and the computation is perfectly accurate. This 
is because a paraxial beam can be focused to a singular 
point. In reality, however, a beam will always have certain 
inherent divergence, and the singularity is only approached 
asymptotically. To account for this effect, a parameter 
4 I ( = a.Z/SJ^ is introduced,21 which is proportional to 
the emittance for a given beam size a,,t. The computed 
enhancement factor HQ = L/Li, where L0 is the geomel-
rical luminosity without the effect of the depth of fucus 
related to .4, , , taken into account, is plotted in Fig. 1 as 
a function of Dt and A, for flat beams. 

The data in Fij. 1 are obtained by using a dislribui inn 
function which is uniform in z and Gaussian in y and : 
(UGG), instead of a three-dimensional Gaussian distribu
tion (GGG), for easiness of computation. The cnlian<--
ment factor of GGG distributions for a given Du can In-
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Fig. t. Luminosity enhancement factor for flat beams. 

deduced from a superposition of UGG results with disrup
tion parameters ranging from 0 near the horizontal edge 
to y/SJrDf *t the beam center. The enhancement factor 
for round beams is shown in Fig. 2. 

Fin. 2. Luminosity enhancement factor, round beams. 

By comparing Figa. 1 and 2, one finds that the en
hancement factor for fiat beams scales roughly as the cube-
root of the corresponding value for round beams; which 
obeys the following empirical scaling law that fits all data 
points in Fig. 2 to within 10% accuracy: 

«B-'+f l , "( r ^|) [MV»+l) + lh . (H)] .(1) 

The reason for the flat beam enhancement not being scaled 
as a square root of the corresponding value for the round 
beam is because the horizontal focusing can enhance the 
vertical pinch effect (and vice vena) in the round beam 
case, whereas for flat beams the pinch in the major (hor
izontal) dimension can hardly affect the disruption in the 
minor dimension. 

In both cases, our results indicate a logrithmic diver
gence of Ho M » function of A, or A,. In addition, 11D is 
monotonically increasing as a function of D, or X)v, at least 
up to D =100. This second finding of ours is qualitatively 
the same as that found by Fawley and Lee" but in contra
diction to Holebeek* and Solyak*' where the enhancement 
factor first saturates before eventually decreases at large 
D's. 

The difference appears to be due to the different ways 
of handling stochastic errors. In a Monte Carlo simulation 
such as ours, the initial condition is generated by random 
numbers, which introduces a statistical fluctuation, and 
therefore an asymmetry, of the order Ify/N^, Nr being 
the number of macro particles. This asymmetry will bo 
amplified during collision (i.e., kink instability) due to the 
beam-beam force, especially when the disruption parame
ter is large. The fact that the number of macro particle 
in a simulation is typically much smaller than the actual 
particle number, this fluctuation is artificially enhanced if 
no proper action is taken. To minimize this compulation 
error, the particle distribution function is symmetrized at 
every time step in our calculation, so that the beam-brani 
force has the up-down symmetry at all times for tlir fliii 
beam case. Similarly, in the round beam case only tin' 
radial force is computed. This process eliminates the pos
sible instability triggered by compulation errors. 

The actual collisions are expected to lii.o some un
avoidable initial offset in alignment and skewnrss in <liv 
tributions. Since the asymmetry in distributions lend in 
shift the center-of-gravity of the beams, il gives rise to I lie 
i ime effect as the initial alignment offsets. For this reason 
our'study on the effect of imperfections is concentrated on 
initial offsets only. 

As will be discussed in the next section, an initial offset 
triggers a kink instability, especially when the disruption 
parameter becomes large. As it occurs, this instability is 
not always harmful because, in the initial phase of tin- in
stability, the beams always lend to find each other, which 
prevents the otherwise rapid degradation of (lie luminos
ity for large initial offsets. Figure 3 shows the luminosity 
enhancement factor as a function of offset A v (in units uf 
<rt) for various values of Dt. The dotted curve is the ge
ometrical enhancement factor without beam-beam force. 
which is equal to e x p ( - A j / 4 ) . UGG distribution is uscil 
and A, =0.2 for all curves. The up-down symmetry is nm 
enforced except for the cases at A ( =0. 

