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ABSTRACT 

Tim* major effects from the interaction of e"*t~ beams — disruption, beani-
strahlung, and electron-posilrou pair creation — are reviewed. For the disrup­
tion effects we discuss the luminosity enhancement factor, the maximum and rm.< 
disruption angles, and the "kink instability . All the results arc obtained from 
computer simulations. Scaling laws for the numerical results and theoretical ex­
planations of the computor aquired phenomena are offered whereever possible. 
For the beamstraldung effect* we concentrate only on the final electron energy 
S|KI truin resulting from multiple photon radiation process, and lite deflect ton an­
gle associated with low energy particles. For the effects from tied rori-positrod 
pair creation, both coherent and incoherent processes of beainstrahlung pair cre­
ation arc discussed. In addition to the estimation on total number of such pairs, 
we also look into the energy spectrum and the deflection angle, 

1- INTRODUCTION 

There are three major phenomena induced by the beam-beam interaction 
which are important to the design of high energy linear colliders. Namely, there 
is the disruption process where particle trajectories are bent by the collective 
EM field provided by the oncoming beam, and there is the btamstratilung process 
where particles radiate due to the bending of the trajectories. The third major 
phenomenon, i.e., the electron-positron pair creation, is associated with the fact 
that during collision any high energy photon has a finite probability of turning 
itself into a e + e~ pair with lower energy in general. 

The most important impact of disruption is the deformation of the effective 
beam sizes during collision, which causes an enhancement on the luminosity. In 
addition, the disruption angle affects the constraints on the final quadrupote aper­
ture. When the two beams are colliding with certain initial offset, the disruption 
effect between the two beams would induce a kink instability, which imposes a 
constraint on beam stability. Ironically, this instability helps to relax the offset 
tolerance for flat beams because the offset beams tend to find each other during 
the initial stage of the instability. Under a multi-bunch collision mode, however, 
the kink instability will largely degrade the luminosity through the relatively long 
growth time. On the other hand, the direct impact of heamslrahlung is the loss of 
the available energy for high energy events, and the degradation of beam energy 
resolution because of the stochastic nature of the radiation, Furthermore, the low 
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eiiergi particle* resulting either from heamslrahhing ur from pair creation would 
lit* seveiely deflected by the strong beam-beam field, ami would therefore impure 
constraints in tin- design of tin- lineal collider interaction point region. 

Most of I lie issues raised above can be studied by decoupling Die disrupt ion 
and the hearitstraldu rig effects. The energy loss due to beamslrahliirtg may modify 
the luminosity enhancement, but this effect can be ignored since we are onl) 
interested in I he case where the average energy hiss is small. Conversely, the 
a\ ei age energy loss. I lie iinal energy spectrum and the pair creat ion process ran he 
sindied by assuming no disruption without compromising too much on accurac. 
There is, however, one issue where the two effects are strongly coupled. This is 
I he iii.t\iiiiiim disruption angle associated with the large deflect iim*- from the low 
emig) | nil titles 

In litis lecture we review what has been studied on these issues The compute! 
simulations are performed using the code ABEL (Analysis of Beam-beam Kffeeis 
in l.iix'iii lolliders) described in Hef. 1, but improved considerably since il w.i* 
liisl written. Altlioiigh it is attempted to make this lecture pedagogical, III.HIY 
details air lelucianlly omitted to avoid lenglhiness The reader is urged to consult 
the .tiled references in these circumstances. 

2. D I S R U P T I O N E F F E C T S 

It will he shown in this chapter that all the disruption effect!; can be well 
described hy two I.urciilz invariant parameters. Namely, one is the disruptm\i 
puratntitr I), defined as 

D.,- *•.'•" , . m i 
7<T I # V (<X, + a9) 

where rc is the classical electron radius, -) the Lorentz factor of the reialivistic 
beam, and oz^ay,at the rms beam size. Physically, D measures the strength of 
mut'ia! focusing between the two beams. The other is the A parameter, delincd 
as 

where fit „ are the 0 functions at the interaction point of the t + t~ beams. 

Physically, A measures the inherent divergence of the incoming beam. This 
is important hecanse the collision process takes place within several a^s around 
the interaction point, and the natural variation of the beam size over such a 
distance due to the fimlettess of the ^-function would have significant imparl 
on the disruption process. In the stud)* of disruption effects one often chooses 
t<- fix the lieani size an (for round beams) or at and av (Tor flat beams) at the 
interaction point so that the nominal luminosity (in the absence of disruption) 



Sr 

ran In- <.«jnipulrd. In such raw .4 is related lo the invariant emit lance t„ via the 
rdaliiiii .4 = tnOt{-ta^, FutheniiuTe, one caw easily verify that A/P manifest*, ihe 
iniiial jiliaii- space area per particle of the beam in units of the .lassical electron 
radius: 

D rtN ' ! ' 

which ib independent uf the optics lliai the beam experience;*. Similri] <*i gmiirnis 
rtJsu apply lo Hat beams. 

In this lecture we assume the same iniiial paiamrters for tlie colliding elect run 
ami positron beams. The longitudinal coordinate A is fixed 10 the center-of-mass 
Iran M- whose origin is I lie collision point of (In- two ft mull centers. Tin' time 
courdmatr / ib deftm-d such ihal t •= 0 when the two bunch center?, rulJide. \\«* 
further introduce the longitudinal coordinate* z} (j — 1,'iJ co-muving with tin-
Ivm hunches. The origin of 2t is llie center of the j l h btincli. and z} ib posit i w 
along the direction uf motion of the beam (see Fig. I). 

H - t H— i 

- • ; — v » » ,' ^ — ? -
I 

• - •» 5 = 0 S ( j * A I 

Fig. I. Schematic diagram that defines tfti vanous cour-
dinatts of the tvit colliding bunches. For a test particU 
in bunch 1 at zi = z. the relative coordinate with rtiptrt 
to bunch 2 is 22 = —2/ — z. 

In our calculations we shall ignore the longitudinal component of the focusing 
force, which is of the order !/-> smaller th2.i1 the transverse component. Thus ihe 
coordinate z} of a particle is a constant in t. It is easy lo see thai particles in one 

4 

http://th2.i1


hunch ihcii arrive al > al linif / should have their cu-iuoving coordinate zt related 
lo s by 

i = Zi + / , [2-1 » 

when- \vi- adopt the roiivviitioti thai the speed of light r = I. On the other band, 
parlicli-s in I In* opposite huneh arriving al the same spare-lime point wuuld have 
theii co-moving coordinate :•» related by 

5 = -z-,-1 . (2.5] 

With lliesn- relation** in mind, the lumiiiusily fur .-1 = U is defined by 

£ = J/.V- IJxtlydsdt Hi(r.y.:iJ)ti,{s,y.:,,t) , 12.1 i) 

where / is the repi-thion ratenf collisions, and iJj(j", JJ.-J./J Ihe distribution fuuc 
lion nf the ylli beam at time t, normalized such that 

/ 
nt tx .g . f j . fW-n' jp f - j 3 1 ! . j = I , 2 . ( 2 i ) 

Sunt- we iguote the longitudinal force, the loiigiludinal distribution!, an- constant 
in l ime, i.e.. 

/ ii,[x,y,Sj.l) ilsdy - nM(Zj) - -J~^ « P " ^ j (2.{i) 

In the absence of disruption, the luminosity in Eq. i'2.6] can be straightfor­
wardly integrated (assuming Gaussian distributions) to get 

U - ^ • CM) 
4*05 

When ,4 ^ 0, the above expression should be modified to take into account 
the variation of the beam cross section due lo the change of the # function around 
the interaction point. This can be done by introducing a reduction factor n.,; 

0 

such that I he luminosity for a finite .1 in the absence of disruption is 

CA = iiAL0 . (2.11 J 

Numerically, jfA ~ fj.7l> at A = 1.0, and rapidly approaches unity for A < I. 
Since a reasonably designed accelerator wuuld presumably be chosen to work in 
the regime where A < I lo avoid degradation on luminosity, we find it convenient 
to use £n as a reference parameter for all values of A. 
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When the disruption is included, the effective luminosity C would be different 
from /To, and a luminosity enhancement factor lljj is introduced to at fount for 
the change 

Ho = £ • (2.12) 

Note tliat with HJJ so defined without t)A involved, it is possible that / /« & 1 
when D is small bul A is large. 

