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DISRUPTION, BEAMSTRAHLUNG, AND BEAMSTRAHLUNG PAIR CREATION®
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ABSTRACT

The two major effects from the interaction of e~e*
Irams — beamstrahlung and disruption — are reviewed,
with cmphasis on flat beam collisions. For the disrup-
tion effects we discuss the luminosity enhancement factor.
the maxinmm and rms disruption angles, and the “kink
iustability™, All the results are obtained from computer
stmulations, and scaling laws based on these are deduced
whenever passible, For the beamstrahlung effects, we con-
centrate ouly on the final electron energy spectrum and the
deflection angle associated with low energy particles. In
addition to tle gencric studies on the beam-beam effects,
we also list the relevant Leam-beam parameters obtained
from simulations on two sample designs: the TLC and the
ILC. As an addendum, the newly discovered phenomenon
of colierent beamstrahlung pair creation, together with the
incoherent process, are discussed.

INTRODUCTION

‘There are two major phenomena induced by tbe beam-
heam interaction which are important to the design of
high cnergy linear colliders. Namely, the disruption pro-
cess where particle trajectories are Lnt by the field pro-
vided by the oncoming beam, and the deamstrahlung pro-
cess where particles radiate due to the bending of the
trajectories. The most impartant impact of disruption is
the deformation of the effective beam sizes during colli-
sion, which causes an enhancement on the Juminosity. In
addition, the disruption angle affects the constraints on
the final quadrupole aperture. When the two beams are
calliding with certain initial offset, the disruption effect
between the two beams would induce a kink instability,
which imposes a constraint on beam stability. Ironically,
this instability helps to relax the offset tolerance for flat
Leams, because the offset beams tend to find each other
during the initial stage of the instability. Under a multi-
bunch collision mode, however, the kink instability will
largely degrade the luminosity through the relatively long
growth time. On the other hand, the direct impact of
beamstrahlung is the loas of the available enetgy for high
energy events, and the degradation of beam energy reso-
lution because of the stochastic nature of the radiation.
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Most of the issues raised above can be studicd by
decoupling the disruption and the beamstrahlung cffects.
The energy loss due to beamstrahlung may modily the lu-
minosity enhancement but this eflect can be ignored since
we are only intercsted in the case where the average cnergy
loss is small. Conversely, the average energy loss and the fi-
nal energy apectrum can be studied by assuming no disrup-
tion withoul compromising too much on accuracy. There
is, however, one issue where the two effects are strongly
coupled. This is the maximum disruption angle associated
with the large deflections from particles that have suffered
severe energy loss,

In this report we summarize what has been studied on
these issues with emphasis on flat beam collisious. The
computer simulations are performed using the code ABEL
(Analysis of Beam-beam Effects in Linear colliders) de-
scribed in Ref. 1, but improved considerably siuce il was
first written. Some results given here are still prcliminary
and will be refined in later papers. but their qualilative
features will'not be changed.

LUMINOSITY ENHANCEMENT

Qur primary interest is the enh t of |

ity due to the mutual pinching of the twa colliding Lcaws.
The detaile have been discussed in Ref. 2 for round beuins
and will be given in Ref. 3 for flat beams. As was pointed
out in Ref. 2, the luminosity is infinite if the initial beam is
puraxial and the computation i perfectly accurate. This
is because a paraxial beam can be focused to a singular
point. In reality, however, a beam will always have certain
inherent divergence, and the singularity is only approached
asymptotically. To account for this effect, a parameter
Ary =au/fy, is introduced,?) which is proportional ta
the emittance for a given beam size o;,y. The computed
enhancement factor Hp = L/ Ly, where Ly is the geomet-
rical luminosity ‘without the effect of the depth of fucus
related to A,y taken into account, is plotted iu Fig. 1 as
a function of b. and A for flat beams.