From Fig. 3 one finds that the tolerance on alignment 
offset reaches an optimum for values of Dt between 5 and 
10. Within this range of Dt, Up is still above unity even 
at A , ~ 3. Beyond this region of Dt the beam-breakup 
becomes severe while below which the beam-beam attrac
tion is not yet strong enough. 

The same data as in Fig. 3 is replotted in Fig. •) as 
a function of Dt and each curve corresponds to a fixed 
value of A, . (The region of large D« and small At is 
not very accurate because of its sensitivity to computing 
errors.) One sees a saturation and decrease of Ho as a 
function of Dt unless A , = 0. One also notices that the 
curves with small offsets, e.g., A , = 0.2, resemble the re 
suits in Refs. S and 6. except that our offset was explicitly 
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Fig. 5. Ho as a function of offset; Round beams. 

and 0, as functions of the initial transverse coordinates XQ 
and yo. For very flat Gaussian beams we have 

Fig. 3. Hi) as a function of ojfstl; Flat beams. 

introduced. In designing a linear collider, one needs to es
timate HD for the chosen D and A. This depends on the 
assesment of. potential imperfections of beam-beam colli
sion. Though arbitrary, it may be safer to adopt the curve 
for Ay = 0.2 or 0.4, instead of A , = 0, as the effective 
enhancement factor. (3) 
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Fig. 4- HD <U « function of Dt; Flat beams. 

Similar exercise for round beams are shown in Fig. 5 
for D up to 50. Here we find the generic behavior as in 
the case for flat beams. 

D I S R U P T I O N ANGLE 

Information on the final direction of the electron tra
jectory after collision is necessary in designing the interac
tion region, especially for the aperture of the final quadrupole 
magnets. If the disruption parameter is very small, the 
transverse location of a particle during collision is nearly 
constant. Then we can estimate the disruption angle t z 

where the quantities in the square brackets can be ex
pressed by the complex error function w(xt/\/2oz) and 
the real error function erffyo/v^ej,). Here the emittance 
is ignored. One finds that the maximum and r.m.s. dis
ruption angles to be 

«. , m .« = 0 . 7 6 5 0 , - i , (*0 = 1.31<r,) (4) 

«,,«.., = \fi/2D,-!- , ( i 0 = 0, y 0 = oo) (5) 

6,,rm. = \l*l(*-Ji)DA (6) 

(Rigorously speaking, for flat beams with large but finite 
aspect ratio, 0\ reaches a maximum near yo ~ <rt and then 
decreases; but this is not important.) 

The distribution functions of 9t and 0, are shown in 
Fig, 6. The actual singularities at 0, = 4 ( , m t , and 0„ = 0 
are not supposed to be as sharp as those in Fig. 6 because 
of finite emittance, various errors, and the disruption ef
fect. However, we found from simulations that the qualita
tive difference between the horizontal and vertical angles 
still holds even for DXlt not much less than unity. 
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Figure T shows the maximum and r.m.s. vertical dis
ruption angle, in units of Dtvt/a„ as a function of Dt. 
Here we consider the case for small D, only. The four 
curves corrrspond to At = 0.1, 0.2, 0.4, 0.8, respectively. 
The dependence on .4, is not as significant as in the case 
of Ho except for the small Dt region, where the beam 
divergence is emittance dominated. (The distribution of 
initial ov is truncated at 2.S standard deviations in the 
simulation.) 

Fig. 7. Maximum and r.in.s. vertical disruption angle. 

The simulation results can roughly be fitted by 

6\A<Ml + (0.5/3,)s]'/|i (?) 

and 8,imat — 2.50v,rmi- Here the contribution of the initial 
emittance (= Ayavla, for 8 , , m l ) has not been included, 
The reason that the angle does not increase linearly in Du 

is that the particle trajectories are bent backwards ana 
oscillate when D, is large. 

So far. the collision is assumed to be bead-on. For 
flat beams the disruption angle in the presense of vertical 
offset is also impart nut in determining the aperture of the 

final quads. The mean deflection angle of the entire bunch 
can be written in the form" 

6 v | 
(8) 

where A„ is the vertical offset in units of a, and the weak-
dependence on A, is ignored. For small-disruptions, the 
function Hc approaches the following analytic form 

JM1V A,) = L-i'1% (9) 

Figure 8 shows Hc as a function of A , computed by sim
ulations, where UGG distribution is assumed. 