By the same token, we introduce a disruption angle enhancement factor tig. 
In the weak focusing limit ivhcre D <£ 1, the approximate solution of the eijuat ion 
of motion for a particle with impact parameter ro can be shown lo be 

dt 
/mat 

Thus the nominal disruption angle can be defined as 

* . ^ « / » 2 . (2-14) 

The effective disruption angles ftp for an arbitrary D is generally different from 
6a, so 7/tf is defined as 

"* = ^ . (2.15J 

2.1 Luminosity Enhancement Without Offset 

Our primary interest is the enhancement of luminosity due to the mutual 
pinching of the two colliding beams. The details have been discussed iti Ref. 2 for 
round beams and will be given in Ref. 3 for flat beams. As was pointed out in 
Ref. 2, the luminosity is infinite if the initial beam is paraxial and the compu­
tation is perfectly accurate. This is because a paraxial beam can be focused lo 
a singular point. In reality, however, a beam will always have certain inherent 
divergence, and the singularity is only approached asymptotically. To account 
for this efTect, as mentioned earlier, a parameter AttV = a1/0*v is introduced,-'1 

which is proportional to the emittance for a given beam size <rx>y. The computed 
enhancement factor Up = £ /£o, where £g is the geometrical luminosity without 
the effect of the depth of focus related lo Ax>y taken into account, is plotted in 
Pig. 2 as a function of Dy and Ay for flat beams. 

The data in Fig. 2 are obtained by using a distribution function which is 
uniform in x and Gaussian in y and z (UGG), instead of a three-dimensional 
Gaussian distribution (GGG), for easiness of computation. The enhancement 
factor of GGG distribution-i for a given Dv can be deduced from a superposition 
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I-'tg 3. Luminosity enhancement factor for round btams. 

of VUG results with disruption parameters ranging from 0 near the horizontal 
edge lo y/&/ n Dv at the beam center. The enhancement factor for round beams 
la shown in Fig. H. 

By comparing Figs. 2 and 3, one finds that the enhancement factor for flat 
beams scales roughly as the cube* root of the corresponding value Tor round beams; 
which obeys the following empirical scaling law that fits all data points in Fig. 2 



to within 10'/ accuracy. 

/ / W ^ I + / J , / 4 ( I T ^ ) [ M V ^ + , ) + J / " ( T ) 1 { 2 , n 

Tlie reason fur the flat beam enhancement nol being scaled as a square root of 
llie corresponding value for the round beam is because the horizontal focusing ran 
enhance the vertical pinch effect (and vice versa) in the round beam case, whereas 
fur Hal beams the pinch in the major (horizontal) dimension can hardly alfet I the 
disruption in the minor dimension. 

hi both cases, the Ctien-Yukuya results indicate a logrithuuY divergence of 
11D as a function uf .4, or AM. In addition. Up is inonotonirally increasing as a 
funrtion of D, or Dv. at lea.si up to D =100. This second point is qualitatively the 
same as thai found by Fa w ley and Let- bul in contradiction to Ijolrltfek' and 
So'yak*' when- the enhancement factor first saturates before eventually decreases 
at large ZVs. 

The difference appears to be due to the different ways of handling stochastic 
errors. In a Monte Carlo simulation the initial condition is generated by random 
numbers, which introduces a statistical fluctuation, and therefore an asymmetry, 
of the order I / ^ / ^ T ^V »<*"»g the number of macro particles. This asymmetry will 
be amplified during collision (i.e., kink instability) due 1o the beam-beam force. 
especially when the disruption parameter is large. The fact that the number of 
macro particles in a simulation is typically much smaller than the actual particle 
number, this fluctuation is artificially enhanced if no proper action is taken. To 
minimize this computation error in the study of luminosity enhancement without 
offset, the particle distribution function should be symmetrized at every lime step 
in the calculation, so that the beam-beam force has the up-down symmetry at all 
times for the flat beam case. Similarly, in the round beam case only the radial 
force is computed. This process eliminates the possible instability triggered by 
computation errors. 

The actual collisions are expected to have some unavoidable initial offset in 
alignment and skewness in distributions- This effect will be discussed in the next 
section. 

In order to analyze the physical mechanism of the disruption process which 
give rise to the Hy behavior shown in Figs. 2 and 3, it is useful to investigate 
the lime evolution of Hp. The differential luminosity (per unit lime), dCjdt, can 
be defined ai 

- r - = 2 /yV 2 Idxdyds mtx , ! , , * , , ! ) n2(x,y,z-2,t) . (2.1.2) 
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Hy the same token the dilh-rcntial luminosity enhancement factor, dltufdt. is 
defined by 

clHu 1 dC 
dt £o dt 

such tlial 

(•J.l.:t( 

—oc-

Iti I lit- absence of disruption it is easy to see that 

—7— = —7= e x p < — I T ? . (-'1 J) 

and fntin thi*expression J{dIIjj/dt)dt = 1, by definition. Figure-1 shows dllnjdt 
a* a fiimi iuii of 1 in it- for various values of D for round beams, Silimar behavim 
is al.su seen for Hat beams, though not as dramatic. Here the parameter .1 is 
fixed al 0.05, and the time / is in units of ax/c. In spite of (he fact that the IIu 
curves in Fig. .1 are reasonably smooth for each fixed value of A, the curves shown 
111 Fig I reveals dilTerent characteristics throughout the entire range of the value 
of I). 

I or very small and very large Z)'s, dlfjj/dt varies as a Gaussian function 
(although for large D regime there are small wiggles superimposed), while for 
medium values of 1) there is an obvious spike. 

For very small / ) , e.g., D JS 0.6, we find that dllp/dt varies essentially as 
Fi|. ('2.1.5), which reflects the square of the longitudinal particle distribution of 
the bunch. When D ~ 0.5, a second peak appears at t ~ 1.6 at/c. The peak 
gruws as /.) gets larger, and eventually becomes the dominant source for the lumi­
nosity enhancement by D ~ 0.7. Notice also that the location of the second peak 
shifts gradually to the left as D increases, where the strong disruption induces the 
phenomena to occur earlier in time. Furthermore, while the buildup of the second 
peak becomes steeper, its falloff becomes smoother as D increases. This phenom­
ena of a second peak appears in the region 0.5 & D ^ 5. Beyond D ~~ 5, the 
differential luminosity evolves into a new regime. The "second" peak now occurs 
right near the beginning of the collision, and its smooth falloJJ i\ow recovers the 
Gaussian-like variation, except that there appear to be high-frequency wiggles su­
perimposed. While the time evolution of dll^jdl in both the small and the large 
D regimes behave similarly, their absolute values are distinctively different. 

It turns out that the underlying physical mechanisms are indeed very different 
in Hie above mentioned three regimes of D, classified as follows: (1) the small D 
{D %, 0.5), or the weak focusing regime, (2) the medium D (0.5 ^ D £ 5), or 
the transition regime, and (3) the large D (5 J$ D), or the pinch confinement 
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Fig. 4- Computer analysis ou tin Itmt evolution of tin 
luminosity erJianctmtnt factor HD, at various difftrt >t 
valuts of D with A = 0.05. 

regime. In the following sections we shall provide theoretical descriptions that 
qualitatively explains*the phenomena occurs in the three regimes. 

2.2 The Weak Focusing Regime 

The weak focusing regime corresponds to the range 0 < D £ 0.5. For such 
small values of £>, dlly/dt is essentially described by the Gaussian function in 
Eq. (2.1.5). The correction to this expression to the first order in D can be derived 
in the following way. For the sake of argument we assume A = 0. This is justified 
because it turns out that there is no divergence at A = 0 in the correction term 
linear in D, i.e., to this order the correction arises only through the radial motions 
of the particles. 