The data in Fi3. 1 are obtained by using a distribution
function which is uniform in z and Gaussian in y and =
(UGQG), instead of a three-dimensional Gaussian distril-
tion (GGG), for easiness of computation. The enhauce-
ment factor of GGG distributions for a given Dy can b
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Fig. 1. Luminosity enhancement faclor for flat beams.

deduced from a superpasition of UGG results with disrup-
tion parameters ranging from O near the horizontal edge
to /G/xDy at the beam center. The enhancement factor
for round beams is shown in Fig. 2.
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Fig. 3. Luminosity enhanccment faclor, round beams.

By comparing Figs. 1 and 2, one finde that the en-
hancement factor for Gat beams scales raughly as the cube-
root of the corresponding value for round beams; which
obeys the following empirical scaling law that fits all data
points in Fig. 2 to within 10% accuracy:

Hp = 1+D'"(HLL3) [mtvB+1)42m(22)] . )

The reason for the flat beam enbancement not being scaled
as a square root of the corresponding value for the round
beam is because the horizontal focusing can enhauce the
vertical pinch effect (and vice versa) in the round beam
case, whereas for flat beams the pinch in the major (hor-
izontal) dimension can bardly affect the disruption in the
minor dinieasion.

In both cases, our results indicate a logrithmic diver-
gence of Hp as a function of A, or Ay. In addition, Hp is
monotonically increasing as a function of D, or D, at least
up to D =100. This second finding of ours is qualitatively
the same as that found by Fawley and Lee* but in contra-
diction 10 Holebeek" and Solysk)? where the enhancement

lg‘:.m first saturates hefore eventually decreases at large

The difference appears to be due to the different ways
of handling stochastic errors, In a Monte Carlo simulation
such as ours, the initial condition is generated by random
numbers, which introduces a statistical fluctuation, and
therefore an asymmetry, of the urder 1//Np, N, being
the number of macro particles. This asymmetry will be
amplified during collision Si.e., kink instability) due to the
beam-beam force, especially when the disruption parame-
ter is large. The fact that the number of macro particle
in a simulation is typically much smaller than the actual
particle number, this fluctuation ie artificially enhanced if
no proper action is taken, To minimize this computation
error, the particle distribution function is symmetrized at
every lime atep in our calculation, so that the beam-bean:
force has the up-down symmetry at all times for the flin
beam case, Similarly, in the round beam case only thu
radial force is computed. This process eliminates the pos.
sible instability triggered by computation errars.

The actual collisions are expecied ta have some un-
avoidable initial offset in alignment and skewness iy dis
tributions. Since the asymmetry in distributions tend to
shift the center-of-gravity of the beams, it gives rise to the
same effect as the initial alignment offscts. For this rearon
our study on the effect of imperfections is concentrated on
initial offsets only.

As will be discussed in the next section. an initial offset
triggers a kink instability. especially when the disruption
parameter becomes large. As it occurs. this instahility is
not always harmful because. in the initial phase of the in-
stability, the beams always tend to find each other. which
prevents the otherwise rapid degradation of the luminos-
ity for large initial offsets. Figure 3 shows the luminasity
enhancemen: factor as a funetion of offset A, (in units of
o) for various values of Dy. The dotted curve is the ge-
ometrical enhancement factor without beam-beam force,
which is equal to exp(-Ai/M. UGG distribution i used
and Ay =0.2 for all curves. The up-down symmetry is tt
enforced except for the cases at &,-=0.

From Fig. 3 one finds that the tolerance ou alignment
offset reaches an optimum for values of D, between 5 and
10. Within this range of Dy, Hp is stili above unity even
at Ay ~ 3. Beyond this region of D, the beam-breakup
becomes severe while below which the beam-beam attrac-
tion is not yet strong enough.