Fig. S. Efficlire cenlcr-of-mms dcfttrliau. 

Roughly speaking, the maximum disruption anglr in 
the presense of offsets is the sum of the center-of-mas» 
deflection angle S , and the maximum angle in tin1 alwriw 
of offsets, S)mat. 

KINK INSTABILITY 

If one of the beams is displaced vertically for some 
reason, this offset triggers a vertical oscillation and. when 
D is large, the oscillation is enhanced by the beam-brnni 
force. This phenomena is known as the kink instability. 
Figure 9 shows a specific example. 

In the above figure the bunch is sliced longitudinally 
and the vertical coordinate y of the center-of-mass of cadi 
slice (in units of at) is plotted against the longitudinal 
coordinate s (in units of a,). Each graph corresponds to a 
snapshot of the beam vertical position at a particular time 
I (in units of tf,/c). The development of the instability can 
be seen in time sequence. Tbe initial offset in this example 
is chosen to be 0.2ct (full) and the disruption parameter 

4 
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Fir/, fl. .4« example of kink instability. 

For uniform beams and small amplitude oscillations, 
the equation of motion for the beam particles can be ob
tained from fluid dynamics (the flat beam version of the 
equation is given in Ref. 8), 

where y± is the y coordinate of e + and e~ beams. The 
most unstable solution is found to be 

y± = const. x e x p [ ± i ( — u o a - j l + jwo*] • (11) 

This solution is in reasonable agreement with the simula
tion shown in Fig. 9. Namely, the phase difference between 

e~ and e + bcMns is vanned to be ir/3, and ihc giuiMl. 
rate is as predicted. Furthermore, Fig. 9 clearly duiimii-
strates the standing-wave nature of the kink instability. 
which agrees with the description of Eq. (11). 

So far our discussion on the kink instability deals wiih 
collisions of two bunches. Another type of kink instabil
ity occurs during the collision of two bunch trains, cadi 
consists of Na bunches. One of the major problems of 
such a multibunch operation is the interactions betuwn 
bunches before and after their collisions at the central col
lision point. The i " bunch in the electron bunch train will 
collide not only with the •'* bunch in the positron train. 
but also with the j'(< «)'* positron bunch before its coming 
to the central collision point. Colliding two flat beam* at « 
relatively large crossing angle can help to avoid unwanted 
direct encounters between the outgoing bunch debris and 
the incoming fresh bunches. However, due to the long-

range nature of the Coulomb interaction, there still exists 
undesirable interference between two separated bundle. 
at a distance. Since the crossing angle cannot be nimh-
arbitrarily large due to the luminosity consideration, this 
long range interaction cannot be entirely suppressed. In 
fact, it imposes a severe restriction on the stability of tin' 
beams. 

Consider the encounter between the n" positron bunch 
after collision and the m " (m > n) electron bunch be
fore collision at a distance L from the collision point. A 
schematic diagram of the system is shown in Fig. 10. We 
assume that all the bunch encounters occur within the drift 
space around the central collision point. 

According to Eq. (8), the center-of-mass deflection an
gle for the n" positron bunch is 

Qs» = z-D,HAD,,±)n) , ( 1 2 ) 

Positron 
6-BB Bunch Troin 

60SSA4 

FUj. 10. Schematic diagram far collisions of bunch trains. 



when' - \ „ is the relative offset between the m" electron 
and the n" positron bunch, in units of <?,, at their closest 
encounter. The cumulative offset for the m M bunch before 
arriving at the central collision point is therefore 

Am = C £#,(£>„ M + *m , (13) 

where 6 m is the initial offset of the m"1 beam, and the 
coefficient C is 

C-iW^(g) . (14) 

and 6^ = <r(/<r( is the diagonal angle of the bunch. 