The equation of motion of a particle at ?j in a bunch is 

dp 
4AV-

Mr)nA-2t~zi). (2.2.1» 
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A ao = I / "To(r)rdr . (2.2.2) 

wlit-rr 7i,u(r-) is tlit- uuptTlurtifd radial distribution fund ion normalized such ili.il 
/ "ni(i) fi/r = I. To derive the firs! ordL-r rorrertiun we had assumed iinpi-riurhnl 
ilialnlmliuii (tii 1 h«- right -hand suit* of K<j. (2.2.1). TIIF solution of V.i\ (2.2.1) ivilh 
initial i oiidilions r = ru, and dr/dt = 0 al ' = —oc i* given by 

4 Vr 
rit.zt) = rti — - /u(ro} 90--t) (2.2.:i) 

W i l l i 

liquation (2.2 3) tan U- inverted as 

r„ = r + /u|r) 5 ( i , ; j ) , -'•JJ) 

within the same order of accuracy. For our purpose- we like lo know the perturbed 
radial distribution fuurnou n,(r) al (*,;i) This can lit' found by 

" r l ( » ' , f , 7 | ) = » r o ( r 0 ) 

= " ro ( r ) 

rf(r-') 

, 4A'r> / 1 dnT0 . , , \ 
(2.2.5| 

Accordingly, the luminosity can be evaluated as 

•+»*)/2 
C a. I rdrdzi dz. nA:\) n,{=•£•) «r i (r . ' .* l ) «r i ( r , l , £ a ) 

J I Ji=-t*n 

- / rdrdz1dz-int(iii)nt(s-£)[»To{r)\' 

x ( l ^ ( J - ^ /„ + „,„) [,(,,„) + ,(,,„)]} 
(2.2.0) 
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wlw-r<- tin* leading 1«TJJI (unity) <orr«-sjjcjrids to tin- nominal lmuinot.il>' £o 'I!«' 
integral i«u ov«*i r inn la' rarried out, which giv«-s 

0 0 

Thus tin- luminosity eiiliaixanient fa*lor for small /J is 

4/nfr-V 

I (2.2.7) 

«l , = 1 4 
4/Vr, 

(2.2.M 

Sinn- tin- two colliding hunch*-* are symmetric. g|/,rjj and «f(*.r») cuntnl»i]l<' 
equally to ///>, where 

?C • i 

Then-furr 
(2.2.9) 

t [J r^r»ioi J J J 

4A'r- T f r<fr n! 0 l J , / 
7 IJ ™frn;J 7 7 :) . (2.2.10) 

Now we introduce normalized coordinates p = r/u ( l, and £ = e/a,. Thru 

oo oc 

"D = ! + / J [ J pX«t\ Idc / r j r B * i ° U,[T+ 

0 0 

For Gaussian and uniform distributions, this leads to 

v) • (2.2.11) 

n D 
=,+„,{» (radially Gaussian) 

5 (radially uniform) 
| | 4 j (longitudinally Gaussian) | 

J \ ~Jl (longitudinally uniform) J 
(2 2.12) 
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This fin inula agree* wry well with the simulation results for /> & O.fi. Nolne 
that for I) <t\ !, tin- empirical expression Tor Ity in K<i. (2.1.1 J behaves a» I)1''** 
which is by mi means dost- to the linear behavior in Eq. (2.2.12). This i-> mainU 
because fif tin- need lo suppress I he strung tn[\jA) dependence in Eq. (2.L1) iti 
the small l> regime. This strong (u{i/A) dependence, however, is necessary li> lit 
Lhe nieiliuni ami large D regimes. 

Itigoiously speaking, lip cannot he Taylor expanded around D — (J. Jn 
deriving Eq. ('J.'2-1) we have assumed that the first term ru on it.U.S. of Eq. (2.2.3 J 
is much larger than the second term. This is not the case when / becomes large, 
no inniU-r how small f) is. One obvious example is thai al the focal point tlie 
two tiling would heroine equal. For f) <£ 1, however, this focal point lies far 
beyond the tail <>r the oncoming bunch, thus the subtlety mentioned above is 
alleviated. To be more explicit, front linear optics it is easy to see that the focal 
length in 1 he- weak focusing regime is proportional to at/Dt thus the density of 
the oncoming beam around the focal point is proportional (o exp { — 1/2 D~] <£. \ 
Since lln comes from multiplication of the local densities of the two bunches, the 
contribution fioin the focal point is exponentially small, 

2.3 The Transition Reg ime 

The transition regime is characterized by the appearance of lite second peak 
in Jllp/Jt with relatively short duration. This phenomena also conforms with 
the fact that in this regime the first focal point lies inside the bulk of the on­
coming beam. Because of the strong focusing, the deformation of the oncoming 
beam iannul Le ignored. As we will show later in this section, the leading order 
correction in D for the target bunch deformation is equivalent to the second order 
contribution in D to the focusing force. To set the stage for the second order 
calculations, however, we shall still start with the first order approach where the 
equation of motion is given by Eq. (2.2.1). For small x in a Gaussian distribution 
we have 

J-'i- _ 4Nrt x ( [1t + i t ) 2 \ 
dF ~ ^ 7 2 » f o C X , J \ 2ai J 

It sullices to solve the equation 

<^x 21) x \ 10\ 
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which arises froina coordinate transformation from f to t-i-z\/2. Lei us denote llir 
two solu«ions to Kq. (2.3.2) by u^^t) and uoO), with initial conditions ni i = - s c 

«l = 1 + fl(i) , u2 = ' + ^ ( 7 ) « • - 3 : 1 ' 

respectively. We arc interested in the solutions near tlir- focal poirils n-hirh for U & 
5 occurs al t0 — azjD. By definition, at the focal point UI(I<J) - 0- Numerica] 
integral ion then gives the following approximate solution: 

» i«o) * - 7 — , {0-.r> & D& 5) , (2.3.4) 

while 

uA*»\ - " T-JT-; = \ ^7= , ( 0 5 $ f l i S | (2.3.5) 
«t('o) 3 VD 

The last rel«lion comes from the Wroitskian property: 

u i ( l | < > j ( 0 - n i < f ) u 3 ( r | = 1 . (2.3.u) 

The general solution to Eu (2.3.2) is therefore 

x = -rot»i<0 + x£u..(r> . (2.3.7) 

Transforming back to the original coordinates, we have the solution to Eu,. (2.3.1) 

-r = x„ ut (/ + ^ ) + x^ n, (f + ^ ) . (2.3.6) 

Generally, x^ < 1, so from Ecjs.(2.3.4), (2.3.5) and (23.8J we see thai a particle 
at j | would be focused lo the axis at time IQ — at(D, or 

o. 21 

The focal point is thus at 

x% = ->t-z, — . (2.3.10) 
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This mean* parliiles at diiFerent longitudinal positions :\ in out* hunch would all 
be focused to tin* same point z-, — 2er,/D, but at different times. 

This naive picture, however, contradicts simulation results. Two dia^nos.-
were performed lt> monitor the detail processes of beam focusing in this regum 
Figure .r) sh'.-.vs I In- time evolution of the average radius r(/, :) of a set uf selected 
z slice* with z\ ranging from -'2at lo +2ff : for /J = 1.0 and .-i = 0.0.1 Hen- r \<~ 
dcliued us 

•1/3 

I 0 
( r ) l ' - r J r J , ( 2 . 3 1 1 ) 

when- tin- i.xli.il particle distribution function n r ( r ) is normalized such thai J n,ir) 
rdr - I The above definition is equivalent lo tile deliiiilion of the standard di-vi 
<iiiL.ii an in the limit uf a (iaussian distribution, but in general it puts more weight 
un the riidu that have higher particle densities. This is particularly inspired h> 
ilit- observation that during the collision a bunch tends lo develop into a core 
and a halo, and the conventional definition of the nn* value would not reded the 
ctui'iafly important role of the core. 

One finds in Fig ft that most particles at different r's are focused almost 
simultaneously, al / ~ 0.8 ajc, which differs with Eqs. (2.3.9) and (2.3.10). This 
fiif l is also relleclei! by the relatively short duration of the second peak in dliu/tlt. 
Indeed, the full-width half-maximum (FW'IIM) of the second peak turns out to 
be around 0 -I a,/r throughout the range of 0.7 ;& D £ 3. One further diagnosis is 
shown HI Fig. 6 for tHipfd? as a function of z. This is the cumulative conUibui ion 
of each ^ slice of one beam to the luminosity enhancement. If all the particles are 
focused at the same z>, as the strong-weak piclurc suggests, then dtljt/dz niusl 
show a sharp spike. On the contrary, Fig. 6 shows a smooth curve manifesting 
the longitudinal Ciaussian distribution of the beam. 

To account for these facts, we proceed by including the deformation of the 
oncoming beam to the first order in D. To this order, the deformation of a 
longitudinal slice at i j is given by E<|. (2.2.5), and that for the on-coming beam 
is obtained by simply replacing zt by z2 = — 2f — Zj, i.e.. 

n r | ( r , * , i - j = - 2 / - * i ) = Ti rt,{r) 
L 7 W o dr J 

(2.3.11') 
It is interesting lo observe that t does nol appear on the It.U.S. of the above 
equation We can thus improve the unperturbed equation of motion by replacing 
h{r) with 

T 

/ l (r , = 1 ) = - J » r ) ( r , i , j , = -2f - 2,) rdr . (2.3.13) 
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Fig, 6. Cumuiafjvt contribution of the luminosity en­
hancement factor dJJp/dz as a function ofz. The Gaussian-
tike distribution indicates the simultaneity of iht focusing 
process for different z-slices. 