The same data as in Fig. 3 is replotted in Fig. 4 as
a function of Dy and each curve corresponds to a fixed
value of A, (The region of large D, and smali 4, i
not very accurate because of its sensitivily to computing
errors.) One sees a saturation and decrease of Hp as a
function of Dy unless Ay = 0. One also notices that the
curves with small offsets, e.g., Ay = 0.2, resemble the re-
sults’in Refs. 5 and 6. except that our offset was explicitly
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Fig. 3. Hy as a function of offset; Flal beamns.

introduced. In designing a linear collider, one needs to es-
timate Hp for the chosen D and A. This depends on the
assesment of potential imperfections of beam-beam calli-
sion. Though arbitrary, it may be safer to adopt the curve
for A, = 0.2 or 0.4, instead of Ay = 0, as the effective
enhancement factor.
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Fig. 4. Hp a3 a function of D,; Flat bcams.

Similar exercise for round beams are shown in Fig. 5
for D up to 0. Here we find the generic behavior as in
the case for fiat beams.

DISRUPTION ANGLE

Information on the final direction of the electron tra-
jectory after collision is necessary in designing the interac-
tion region, especially for the aperture of the final quadrupole
magnets. If the disruption parameter is very small, the
teansverse location of a particle during collision is nearly
constant. Then we can estimate the disruption angle 6,
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Fig. 5. Hp as a function of offsel; Round beams.

and 0, as functions of the initial transverse coordinates zq
and yo. For very flat Gaussian beams we have

. T _2
a,=_\/§n,:—'zm[}rl E—;V"‘%‘%] . @)

W/\ﬂ'l

where the quantities in the square brackets can be ex-
pressed by the complex error function w(zo/v20:) and
the real error function erf{yo/ \ﬂa,). Here the emittance

is ignored. One finds that the maximum and r.m.s. dis-
ruption angles to be

a,,,...,=o.7ssu,§£ y (zo=13ley)  (4)
[

a.,m" = VI’/ZD':J‘ ’ (30 =0, po= w) (5)
£}
e rms = Vv '/(6‘/5)1):; '
Oyrme = 5/ VRO, L . 6)

(Rigorously speaking, for flat beams with large but finite
aspect ratio, § reaches a maximwm near yg ~ 0, and then
decreases; but this is not important.)

The distribution functions of &, and 8, are shown in
Fig. 6. The actual singularities at 6; = 8, y,e aud &, = 0
are not supposed to be as sharp as those in Fig. 6 because
of finite emittance, various errors, and the disruption ef-
fect. However, we found from simulations that the qualita-
tive difference between the horizontal and vertical angles
still holds even for Dy y not much less thaa unity.
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Fig. 6. Distribution of 0,y for small Dy .
Figure 7 shows the maximum and r.m.s. vertical dis-
ruption angle, in units of Dyay/a,, as a function of D,.
{lere we consider the case for small D; only. The four
curves corrrspond to Ay = 0.1, 0.2, 0.4, 0.8, respectively.
The dependence an Ay is not as significant as in the case
of Hp except for the amall Dy region, where the beam
divergence is emittance dominated. (The distribution of
initial o, is truncated at 2.5 standard deviations in the
simulation.)
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Fig. 7. Mazimum and r.n.s, vertical disruption angle.

The simulation resuits can roughly be fitted by

X 0, D
Spome ~ \[e R T T 05D, TS m

and Oy, mar ~ 2.50y,rmy. Here the contribution of the initial
emittance (= A,o,/a, for 8, :m,) has not been included.
The reason that the angle does not increase linearly in D,
is that the particle trajectories are bent backwards and
oscillate when D, is large.

So far, the collision is assumed to be bead-on. For
flat beams the disruption angle in the presense of vertical
offset is also important in determining the aperture of the

final quads. The mean deflection angle of the entire bunch
can be written in the form”

e' = ';':—:Dyﬁe(Dh Av) . (8)

where A, is the vertical offset in units of g, and the weak
dependence on A, is ignored. For small-disruptions. the
function H. approaches the following analytic form

A,
H.(D,.4,) = [ Vi (9)

Figure 8 shows H. as a function of Ay computed by sim-
ulations, whete UGG distribution is assumed.
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Fiy. 8. Effeclive ceater-of-mass deflection.