The cumulative offset Am (in units of c(l + C ) m ~ ' ) is 
plotted as a function of the number of bunches in Fig. 11. 
Since the factor 0j/9c must be larger than unity in or
der that the crossing angle does not reduce the luminosity 
significantly, the condition for negligible growth of the in
stability, i.e., A v n & £, according to Fig. 11, is roughly 

( N a - 1 ) 0 , 0 , 6 2 (IS) 

This imposes a constraint on the allowable number of 
bunches per train. 

Fig. 1'.. Cumulative offset as a function of the 
number of bunches. 

The energy spectrum of radiation can be characterized 
by the beamstrahlung parameter T, defined as 

v B 

(16) 

where B is the effective field strength of the beam, and 
Bc = mV/e f t ~ 4.4 x 10" Gauss is the Schwinger critical 
field. For historical reasons, this parameter is related to 
the parameter £ introduced by Sokolov and Ternov, by a 
simple factor 

, _ (critical energy) _ 3 ivy* 
~ (initial energy) ~ 2 ap § ' (IT) 

where a is the instantaneous radius of curvature. Since tin' 
two parameters are trivially related, we shall employ cither 
of them depending on the convenience of the situation. 
The typical value of f during collision is 

d 
rhN 2 
aa,at 1 + ft (18) 

The average value of { is a bit smaller than Eq. (IS) (by 
about a factor 2/3) but we adopt Eq. (18) for the better 
description of the spectrum tail which is contributed more 
effectively from beamstrahlung with larger {. 

The number of emitted photons per electron is 

N-, = NdUoiii), with Nci = 2.12 artN 
<ti +at 

(19) 

where Nj is the number of photons computed by the 
classical formula and f/o(() is the ratio of the quantum-
theoretical number of photons to that from the classical 
theory, and is found to be 

„ . , , l - 0 . S 9 8 f + 1 . 0 6 U s / 3 

u°«) = 1 + o.wap ' ( M | 

where the relative error is within 0.7%. 
An approximate formula for the energy spectrum of 

electrons after collision has been derived recently. The 
details will be given in Ref. 10. Here we only quote the 
results. The distribution function I!'(E) (C = El En), nor
malized as §\l>[t)dt — 1, can be written as 

ENERGY S P E C T R U M O F FINAL ELECTRONS 

The energy apectium of the electrons is important for 
two reasons: The fip of the spectrum, i.e., the distribution 
near the initial beam energy, provides information on the 
energy resolution for high energy physics events. On the 
other hand, the tail of the spectrum, i.e., the distribution of 
the low energy electrons, which had suffered severe energy 
loss through hard beamstrahlung, reveals the likelyhood 
of finding large disruption angles. This second issue will 
be addressed in the next section. 

^ ^ - " ^ ( e - n + j ^ M N i V 1 ' 3 ) ] . (21) 

with 

A+ioo 

Hx) = ± J exp(ip-" 5 + p)dp (A > 0) 

A-too 

£jn!r(n/3) 

(22) 

< 



and 
1 / 1 n 

(23) 

(This formula does not exactly satisfy the normalization 
condition except for (i —> 0 which leads to Ni = N-, = 
JVC|.) The function h(x) can be estimated very accurately 
by with rclativ- -rror less than 2%. Figure 12 compares 
Eq. (21) with the simulation results using the parameters 
for the TLC and the 1LC,"' The design parameters of the 
two colliders are summarized in Table 1, The histograms 
in Fig. 12 are from simulations and the dotted data are 
computed from Eq. (21). The agreement is excellent. 

Table 1. Parameters for TLC and ILC (A,/ • 17mm) 

TLC ILC 

E 0[TeVl 0.5 0.25 
A' 8xl0» 7 x l 0 9 

a,(nin] 190 440 

<7t[nrnl 1 3 

"i [/">•] 26 65 

« 190 147 

i, [mrad] 2.S8 xlO" 1 2 5,2 x l O - 1 3 

t F [mrad] 2.33 xlO-" 5.2 xlO"" 

DT 0.033 0.027 

D, 6.27 3.9 

.4, 0.0002 0.0017 

Ay 0.60 0.37 

•LIU 1.61 1.71 
•6 0.15 0.01 

• / v , 1.33 0.38 

il 3.43 0.19 

• Quantities computed by simulations. 