Substituting Eq. (2.3.12) into Eq. (2.3.13), we find a simple expression: 

4Nrt /l(r, 3 l) = Mr)U + nro(r) j (« i ) (i i .3.1-1) 
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Actually, the above inclusion of the deformation of the on-coming beam, wit h 
the disruption parameter D intact, can also be interpreted as tin- inclusion of the 
modification of D to the next order, namely. 

D-+D 1 + "rU|r) t/iZi) (2.3.15) 

wi tli the <list riljitt tun /u(r) unchanged. From this viewpoint I lie focusing force for 
(he bunch core n«v»r (he axis is increased by a factor: 

J.'.V, ffUi) 
l + - - » , i | r ) j | : i ) = 1+4D (2.3. Hi) 

OHM- tins is seen, the result from the strong-weak picture (or the first order 
t'xpa IMUII in />) can be readily modified to include the next order in D. Namely. 
tlit- futiil point should occur at 

i — G; •I 

1 n u n the definition of g(zi). we find for small ;j 

(2.3.17) 

*<-!> 
x/5* 

1 ii 
2 ffj 

+ ... (2.3.18) 

This implies that the zt dependence in Eq. (2.3.17) is almost cancelled provided 
that I> is not too large (e.g., of order unity). Thus the minimum beam size occurs 
at the time 

t - tAD) = — = = - . (2.3.19) 

We are now ready to derii'e the luminosity enhancement factor Ho- The beam 
size of I lie slice at z\ can be derived from Eq. (2.3.8) as 

= On 

Considering that the primary conlribution to Uy rotnes essentially from the high 
particle densities near the focii of both bunches, we concentrate on the beam size 
around I =r * / ( / ) ) , where u i ( ( / ) = 0. Thus Eq. (2.3.20) becomes 

* = *{[*.c«,>]\<-•/»»+[=gdf) 
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where Eqi. (2.3*4) and (2-3.5) have been used. The same expression holds for a', 
of the second beam near / ~ tf. The enhancement factor is therefure 

.Since the contribution to /V/> essentially comes from around t ~- tj, we can ap 
proximately carry out the above integral as 

JID ~ £ e x p j - ~* _ • } (2.3.23J 

Unfortunately, this expression does not fit the transition regime in Fig. 4 too 
well numerically. In particular, it is too sensitive to A, and Eq. (2.3.22) gives too 
sharp a peak in dllo/dt. The disagreement mainly comes from the fact that */ 
is not strictly z\ independent. The residual z\ dependenre in Eq. (2.3.17) would 
break the simultaneity of focusing among all the z-slices. As a result, at time tj 
when a slice at ij reaches its minimum size ffj, the overlapping oncoming slice at 
z% may not have reached its minimum yet. This slight mismatch between o\ and 
(72 would potentially relax the sensitivity of Ho on A, as in Eq. (2.3.23). 

To incorporate the residual z\ dependence in tj, numerical integration will h<-
needed. Our result here, however, does indeed qualitatively explain the essential 
physical process .vhich dominates the transition regime: namely, the luminosity 
in the transition regime is conlributed primarily from a very narrow window of 
collision time when the longitudinal slices from head to tail of each bunch art-
focused to their minimum size almost simultaneously. 

2.4 Pinch Confinement of Bunch Core 

in the large D regime [D J£ 5) the most striking phenomena is the confinement 
of a large fraction of bunch particles near the axis within a small equilibrium radius 
throughout the course of collision. We call ibis portion of the bunch the core, a* 
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opposed to the Imto particles thai con if from either m'vcr being focused to tin-
axis or lining Ionised but escaping. The occurante of this phenomena, howevei. 
is nothing like a phase transition that appears abruptly at a particular value of 
D. In fin l, we already see certain signatures from the slices near the binirh tail in 
Fig. .r). where slices at ; = -1 .0 , —1.5 and -2.0 lend to stay al a pinched radius. 
This is why we called the regime fur inedium D the transition rtgiuit. 

In I Ins sec-lion «r devise an analytic description of the large I) region- guided 
by simulation results. Since the luminosity essentially comes from the confined 
cure, we will emphasize the behavior of the core. This is handled, again, by the 
IIHMII radius r uf a longitudinal slice introduced in V.i\. (2.3.11). However, for ibi 
s.ikc 1.1 Mi.iIIjr-uuitiiiil simplicity, (he irittisverse distributions of each longiluilin.il 
slue is assumed la be Gaussian al any time. The evolution of the beam size is 
ilesci'lu-il In the rnts beam size tJj(Zj,s) of a slice at - j that conies to .v. Since we 
risMiiur ei|tial beams, we have by mirror symmetry 

ffl(-,")»= « * ( - - , - * ) • ( - > I I | 

In tin- linear approximation of the focusing force, the equation of motion of a 
particle at ; ( in the first beam is given by 

as~ 

with 

Ki(;i,s\ = - \ i . t »r>? (-'••1-3) 
7 IM^^Jl-J^oz,-2* 

When I) is very large, the actual beam size is rapidly oscillating during the colli 
skin. We may smooth out this fluctuation in the focusing force AY In this sense 
we have introduced ff-j in Etj. (2.-1.3), where the bar indicates a smoothing over 
some short interval of J . Our task is to solve Ei). (2.-1.2) to obtain .r(-i..s) and 
from which to deduce the beam size o\ so as to be self-consistent with a> in K\. 

In the case where D is very large and the particle in consideration is well inside 
the oncoming bunch (i.e., | i j | £ (some factor) X0t), the WKH approximation is 
suitable to solve Kq. (2.4.2). Thus, in this case we have 

ffu 
J ( ; , , * ) ~ " idanOt + CzanOi) , (2.4.4) 

where 

0\ = / i/Kfeu*) da . ( 2 . 4 5 ) 
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Here we haw introduced dimeu&iouless constants C\ and CV In order to expn-ss 
theui iit terms of the initial condition s0 and x„, we need a solution near the head 
or thy oncoming burn It. where W'KO fails. This will be discussed later. 

Since ros^t and sin^i oscillate very rapidly, we may pul cos 3 0] = sin 2 d = 
1/2 and cosflisinfl, s= 0. Then, we have 

-r-{-*l,*l = 1 . - . a 
fl.V^l--!.*) -

^K'r + ̂ 'j) (-j.-i.(i) 

To gel the smoothed beam size we average Eq. (2.16) over the initial disiri-
but ion, from which we gel 

ot yA"i(;i,-s) 

with 

r - (±(r? + c?)) . 

(2 .4.7) 

(2.4 K| 

where ( ) denotes the average over the initial distribution Then, we gel from 
Eu.s. (2.4.31 arid (2.4.7) 

*r i - j« s ) = J2D 

Similarly, fur the second beam 

<*o 0i{*i*s) 

a]( :>,s) = C 
jlD 

Va*n*(*2) 

aC » i ( * l , a ) 

(2.4.'J) 
Z2 = *| - 2s 

Va*n*[*i) 
(2.4.10) 

zt = z-t + 2J 

Now we can solve Eqs>. (2.4.9J and (2.4.10) self-consistently with the result 

ff|(*],s) = ~3w J L J i j « = i | - 2 . 
(2.4 II) 

Inserting into Eq. (2.4-3) we obtain 

A D 1 r 12/3 r l V 3 
(2.4.12) 

Here we have a remarkable formula saying that the beam size is determined only 
by local variables; namely, the longitudinal density of the beam of interest ai ;i 
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ami thf lougit udiual densj.y of the oncoming beam at the same position. All 
the history of tin* particle is packed in one single parameter (•'. Keep in mind, 
however, that lu|s. ( l i . l . l l ) and (2.4.12) do not apply to I lie head and the tail of 
the bunches. 

Figure 7 shows the lime evolution of tin* beam size for live c-slice*, at ;• = 
1.(1, 0.5, 0, - 0 .5 and - 10 a, for D = 100 and A = 0.05. These five curves 
are then overplutted in Fig. 7(f). One finds thai there is no distinctive difference 
among tin- five curves except for the shift in lime according to their locations in 
the hunch. The slices abruptly shrink when entering tin* on coming beam and soon 
re;ich some equilibrium "core" with small and rapid wiggles and a slow variation of 
llie mean radii. The rapid wiggles are related to the oscillations of cos Of and sin#j. 
wlu-n-a* tin- slow varidtion agrees well with [Hj f s j ) ] - 1 ' 3 at exp [(ci — 'Is)i/C»a:\ 
in K-1. ('_' 1.11), which ensures the validity of the WKU approximation. 