Roughly speaking, the maximum disruption angle in
the presense of offsets is the sum of the center-of-mass
deflection angle 8, and the maximum angle in the absense
of offsets, 8, ma:-

KINK INSTABILITY

If one of the beams is displaced vertically for some
reason, this offset triggers a vertical oscillation and. when
D is large, the oscillation is enhanced by the beam-beam
force. This phenomena is known as the kink instability.
Figure 9 shows a specific example.

In the above figure the bunch is sliced longitudinally
and the vertical coordinate y of the center-of-mass of cach
slice (in units of g,) is plotted against the longitudinal
coordinate s (in units of o,). Each graph corresponds to a
snapshot of the beam vertical position at a particular time
t (in units of @, /c). The development of the instability can
be seen in time sequence. The initial offset in this example
is chosen Lo be 0.20, (full) and the disruption parameter
is Dy = 20.
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Fig. 9. Au example of kink instability.

Positron
Bunch Train

e” and et beams is varified 1o be £/3, and the grovih
rate is as predicted. Furthermore, Fig. Y clearly deinon-
strates the standing-wave nature of the kink instability.
which agrees with the description of Eq. (11).

So far our discussion on the kink instability deals witl
collisions of two bunches. Another type of kink instabil-
ity occurs during the collision of two bunch trains. cach
consists of Ng bunches, One of the major problems of
such a multibunch operation is the interactions between
bunches before and after their collisions at the centra) col-
lision point. The i bunch in the electron bunch train will
collide not only with the i bunch in the positron traiu.
but also with the j(< i) positron bunch before its coming
to the central collision point, Colliding two flat beams at a
telatively large crossing angle can help to avoid unwanted
direct encounters between the outgoing bunch debris and

“the incoming fresh bunches. However, due to the lung:

“-@® — — — -4 Electron
m-3 Bunch Train

Central Collision
Point

S0B5AS

Fiy. 10. Schematic diagmm for collisions of bunch traina.

For uniform beams and small amplitude oscillations,
the equation of motion for the beam particles can be ob-
tained from fluid dynamics (the flat beam version of the
equatjon is given in Rel. 8),

&5

9, 012
b—;ia} Yy = —w:(y:h"‘lﬁ)'

where y4 is the y coordinate of etand e~ beams. The
most unstable solution is found to be

vi=c0nl'..xexp[ﬂ:i(guoa—%)-l-%wu!] .1

This solution is in reasonable agreement with the simula-
tion shown in Fig. 9. Namely, the phase difference between

rauge natuee of the Coulomly interaction. there still exists
undesirable interfercnce between two separated bunclhies
at o distance. Since the crossing angle cannot be mile
arbitrarily large due to the luminosity consideration. this
long range interaction cannot be entirely suppressed. In
fact, it imposes a severe restriction on the stability of the
beams.

Consider the encounter between then' positron bunch
after collision and the m™ (m > n) electron bunch be-
fare collision at a distance L from the collision paint. A
schematic diagram of the system is shown in Fig. 10. \e
assume that all the bunch encounters occur within the drift
space around the central collision point.

According to Eq. (8), the center-of-mass deflection an-
gle for the n'® positron bunch is

Opn = (12)

1
5-?_-0,H,(Dy.:5,n) .



where 3, is the relative offset between the m* electron
and the n* positron bunch, in units of gy, at their closest

encounter. The cumulative offset for the m™ bunch before
arriving at the central collision point is therefore

Bm=C Y HeDyln)+ém (13)

acm

where 6., is the initial offset of the m" beam, and the
coefficient C is

H
€ = D,D, %f) . (14)

and 64 = 64/, is the diagonal angle of the bunch.

The curnulative offset Am (in units of §(1 4+ C)™) is
plotted as a function of the number of bunches in Fig. 11.
Since the factor 04/0. must be larger thao unity in or-
der that the crossing angle does not reduce the luminosity
significantly, the condition for negligible growth of the in-
stability, i.e., Ayn S 6, according to Fig. 11, is roughly

(Ny=1) DDy S2 . (18)

This imposes & constraint on the allowable number of
bunches per train.
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Fig. 11, Cumulative offset as a function of the
number of bunches.