MAXIMUM DEFLECTION ANGLE 
UNDER BEAMSTRAHLUNG 

The particle which once lost a large fraction of its ini
tial energy through beamstrahlung would in principle be 
severely deflected by the beam-beam field and cause back
ground problems for high energy experiments. Consider 
an electron which emits a hard photon at a particular 
time during the collision and results in an energy cEo, 

Fin. IS. Electron energy spectrum for TLC and 
ILC parameters. 

with t < 1. The effective disruption parameter for this 
particle becomes D . / E and Dy/e. One might think that 
Eqs. (4) and (5) are still applicable by replacing D by Dje. 
However, the collision of a single particle on a beam with 
the disruption parameter D/e is different from the colli
sion bet* uen two beams with D/e, although the qualita
tive feature is the same; i.e., the disruption angle increases 
linearly in D for D & 1 and more slowly for D & 1. 

A simulation was done by monitoring low energy test 

Sarticles through the collision process. The maximum de-
ection angle for a given e is found to be roughly 

D/e 
", y/l + (0.75£>/£)4/J 

( e « l ) (24) 

where D = Dt(Dy) and a = ot(a,) for the horizontal 
(vertical) angle, 

The minimum value of £ can in principle be as small as 
I/7. But the real problem is about how small a £ should 
one care. Since the number of photons ;V7 per beam par
ticle for linear colliders in the near future is of order unity, 
the spectral function 4>{t) given in Eq. (21) is always dom
inated by the factor e~' in the spectrum tail, where y > 1 
(in logarithmic sense). Therefore, if the acceptable back
ground counts is n out of N electrons, then the minimum e 
of concern is approximately determined by y = log(Af/n), 

Cfnin — 
1 

l+f,log(/V/n) (25) 

With this value of c, one can directly estimate the maxi
mum deflection angle using Eq, (24). Since the dependence 

T 



os n ii only logarithmic, one can let n = 1. Thus, for ex
ample, fmin = 0.013(0.188), *,,m«t - 10 (0.95) mrad and 
*i,m«i = 0.4 (0.1S) mrad for TLC (1LC) parameter!, 

ADDENDUM: 
BEAMSTRAHLUNG PAIR CREATION 

After the completion of this paper, the author iden
tified a new phenomenon called "coherent beaimtrahlung 
pair creation" ."'which, together with the incoherent pro
cess studied earlier,"'" would have impacts on linear col
lider designs. Recall that in the case of radiation ty e~(e+) 
during beam-beam collision, there are essentially two mech
anisms that induce the radiation. Namely, there is an "in
coherent" process, or Bremsstrahlung, associated with the 
individual e~«+ scatterings, and there is also a "coher
ent* process due to the interaction between the radiat
ing charged particle and the macroscopic beam-beam EM 
field. At high energies and strong fields, the coherent pro
cess tends to dominate over the incoherent one. This is 
actually why our discussion on beam energy loss has been 
focused only on the beamstrahlung process. 

The beamstrahlung photons once emmited would have 
to travel through the remainder of the oncoming beam 
before entering into free space, and would therefore turn 
themselves into e 'e + pairs. Analogous to the case of ra
diation, photon pair creation also involves coherent and 
incoherent processes. Here again, at high energies and 
strong fields the coherent process will dominate over the 
incoherent one. Once the e"e+ pairs are created with lower 
energies in general, one of the two particles in each pair 
will have the same sign of charge as the oncoming beam 
(For the sake of argument, consider a low energy e + mov
ing against the positron beam). Unlike the case of low-
energy e~ moving against a positron beam, where the po
tential tends to confine the particle in the beam profile, in 
the case of a positron the potential is unconfimng, and the 
particle can in principle be deflected by a large angle and 
thus create severe background problems. This effect would 
therefore impose a contraint on the final focus design. 