0 

I 

0=100 
"I ~ ~ > — , — r - r 

r = i.O 

lo) 
J J l L I 

0.5 

/ " 
/ 

l _ . - j I J L 

A-0.05 
— •—r ~ 
0.5 

td) 
J i j L 

•1.0 

(e) 
_ J i i 

Ftg. 7. Time evolution of the team size for jive stltcted 2 -
slices at *• = 1.0, 0.5, 0, - 0 . 5 , and -I.OCT,, for O = 100 
and A = 0.05, shown in the figure from 7(a) to 7(e), 
rtspeetivelu. The fivt figures are then overjttotted in 7(f). 
A confined bunch con can be obviously seen. 

In order to find IID we have to express C-, C2 and C in terms of the iniliiil 
conditions. To this end we need a drastic approximation. The fact that the beam 
size suddenly reduces to a smalt value suggests that we may ignore the focusing 
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forre before Ihf jwrtirles are focused to the core. Therefor*:, we shall assume lliai 
the focusing ftjrce A'j is given by Etj. (2.4.12) when :.< is well inside the oncoming 
beam- bul- is zero near the beginning and (tie end of the collision. The boundary i* 
determined by the limit when- WKH fails. The condition thai the WKD is valid 
is given by 

J 1 

Since :t is a constant for a giw-n particle, we ran rewrite Eq. (2.4.12) as 

£ 1 (2.4.JIJ 

with 

(2.4. J}) 

(2.4.1 (i) 

We shall ignore exp(— z\ffio-t). assuming that our particle is nowhere near the 
bead and the tail of the beam. The solution of Eq, (2.4.14) for J* < 0 is 

where -•*„(< 0) is a solution to 

and is approximately given by 

(2.4.17) 

(2.4.IS) 

i-jH^?) • (2.4.1°) 

The above s 0 is thus the boundary that partitions the two zones for zero and finiie 
Aj's. Note that at s = s0 A'i is given by 

(2.4.20) 
The solution with the initial condition TO and XQ at s' = SQ is then 

' / i i f j ' n 1 ' 4 f i V * -r~-~\ cosg-fx^ sinfl , (2.4.21) 
AI(JE')J LAj(^J Aj(s')J x = i o 
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(lA.lli 

!\\>le tliiil we have ignored |lie derivative of A ] , which is always valid whnirvei 
the WKH approximation is applicable, liigorously speaking, we should impose 
tlti- initial cumin inn a! A = 0, not at s = s0. Our treatment is justified ht-rauM-
for very Mnall .1 the (leJlertirig atigh- j-„ M a = ,*„ js much smaller than a{u which 
l.-. I In* typiral value of To 

Cutiipaiiiig Kqs (1*.-I.li 1 > am! (2.•!.•!) we have 

r, = 
- H *.«.;i| ,rt a - [i c^?)1 '-(V3Ff )]""*« ««•* 

" l A , ! * , ) 
i / * 

'-& 

i) 

(2.121) 

A v n aging uvi-r the itiiliitf (ttbtrilitilidii gives 

^h [if" (vs z) 
i /a 

(2.4.251 

.1 

^)(r2) = £pfL£s!U*' . (2.4.2<i) 

The latter merely insures tin- conservation of the linear omittance. Since ivc 
assume A •« 1 and /> > I, we have (C'f) » (C*|). Therefore, 

C- B *i{f f + C|) = i{C'f) , (2.-1.27) 

which, together willi K*|. (2.-1.2fi), determines f self consistently. We now get 

-l/c -(rM^)l (2.4.2K) 

While- C* still appears on the HI IS of the expression, it varies only logarithm! 
tally. We may substitute C on RHS with some constant times I)*?3. As a good 
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approximation we get 

-(srK*)i I/*. 
(2.4.2!)) 

which agrees with the exact solution c ' Etj. (2.4.28) within \% for £> £ 10. Thus. 
the smoothed beam size in Eq. (2.4.11) is now written as 

°\ [ i\ 1 l 1 ' 6 f -- 4 - l ? ' ' 1 

and the focusing function i* 

*'<-••»- [ ^ ' • ( T ^ ' W ^ L . . , , - * , M J " 
These formulas apply for 

fe| < 2|«a| =r Jl(»(j)°' (24.32) 

Let us now calculate the enhancement factor IIy. Analogous lo E<|. (2.3.23) we 
have 

U» = / *fe,ifca —t -2* - 4 e x p / ^ i } 

(2.4.33) 
Note that 2 dsdf = r/r^t/z;.. If we replace a} in this expression with the smoothed 
radius a} in Eq. (2.4.29), we get 

7 7 u = 1.374 J9*n (j)] (2.4.34) 

via numerical integration. As in the case of the transition regime where Ljje 
slight mismatch between o\ and o<i should not be overlooked, in the confinement 
regime the rapid wiggling of the beam size also plays some role and, therefore, 
one needs lo use af instead of a}. Averaging the square of Eq. (2.4.4) over the 
initial distribution and using Eqs. (2.4.25) and (2.4.30), we get 

CT?(*I,S) = ( ifoi , j)) 

(2~4.35) 
At 0i = JT/2, we have the minimum beam size a\ ~ |f2?r)*'"* Aj1\jD\a^. Notice 
that if we ignore A? and replace cos 2 0j by 1/2, we recover the smoothed beam 
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X eXp 

size in Eq. (2.4.3U). Nevertheless, the fiuileiiess of A ran still contribute to llw-
)nniiiios)!\ near the zeroes of 4-ostf|. Substituting Ki|. (2.4.35) into Eq. (2.4.33|. 
tilt- new ///; now leads 

flu = — 7 = / — **p { ; -3 f 

^"''{^i^^^^T""^),., 
(•I-i.:Mi| 

Sum- 0\ and flj art* strong functions of - j and ; j , and C'- » A-jA, »v ran 
approximately integrate the above expression to obtain 

2/> { dzida / 3(r? + a 5 ) \ \ A _ , / r £ L l i l \ l 

(2.4.37) 
for .-1 <£ C. Ily iinmeriral integration and by invoking Eq. (2.4.29), we finally 
obtain 

''-M^ClHx^d-'-•<} • (2,1.:*) 

where At = D.SKO and A.. = 2.28. The agreement with the simulation is nol 
excellent but the FnA dependence is correcljy expressed. We ran also obtain 
dHuldt, discussed in Section 2.1, by replacing dz\dzj in Eq. (2.4.37) with 2 dsdt 
and by integrating over J. Since only small \:l\ and |r'j| contribute in the integral, 
we may ignore the variation of cosh in Eq. (6.37) as a rough approximation. In 
><i doing, we obtain 

dltjj y/5 
dt y/lxi Tff. 

Up exp m (2.4.3'.t) 

Comparing this expression with the unperturbed dllufdt of Eq. (2.1.5), one finds 
that dfip/dt for large D is indeed Gaussian with a slightly larger coefficient for t' 
in the exponent. This fact agrees with the simulation results quite well. (Compare 
the figure for D = 1U0 versus that Tor D = 0.2 in Fig. 4.) Notice that the functional 
behavior e x p ( - 3 f 2 / - f f i 1 comes solely from the WKFJ part. On the other hand, the 
overall factor in Eq. (2.4-311), which comes from the truncation of A'| al the head 
of the bunch, like the case for Ho, does not numerically reproduce the simulation 
results. 
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2.5 Luminosity Enhancement With Offset 

iJinn- th<- asymfiflry in distributions, tends lo sliifl the cenler-of-gravily of 
the beams, it gives, rise iu tin- sami- effect as the initial aligiimeiiL offsets. For this 
reason our slut); on the effect of imperfections is concent rated on initial offset* 
only. 

As will he discussed in the next section, an initial offset triggers a kink insta 
bilily, especially when the disruption parameter becomes large. As it occurs, this 
instability is not always harmful because, in the initial phase of the instability. Ihe 
beam', always lend to find each other, which prevents the otherwise rapid degra­
dation of I In- luminosity for large initial offsets. Figure !J shows the luminosity 
etihaiK't-tiieiil factor as a function of offset Ay (in units of rrv) for various values of 
Pg. The dotted curve is the geometrical enhancement factor without beam-beam 
force, which is equal to exp( —Al/4). UGG distribution is used and A9 =0.2 far 
alt curves. The up-down sj-rmnetry is not enforced except for the cases at A„ =0. 