ENERGY SPECTRUM OF FINAL ELECTRONS

The energy spectium of the electtons is impartant for
two reasons: The tip of the spectrum, i.e,, the distribution
near the initial beam energy, provides information on the
energy resolution for high energy pbysics events. On the
other hand, the {ail of the spectrum, i.e., the distribution of
the low energy electrons, which had suffered severe energy
loss through hard beamstrahlung, reveals the likelyhood
of finding large disruption angles. This second issue will
be addressed in the next section.

The energy spectrum of radiation can be characterized
by the beamstrahlung parameter T, defined as

Y=t | (16)
(3

where B is the effective field strength of the beanm. and
B. = m?c®/eh ~ 4.4 x 10" Gauss is the Schwinger critical
field, For histarical reasons, this parameter is related to
the parameter { introduced by Sokolov and Ternov, by a
simple factor

€= (critical energy) _ 3742
= (initial energy) 2 ap

3 -
=§T N “l)

where g is the instantaneous radius of curvature. Since the
two parameters are trivially related, we shall employ either
of them depending on the convenience of the situation.
The typical value of £ during collision is

i . (18)

The average value of £ is a bit smaller than Eq. (18) (by
about a factor 2/3) but we adopt Eq. (18) for the better
deacription of the spectrum tail which is contributed more
effectively from beamstrahlung with larger €.

The number of emitted photons per electron is

\ ar. N
Ny = NyUa(&y), with Ny = 2'12"2_'“’; . (19)

where N is the number of photons romputed by the
classical formula and Up(£) is the ratio of the quantum-
theoretical number of photons to that from the classical

theory, and is found to be"

1 — 0.598¢ + 1.061£3/3

Uﬂ(‘) = ] + 0'92261 \

(20)
where the relative error is within 0.7%.

An approximate formula for the energy spectrum of
electrons after collision has been derived recently. The
details will be given in Refl. 10. Here we only quote the
results. The distribution function #(c) (¢ = E/Eu). nor-
malized as [ {e)de = 1, can be written as

wle) e [Ble — 1) + bV L (1)

with

Asioo

f exp(zp™? + p)dp (4> 0)
A-fco (‘)‘))

1
2ri

h(z) =

F 1
=) T (n/3)

=1



T

and

=11
y—f)\E 1,
1 3V
= Ny 2 N
el oy rUChl ol 23)

(This formula does not exactly satisfy the normalization
condition except for §4 — 0 which leads to Ny = Ny =
N.1.) The function h(z) can be estimated very accurately
by with relative -ror less than 2%. Figure 12 compares
Eq. (21) with the simulation results using the parameters
for the TLC and the ILC." The design parameters of the
two colliders are summnarized in Table 1. The histograms
in Fig. 12 are {rom simnlations and the dotted data are
computed from Eq. (21). The agreement is excellent.

Table 1. Parameters for TLC and ILC (A = 17mm)

TLC ILC
Eq{TeV| 0.5 0.2%

N g x10° 7% 10°
o3(nm) 190 440
ay|nm| 1 3
as|um] 26 65

R 190 147

¢; {mrad} 2.58 x10712 5.2 x10-1?
¢y [mrad] 2.33 x107M 5.2 x10-14

D, 0.033 0.027

D, 6.27 39

Ar 0.0002 0.0017

4y 0.60 0.37
=Ll 1.61 1.7

"5 0.15 0.01

* N, 1.33 0.38

& 343 0.19

» Quantities computed by simulationa.