It is well known that tbe cross section for incoherent 
pair creation is 

Zu£\ ( v - e e + e ) ~ —orJIog^-^-JcnV (26) 

which is a very slowly varying function of the photon en
ergy w. For TLC, -j = 1 x 10', tbe cross section is ~ 
S x 10~M cm2 for photons at full energy. The beam param-
Hers for TLC listed in the above Table gives the average 
number of the beamstrahluDg photon per beam particle as 
Nf ~ 1.3. On the other hand, it can be sbown'"that the 
effective luminosity for such a cascading process is 1/2 of 
the original. Thus, the number of e"e+ pairs created per 
bunch crossing can be easily evaluated to be 

W , V = 5 « ( 7 « - « + e - ) ^ 2 < 2 x 105 (27) 

220 I where £« = 1.3 x 10lacm"",«ec-,

1 and f^ 
in this design. To be sure, this process provides a non-
negligible amount of e~e + pairs. 

The rate of photon pair creation in s homogencou!-
magnetic field has been studied by many people," and 
has been generalized to inhomogeneous fields by Baier and 
Katkov."' In the asymptotic limits the rate can be ex-
pressed as 

• • ( 
(2*1 

Here \ «= Tu/E plays the similar role as T in the case of 
beamstrahlung. Notice that \ is independent of the initial 
particle energy i>, as the process does not care where the 
photon was originated from. Let 

£•£"» 
To a very good approximation. 

r(v) = o.i6x-'A?/J(l.) 

<29i 

(30. 

for all values of \ . 
Integrating over the collision time — again, only half 

of the e~e+ collision time — we have 

"tig"" 1 3 1 J 

Next we evaluate the mean value of T\\) by weightingover 
tbe beamstrahlung spectral function. 

./jIV) 

(321 
and 

dnj J off, I 7 { V ,. 

"SJ = r?" [J * ! / j ( x) d ' + T7T*h 

<T(T»-/T(x)g4-/?gd-- • (33 
0 ' o 

The total number of e~e + pairs created through this co 
herent process is therefore 

*.'•,- = J J V V W P T T ) ) (341 

A plot of (T(T)) is shown in Fig. 13, where the solid curve 
is from the exact form of <rn(/dw in Eq. (32), and the 
dashed curve corresponds to an asymptotic expression for 
dtn/tL> at large y. The doseoess between tbe two curves 
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Fig, 13. The /unction (T(T)) M. T. 

suggests thM only the spectrum tip contribute effectively 
to the coherent pair creation process. From the TIC pa
rameters, n c | ~ 1.9, so we find that 

AT,',,. ~ 5 x l O T , (35) 

which is much larger than the incoherent process, 
It should be noticed, however, that (T) drops expo

nentially for T S 1. Therefore, for next generation linear 
colliders at the range of 1 TeV, which would typically nave 
Y ~ 1, it is not at all difficult to redesign the machine 
such that the coherent process can be entirely suppressed. 
For the above-mentioned TLC parameters the condition is 
T < 0,3. This, ironically, is an over-kill of the issue since 
the incoherent process corresponds to T ~ 0.6, as can be 
read from Fig. 13. 

Since to a large extent N-, is t-f the order unity and 
quite insensitive to other parameters, and since we usually 
choose to fix the luminosity in a design, the incoherent 
e " e 4 pairs can not be easily suppressed. It is thus impor
tant to evaluate the energy spectrum of the pair created 
e + . Assuming constant probability in finding the e + at 
energy cE < u, the spectrum can be derived to be 

N.*{e): 
7(3/2)' / ) 

1 8 x ^ ( 1 / 3 ) ^ 
WD.Tf'/'Fft.T) . (36) 

The spectral function F{c, T) is plotted in Fig. 14 for T = 
0.2. At the small e limit, F(e, T) oc 1/e. 

Finally, we evaluate the deflection angle of these low 
energy positrons by the beam-beam field. Ai a rough esti
mation, we assume that the vertical field beyond the beam 
height extents constantly to a distance equal to the beam 
width » , . It can be shown'" that the deflection angle for 
the e + with energy e it 

*. = { (37) 

102 
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Fig, H, Tht spectral function for incoherent pan 
created e 4 . 

The deflection angle in the above expression is plotted 
in Fig. 15. For a 1 GeV e + , i, ~ 45 mrad. The information 
on the transverse monemtum can be easily deduced from 
the above expressions via p± = cti,. 
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Fig. 15. The deflection angli as a function of e* energy. 
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