From Fig. 8 one finds that the tolerance on alignment offset reaches an op­
timum for values of D¥ between 5 and ]0. Within this range of Dy, 11 jy is sljll 
above unity even at A^ — 3. Beyond this region of Dv the beam-breakup becomes 
severe, while below the beam-beam attraction is not yel strong enough. 

Fig. 8. Ho o^ " function of offstt A„ for flat beams. 

The same data as in Fig. 8 is replolled in Fig. 9 as a function of Dv, and 
each curve corresponds to a fixed value of \ . {The region of large Dy and small 
A y is not very accurate because of its sensitivity to computing errors.) One sees 
a saturation and decrease of / /n as a function of Dt unless A„ = 0. One alsu 
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"i—i—r "T-i-rrr 

A y - 0.2 

Fig. if i/p a* u fumtion of Dt for flat btams. 

notice;, that the curves with small offsets, e.g., A , =• 0.2, resemble the results in 
Kffs 5 and G, except I hat our offset was explicitly inlrodured. In deigning a linear 
• •tlltdiT, une nerds to estimate // /j for the chosen £) and .4. This depends on the 
iiiiciiiuiil of potential imperfections of beam-beam collision. Though arbitrary, 
it iiiiiy be safer to adopt the curve Tor A ? = O.'J or 0.4, instead of A , = 0, a* the 
effective enhancement factor. 

Similar exercise for round beams are shown in Pig. 10 for D up to 50. Here 
we find the same generic behavior as in the case for flat beams. 

A.O 

Fiy 10. H[) as ct function of offset A for round btams. 
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2.6 Disruption Angles 

One important piece of information for linear collider design is the expected 
disruption angle. Knowledge of the maxiniuni disruption angle is essential to 
determine the aperture of the last element in a final focusing system, so m> 10 
avoid being fhowered by the debris from the beam-beam collision. 

For round beams .the simulation results of the maximum and the nut dis­
ruption angle reduction factors. It™" and //j™', are plolted in Figs. II and VJ. 
respectively. The curves for A = 0 in the two figures reasonably agree willi the pre 
vioiib results.5 These curves for zero etiiittance can be well-ex plained theoret trally.1* 
which predicts the following generic functional behavior for both U'£" and Itg'H* 
for A = 0, i.e., a linear increase for D « 1 and a Ijr/D suppression for /J > 1: 

IJg,, — 
( a + bD , D <£ 1 

i~75 ' D » 1 , (2.« l ) 

where a, b and c are some numerical coefficients which are different for maximum 
and ruts angles, and which are to be fixed by the simulations. From Figs. 11 and 
12 we find 

{ 0.S7 +1.57 0 , D e l , 
U g D > l i C2.li.2l 

and 

f 0.78 + 0.20 D , D « 1 , 

¥&- D*1 (2.6.3) 

10' 

eT*> io° 

fO" 

- r f '1'ri iTp — « — T -T 

A: 
— 0.4 
— 0.2 
• - • O . I 

— o 

X 
^ 

I0' J to' I0< 

Fig. 11. Masimvm disruption angle as a function D for 
round beams, computed with four different values of A. 
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/**(</ /L\ /frio disruption utifflt as a function of I) for 
tutuitt 6(vim>. 

When A ^ 0, tin* inherent divergence1 of the beam cannot be overlooked when 
ili<- disruption ts small. The natural rms divergence angle of a beam is 

(2.0-1) 

wit lie 

>;, = yJ<>p + « ? = ^°\ V>.i\.?>) 

Dividing both aides by #„, as defined in Eq. (2.14), we have the contribution from 
linite emiUanre: 

'0 , i = Ci.r..cj 

where the definition* of A and D are used. The general expression for II™" is 
therefore 

nr3 = y(w;.o j)2+(w*:; , ,)J - (2.C..7) 

Inserting Eq. (2.G.:t) for i f ;™ and Eq. (2.6.G) fur / /;"", the above expression (its 
all the rurves in Fig- 11 very well. Notice that the contribution of the second 
term rapidly diminishes for D beyond unily. Thus the rms disruption angle is 
asymptotically independent of A, 

The situation for the maximum disruption angle is slightly more complicated 
since the maximum natural divergence angle for Gaussian distributions is not 
well defined. However, as is the case for IIg#, the functional behavior of Hj,nfr 

should be similar to thai of / / J ^ i a m ' t n t * overall W™" should be analogous to 
tig"" in Eq. (2.o.7). This is evidenced by the similarity between Figs. 11 and 12, 
aside from the numerical differences. 
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Now- we examine tlie flat beam deflections. If the disruption parameiei u, 
very small, I lit-1 ransversr lot al ion of a particle during collision is nearly constant. 
Then one-can estimate the disruption angle* 0, and 0y as ftintlioi.5 of the initial 
transverse coordinate* J- 0 and yu. For very flat Gaussian beams we have 

-J-OC. 

0X = - llDM—2m - I -
V2 " . * J i 

ex\>{-t')tll 
(2.6s) 

• -&°2 t-*i/*>i (U>.\\\ 

where the quantities in the square brackets can lie expressed by the complex 
error function us(xuf\/2ox) a l , t ^ t'11' r e a l e " o r function erf (yo/v2a y ) . Here the 
eiiutiance is ignored. One finds that the maximum and r.m.s. disruption angle 
reduction factor to be 

//™J = 0.765 . ( j 0 = 1.31u, 1 (2.6.10) 

t"y = v^72 , (*„ = 0, yo = oc) (2-li.U) 

"ft? = \A/{6v5) , (2.6.12) 

»£* = \A/(6*/3) . (2.6.13) 

where the nominal angles 0X iu = Dxax/at and 0y = Dyay/at are assumed. These 
resemble the leading constant terms in Eqs. (2.6.2) and (2.6.3) when D <SC 1. 
(Rigorously speaking, for flat beams with large hut finite aspect ratio, 0V reaches 
a maximum near ya «- ax and then decreases; but this is not important.) 

The distribution functions of //^.« and IIg o are shown in Fig. 13. The actual 
singularities at Bx — 0 x m a t and 0 V = 0 are not supposed to be as sharp as those 
in Fig. 13 because of finite emit lance, various errors, and the disruption effect. 
However, we found from simulations that the qualitative difference between the 
horizontal and vertical angles still holds even for DXiV not much less than unity. 

Figure 14 shows the maximum and r.ms. vertical disruption angle reduction 
factor H§ (Oy in units of Dyavfat), as a function of Dv. Here we consider the 
case for small Dx only. As in the case for round beams, the dependence on Av 

is not as significant as in the case of Ho except for the small Dv region, where 
the beam divergence is ernhtance dominated. (The distribution of initial ax< is 
truncated at 2.5 standard deviations in the simulation.) 
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I'ttj. l;i. Distribution of H#n for small DI% 
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001 -
100 

Fig /.'. Minimum and T.IU.S. vertical disruption tivijlt 
rtilueiion factor. Thr four curvts corrrspond to Av — 
0.1. 0.2. 0.4, 0.8, resptchvrly. 

The simulation results can roughly be filled by 

(2.6.14) 

and H™"' ~- Utlt*"". Here the contribution of the initial ernilUrice {= AgtTy/o, 
fur 0Vit,t„) lid* not been inrluded. The reason that the angle does not increase 
linearly in l)y is that llu* parlich* trajectories are benl backwards and osrillale 
when Dv is large. 
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So far. the collision is assumed to lie lieaiJ on. For flat bean is the disruption 
angle in the presence of vertical offset is also important in determining tin* aperture 
of the final quads. The mean deflection angle of tin- entire buricli can be written 
in the Turin 

where A s is the vertical offset in units of og and the weak dependence on Af is 
ignored. For small disrupt ions, the function Hr approaches the following analytic 
furm 

w,(/\.M= /«-"''% . i-2.ii.iG) 
o 

Figure Ifj shout, Ht as a function of A„ computed by simulations, where W\i\ 
distribution is assumed 

2.0 
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< 
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*™ A y «0t!»J 

Fig. 15. Efftcttrr ctntcr-of-mass dtfltctwii. Tht cumr 
for A , = 0 is analytic, while the rest are from simulation. 
The dashed Un* cotrtsj/onds to the stopt at tht itru Dv 

and 2CTO Ap limit, which is egunl to 1/2. 

Roughly speaking, the maximum disruption angle in the, presence of offsets is 
the sum of the ceuter-of-rnass deflection angle 0„ and the maximum angle in the 
absense of offsets, 0Vi,nal. 

2.7 Kink Instabi l i ty 

If one of the beams is displaced vertically for some reason, this offset triggers a 
vertical oscillation and, when D is large, the oscillation is enhanced by the beam-
beam force. This phenomena, is known as the kink instability. Figure 1C shows, A 
specific example. 