MAXIMUM DEFLECTION ANGLE
UNDER BEAMSTRAHLUNG

The particle which once lost a large fraction of its ini-
tial energy through beamstrahlung would in principle be
severely deflected by the beam-beam field and cause back-
ground problems for high energy experiments. Consider
an electron which emits a hard photon at a particular
time during the collision and results in an energy ¢Ep,
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Fig. 12. Electron encrgy spectrum for TLC and
ILC parameters.

with € «¢ 1. The effective disruption parameter for this
particle becomes D /e and Dy/e. One might think that
Eqgs. (4) and (5) are still applicable by replacing D by D/e.
However, the collision of a single particle on a beam with
the disruption parameter Dfe is different {rom the colli-
sion betv en two beams with D/e, although the qualita-
tive feature is the same; i.e., the disruption angle increases
linearly in D for D S 1 and more slowly for D 2 1.

A simulation was done by manitoring low energy test
guticles through the collision process. The maximum de-
ection angle for a given ¢ is found to be roughly

) o Dle
™ 0y 1+ (0.75DJep B

where D = D.(D,) and ¢ = o.(o;) for the horizontal
(vertical) angle,

The minimum value of ¢ can in principle be as small as
1/4. But the real problem is about how small a ¢ should
one care. Since the number of photons N, per beam par-
ticle for linear ¢olliders in the near future is of order unity,
the spectral function ¥(e) given in Eq. (21) is always dom-
inated by the factor e~ in the spectrum tail, where y > |
(in logarithmic sense). Therefore, if the acceptable back-
ground counts is n out of N electrons, then the minimum e
of concern is approximately determined by y = log(N/n),
or

(e 1) (24)

1
Emin = ¥ €1 og(N/n)

With this value of , one can directly estimate the maxi-
mum deflection angle using Eq, (24). Since the dependence

(25)



on n is only logarithmic, nne can set n = 1. Thus, for ex-
ample. ¢mn = 0.013(0.188), 8¢ mes = 10 (0.95) mrad and
8y maz = 0.4 (0.15) mrad for TLC (ILC) parameters.

ADDENDUM:
BEAMSTRAHLUNG PAIR CREATION

After the completion of this paper, the author iden-
tified a new phenomenon called “coherent beamstrahlung
paIr creation” yhich, together with the jucoherent pro-

ceas studied earlier,”""' would have impacts on linear col-

bider designs. Recall that in the case of radiatior hy ¢~ (e*)
during beam-beam collision, there are essentially two mech-
anisms that induce the radiation. Namely, there is an “in-
coherent” process. or Bremsstrahlung, associated with the
individual e~e* scatterings, and there is also a “coher-
ent” process due to the interaction between the radiai-
ing charged particle and the macroscopic beam-beam EM
ﬂe?d. At high energies and strong fields, the coherent pro-
cess tends to dominate over the incoherent one. This is
actually why our discussion on beam energy loss has been
focused only on the beamstrahlung process.

The beamstrahlung photons once emmited would have
te travel through the remainder of the oncoming beam
before entering into free space, and would therefore turn
themselves into e~e* pairs. Analogous to the case of ra-
diation, photon pair creation also involves coherent and
incoherent processes. Here again, at high energies and
strong fields the coberent process will dominate over the
incoherent one, Once the e~e* pairs are created with lower
energies in general, one of the two particles in each pair
will have the same sign of charge as the opcoming beam
(For the sake of argument, consider a low energy e* mov-
ing against the positron beam). Unlike the case of low
energy e~ moving against a positron beam, where the po-
tential tends to confine the particle in the beam profile. in
the case of & positron the potential is unconfining, snd the
particle can in principle be deflected by a large angle and
thus create severe background problems. This effect would
therefore impose a contraint on the final focus design.

It is well known that the cross sectiou for incoherent
pair creation is

o(ye ~cete™) ~ Z?Barz log(z':—f)cmz . (26)

which is a very slowly varying function of the photon en-
ergy w. For TLC, 7 = 1 x 10%, the cross section is ~
5x10~% cm? for photons at full energy. The beam param-
~ers for TLC listed in the above Table gives the average
number of the beamstrablung photon per beam particle as
Ny ~1.3. On the other hand, it can be sbown "that the
effective luminosity for such a cascading proces is 1/2 of
the original. Thus, the number of e~e* pairs created per
bunch crossing can be easily evaluated to be

1 _N,L
Nie- = i-a(-,e —ecte )-—Lf ~2x10° , (27)

where Lee = 1.3 x 10¥%cm—%sec™?, and [,y = 220 sec™!
in this design. To be sure, this process provides a non-
negligible amouat of e“e* pairs.