32 

http://i-2.ii.iG


Fty. If! An tttiinplt of kink mutability for J) =s 20, .-1 = 
0.2, audA„ = 0.2 

In the above figure the bunch is sliced longitudinally and tin- vertical coordi­
nate y of the center-of-mass of each slice (in units or ay) is plotted against the 
longitudinal coordinate s (in units of ot). Each graph corresponds to a snapshot 
of the beam vertical position at a particular linn- ( (in units of a-Jc). The devel­
opment of the instability Ci%n he seen in Lime sequence. The initial offset in this 
example is chosen to be 0.2cr„ (full) and the disruption parameter is Dv = 20. 

For uirform beams and small amplitude oscillations, the equation of motion 
for the beam particles can be obtained from fluid dynamics (the flat beam version 
of ilie equation is given in Kef. 8), 

where y± is Lhe y coordinate of e + a n d e~ beams. Consider the* space-lime variation 
of y± to be of form exp{iA> - iu?( + $]. The non-trivial solution of the above 
equation should satisfy the following dispersion relation: 

'2 2 
l = w ° „ + — ^ 2 — r> 7 •»» 

( W + Jt}* + (u> + A-)-' • U ' - ' 

The most unstable solution is found to be 

I , V 5 ir J } 
y ± = const, x exp [ ± i ( — w 0 s - - ) -f - u / 0 / j • (2.7.:i) 

This solution is in reasonable agreement with the simulation shown in Fig. ifi. 
Namely, the phase difference between e~ and e + beams is varihed to be ir/3, and 
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tin? growth rale is as predicted. Furthermore, Fig. 10 clearly demonstrates ihe 
standing-wave nature of (lie fcinJ; instability, which agrees wild the description of 
Rq. (2.7.3J. 

So far our discussion on the kink instability deals with collisions of two 
hunches. Another type of kink instability occurs during the collision of two bunch 
trains, each consists of Ny bunches. One of the major problems of such a nnitli 
bunch operation is the interaction between bunches before and after their colli 
sions at the central collision point. The »'** bunch jjj the electron bunch train 
will collide not only with the i"' bunch in the positron train, but also with the 
}[< i)'1' positron bunch before coming to the central collision point. Colliding two 
flat beams at a relatively large crossing angle can help to avoid unwanted direct 
encounters between the outgoing bunch debris and the incoming fresh bun<iie.s. 
However, due to the long range nature of the Coulomb interaction, there still ex­
ists unth'sirabfe interference between two separated bunches at a distance. Sinre 
the crossing angle cannot be made arbitrar'" •c.e due to the luminosity con­
sideration, this long range interaction cann •ntirely suppressed. In fact, it 
imposes a severe restriction on the stabili: e beams. 

Consider the encounter between the n'A positron bunch afLer collision and the 
in (rn > TJ) electron bunch before collision at a distance L from the collision 
point. A schematic diagram of the system is shown in Fig. 17. We assume lhat 
all the bunch encounters occur within the drift space around the centra) collision 
point. 

According to Eq. (2.6.15), the eenler-of-mass deflection angle for the nltl 

positron bunch is 

e»" = \ — DyH^D^A^) , (2.7.4J 

where A v „ is the relative offset between the ntth electron and the n'A positron 
bunch, in units of ay, at their closest encounter. The cumulative offset for the 
m ( bunch before arriving at the central collision point is therefore 

A r o = r £ / / ,{£»„,A n ) + 6 m , (2.7.5) 
n<ni 

where 6„, is the initial offset of the in'* beam, and the coefficient C is 

C = DzDv^f , (2.7.C) 

and 0j = rrzfax is the diagonal angle of the bunch. 

The cumulative offset A m (in units of i[\ + C)m~1) is plotted as a function 
of the number of bunches in Fig. IS. Since the factor 6j/9c must be larger than 
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unity in order that the crossing angle does not reduce the luminosity significantly, 
the condition fur negligible growth of the instability, i.e., A v „ £ A, according to 
Fig. 17, i«> tuughly 

( /V*- 1 ) 0 , 0 , £ 2 • (2 7 7) 

Tin?, unpusfb it constraint un the allowable number of bunches per tram. 

3 . B E A M S T R A H L U N G EFFECTS 

The energy spectrum of the electrons is important for two reasons: (1) the 
tip of the spectrum, i.e., the distribution near the initial beam energy, provide:* 
information on the energy resolution far high energy physics events, and (2) the 
tail of the spectrum, i.e., the distribution of the low energy electrons, which hail 
suffered severe energy loss through hard beanislrahlimg, reveals the likelihood of 
finding large disruption angles. This second issue will be addressed in the next 
section. 
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Tin- eiwrgy bpectrum of radiation ran be characterized by the Leamslrahlung 
parameter T, defined as 

T - , | , (S.U 

where /J is the effective field strength of the beam and Bc =• m2c1/ch — 4A x 1 0 , J 

Ciauss is the Schwinger critical field. For historical reasons, this parameter i,s 
related to the parameter (, introduced by Sokolov and Ternov. by a simple factor 
3/2: 

_ (critical energy) _ 3 r , " > ! _ 3 
(initial energy) 2 ap 2 I3.2) 

where o is the instantaneous radius of curvature. Since the two parameters are 
trivially related, we shall employ either of them depending on the convenience of 
the situation. The typical value of £ during collision is 

f i = 
r; iA f 2 
atrxtrv 1 + R 

(3 a j 

where It = azfat is the aspect ratio of the beam. The average value of £ is 
a^-jit smaller than Eq. (3.3) (by about a factor 2/3) but we adopt it for the 
better descnption of the spectrum tail which is contributed more effectively from 
beamstrahlung with larger f,. 

3,1 Energy Spectrum of Final Electrons 

Let il>(E,t) be the energy spectrum function of electrons at time t nornialiml 
as fi^[E,t)dE = 1. We assume that the emission of a photon takes place in 
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infiriitesmially short time instance, at least for linear colliders in tin- near fuime. 
Then the evolution of the spectrum function can IK' described by the rate equation 

oo 

<£ = -K,{EmE,t)+JFlE.EiWiEundi:! (3-l.D 
£ 

lien-, JV-,{£) is tin* average number of photons per unit time anil F is. the radiation 
sperrum funitioii. i.e., F{E-*,E\)dEi is the transition probability of an electron 
fiom energy E\ U> tJie energy interval {Et,Ej -f dE->) during time interval dl. 
Ohviotiity, F{Ei.E\) = 0 if £ \ > E\ and F does not include the probability lo 
stay .it the same energy wit hunt photon emission. The sum uvei the whole energy 
range give*, the number of photons: 

j FlE.,El)dE3 = N1{El) . (3.1.2) 
o 

The quantum-theoretical spectrum function / ' is well-known, 

F(h",E) - - ^ / t f . y ) 

m-9) = f*TTT„\JK><>W+ TTiK>M 
(3.1.3) 

with 

'--r-^E-JV1-}.1-*) • < 3 U | 

u*c 1 — ui/L i E' £ £ 
where A"'s are the modified Brssel functions, Ncj the number of photons per unit 
time by the classical formula, u> the photon energy.and e = E'/E the fractional 
energy. The number of emitted photons per electron can he expressed as 

-V, = AW/ 0 t f , ) , with N<t = 2.12 ° r ' A ' , (3.1.AJ 

where t'o(^) is the ratio of the quantum-theoretical number of photons to that 
from the classical theory, and is found to be*' 

1 - » . 5 9 S ( - H . 0 6 U 5 ' ' 3 

r V ° t 0 = l+0JB2f- . ' ( 3 - 1 - b ) 

where the relative error is within 0.7%. 
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An approximate formula fur the energy spectrum of electrons after collision 
can IK- therefore derived. The details are given in lief, ltl, where the spectral 
function +*(t) <£ = £/£u) i s r u U " d l o u e 

V(f) - t~^ [*<e - 1) + - 1 ^ / , ( A V " ) ] , 13-1.7) 

with 
A-flOl. 

*U) = 5 - / exp{xp-^ 3 + p)df> (A>0) 
2TT/ J 

A-I*. (3.1.8) 

= £n!|-C«/3} ' 

and 

(This formula does not exactly satisfy the normalization condition except for 
£j — 0 which leads to A'i = A', = Nci ) The funclion /i(x) can be estimated very 
accurately by with relative error less than 2%. Figure 19 compares Eq. (3.1.7) 
with the simulation results using the parameters for the TLC and the ILC The 
design parameters of the two colliders are summarized in Table 1. The histograms 
in Fig. 19 arc from simulations and the dotted data are computed from Eq. (3.1.7). 
The agreement is excellent. 