The rate of photon pair creation in a homoagencous
maguoetic field has been studied by many people.* and
has been generalized to inhomogenecus fields by Baier and
Katkov!” In the asymptotic limits the zate can be ex-
pressed as

~8/3;
dl ﬁ% ot Ha IR

FTie #(Dm% F) |y

Here x = Tw/E plays the similar role as T in the case of
beamstrahlung. Notice that ) is independent of the initial
particle energy 7. 48 the process does not care where the
photon was originated from. Let

(25%)

dl _ aY
%= -;‘?T(n) . (2%

To a very good approximation. "
™ 4
T(x) = 0.167 ‘l\,’,,(ﬁ) . {304

for all values of y.

Iotegrating over the collision time — again, only hall
of the e"e* collision time — we have

V3ie,aY

2 2y
1
= En"T(\)

Tin
(3

Next we evaluate the mean value of T'(y ) by weighting over
the beamstrahlung spectral function.

o
dny _ laos . &y .
-1z {!A,,,(:)d: +H tu""”m}

and

32y

£ E
_ dny . dny |
@y = [T / e . @,
o [
The total npumber of ¢~e* pairs created through this co.
herent process is therefore

Noyo = %N.,n.,(T(T)) ‘ (34)

A plot of (T(T)) is shown in Fig. 13, where the solid curve
is from the exact form of dny/dw in Eq. (32), and the
dashed curve cotresponds Lo an asymptotic expression for
dny/dus at large y. The clogeness between the two curves
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Fig. 18. The function (T{T)) vs. T.

suggests that oply the spectrum tip contribute effectively
to the coherent pair creation process, From the TLC pa-
rameters, ne; ~ 1.9, 50 we find that

NS, ~5x10" | (3%

which is much larger than the incoherent process,

It should be noticed, however, that {T') drops expo-
nentially for T 5 1. Therefore, for naxt generation linear
colliders at the range of 1 TeV', which would typically have
T ~ 1, it is not at all difficult to redesign the machine
such that the coherent process can be entirely suppressed.
For the above-mentioned TLC parameters the copdition is
T £ 03. This, ironically, is an over-kill of the issue since
the incoherent process corresponds to T ~ 0.6, as can be
read from Fig. 13.

Since to a large extent N, is =f the order unity and
quite insensitive to other parameters, and since we usually
choose to fix the luminosity in a design, the incoherent
e~et pairs can not be easily suppressed. It is thus impor-
tant to evaluate the encrgy apectrum of the pair created
et Assuming constant probability in finding the et at
energy £€E € w, the spectrum can be derived to be

7(3,2)2/1 P}

Nete) = EarTay 7m

ND,T¥F(,T) . (36)

The spectral function F(e, T) is plotted in Fig. 14 for T =
0.2. At the small ¢ limit, F(e, T) & 1/e.

Finally, we evaluate the deflection angle of these low
energy positrons by the beam-beam field. Av & rough esti-
mation, we assume that the vertical field beyond the beam
height extents constantly to & distance equal to the beam
width ;. It can be shown™ that the deflection sngle for
the e* with energy ¢ is

avi | 620
b= s & " 2 (37)
2wl Kk
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Fig. 1{. The spectral function for incoherent parr
ereaied et

The deflection angle in the above expression is plotted
inFig. 15. Fora 1 GeV e*, 8, ~ 45 mrad. The information
on the transverse monemtum can be easily deduced from
the above expreasions via p; = ¢d,.
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Fig. 18. The deflection angle as a function of e* caergy.
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