3.2 Maximum Deflection Angle 

The particle which once lost a large fraction of its initial energy through beam-
strahlung would, in principle, be severely deflected by the beam-beatn field and 
cause background problems for high-energy experiments. Consider an electron 
which emit"! a hard photon at a particular time during the collision and results in 
an energy EEQ, with t < 1 . The effective disruption parameter for this panicle 
becomes Dz(e and Dv(t. One might think thai Eqs. ('I.G. 10J and (2.6.11) are 
still applicable by replacing D by DJE. However, the collision of a single particle 
on a beam with the disruption parameter D/c is different from the collision be­
tween two beams with Dfe, although the qualitative feature is the same; i t . , the 
disruption angle increases linearly in D for D S 1 and more slowly for D £ 1. 

A simulation was done by monitoring low-energy test particles through the 
collision process. The maximum deflection angle for a given t is found to be 
roughly: 
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". 0 + 10.75D/S)*/3 

where /> — Pj(/-> v) ami ff = az(a9) for the horizontal (vertical) angle. 

Tlit* minimum value of e can, in principle, be as small as I / 7 . But the real 
problem is about huw small a £ stiould one care. Since the number of photon* 
A'-, per beam particle for linear colliders in the near future is of order unity, 
the spectral function i/i(f) given in Eq. (3.Mi) is always dominated by the factor 
t~v in the spectrum tail, where y » 1 (111 logarithmic sense). Therefore, if the 
arcepLahle background count is n out of N electrons, then the minimum c of 
concern is approximately determined by y = logfAf/ri), c* 

1 
£fnt t t — 

i+6fc«(' v/«) 
(3.U.2) 

With this value of e, one can directly estimate the maximum deflection angle using 
Eq- (3.'2.1). Since the dependence on n is only logarithmic, one can set TI = 1. 
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Table ] . Parameters for T I X and UA' {\,j = 17 mm) 

TLC 1LC 

Ea [TeVJ 0.5 0 25 

A' 8 x 1G9 7 x 10 s 

nt |iimj 190 -140 

Oy (iMllJ I 3 

ff^/JFfl] 26 li5 

n 190 117 

t x (mradj 2.58 x 10~ J - 5.2 x HJ" 1 ' 

(y [ntrad) 2.33 x JO - 1 * 5.2 x 1 0 - H 

I>, 0.033 0.027 

Dy 6.27 3.H 

Ar 
0.0002 0.0017 

A, 0.60 0.37 

' QCn 1.61 1.71 

• 6 0.15 0.01 

' A ' , 3.33 0.38 

* ] 3.43 0.1ft 

* Quantities computed by simulations. 

Thus, for example, £ m i B = 0.013 (0.18SJ, 6x_maI = 10 (0.95} mrad and « , „ „ = 
0.4 (0.15) mrad for TLC (1LC) parameters. 

4. E L E C T R O N - P O S I T R O N P A I R C R E A T I O N 

During tJie collision of the t*e~ beams, ihere are finite probabilities thai a 
photon will turn itself into a e + e " pair. Once the e ~ e + pairs ar< created wild 
lower energies in general, one of the two particles in each pair will have the same 
sign of charge as the oncoming beam. (For the sake of argument, consider a low 
energy e + moving against tJie positron beam). Unlike the case of a low-energ\ 
e~ moving against a positron beam, where the potential tends to confine tin-
particle in the beam profile, in the case of a positron the potential is unmiifiiiing 
and the particle can, in principle, be deflected by a large angle and thus creale 
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seven- ILK kgmuiKl problems. Tliis effect would therefore impose a contraiut <jn 
the final fix us design. 

It occur* that tin- t + « " pair rati be created by either real or virtual photon-. 
These photons, in turn, can pair-produce through twodilfereni physical processes, 
namely, tin- cohtrrnl and the incohtrtnl processes. While the incoherent process 
has been studied earlier,' ' * it is recently realised that the coherent process it-
even inure severe. 

ltii.ill tliat in the rase of radiation by e~ (e + ) during beam-beam collision, 
there art- essentially two mechanisms thai induce the radiation. Namely, there 
is an "itn'ohereiit process, or Hrernsstrahluiig, associated with the individual 
e _ e + scatterings, ami there is also a "coherent process due lo the interact ion 
between the radiating charged partirle and the macroscopic beam'beaiu EM field 
At high eneigies an<I strong fields, the coherent process tends to dominate over 
the incoherent one. This is actually why our discussion on beam energy los> has 
been focused only on the beams!rahlung process. 

The beamstrahhing photons once emited would have to travel through the 
remainder of the oncoming beam before entering into free space, and would tlieie 
fore turn themselves into e ~ e + pairs. Analogous to the case of radiation, photon 
pair creation also involves coherent and incoherent processes. Here again, at high 
energies and strong fields the coherent process will dominate ovjjr the incoherent 
one. 

4.1 Beamst rah lung Pair Creation 

It is well known that the cross section for incoherent pair creation is 

. 28 •» /4LJE\ t 
v{-)t — ee^e~) ~ — ar^Jogf—— Jem* , (-1.1.1) 

9 \ m- / 

which is a very slowly varying function of the photon energy ui. For TLC, 7 = 
I x 10 6; the cross section is — 5 x ] 0 ~ 2 6 cm 2 for photons at full energy. The beam 
parameters for TLC listed in the above Table gives the average number of the 
beairistrahluiig photon per beam particle as A% *» 1.3. On the other hand, it can 
be shown that the effective luminosity for such a cascading process is 1/2 of Un­
original. Thus, the number of e ~ e + pairs created per bunch crossing can easily 
be evaluated: 

iVB' t e. = 5 * - h e - » « + O - ^ - = - i ~ 2 > t l 0 s , (4.1.2) 
1 /rep 

where Ctc = l..'t x lU 3 3 cm~ 2 sec~ 1 , a n d / t c p = 220 s e c - 1 in this design. To be sure. 
this process provides a non-negligible amount of e _ e + pairs. 
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The raU* of photon pair < rvation in a homogeneous magnet K field has been 
studied by many people,"' and has been generalized to mhomogeneous fields by 
Baier-itiid'Kalkov!" hi the asyinplutir hiuits the rate can be ex| ressed as 

(4.J.3} 
IS /•' I*/* H i / e l - T ^ - l / l „ ~ , 

Here \ = T-.'//:* plays the similai role as T in the case of beamstrahlung Not ice 
that \ is independent of the initial particle energy •>, as the process does iiui care 
where I lie photon was originated. Lei 

^ > - H.I.4J 
at Ac-y 

lo a very good approximation, 

n\) = U.16x-'K*p{±) . (4.1.SJ 

for all values of \ . 
Integrating over the collision time (again, only half of the e~e + collision time} 

We have 

1 V » (4.1.6} 

Next we evaluate the mean value of 7'(\) by weighting over the beamstrahiung 
spectral function, 

= ~jt i / K*t*i*#*+Tu;**^ ^ J = Z^T { I Ks/iW** + r77T A '2 /3 l l / ) ) , H-1-") 

and 

(7(T)) = / 7 T x ) ^ / y ^ d . . (4.1.8, 
o * o 

The total number of e~e + pairs created through this coherent process is therefore 

Ku- = ? A > « i ( m ) > • (4.1.9) 

A plot of (T(T)) is shown in Fig. 20. where the solid curve is from the exact 
form of diiiJtLj in Eq (4.1.7) and the dashed curve corresponds to an asymptotic 
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expression tut tht^/dut a( large y. The cjuseness between the Iwo curves suggesls 
that only the spectrum lip contribute effectively lo the folierenl pair creation 
prorrss r'rom the 'Vi.C parnineters, uc\ ~ t.(J, so we fiiitl ttul 

N%t. - 5 x 10 7 , (1.1.10) 

which is much larger than the incoherent process. 

10° 

10-6 

10 12 

1 0 - 1 8 

102" 
10'1 T0° 101 102 

Fi<j. SO. Tht function £7(T}) va. Y. 

It should be noticed, however, that {7') drops exponentially for T & 1- There­
fore, for next generation linear colliders at the range of 1 TeV, which would lyp 
ically have T ~ t, it would not be al all diflicuk to redesign the machine such 
thai the coherent process can be entirely suppressed. .For the above-mentioned 
TLC" parameters the condition is T < 0.3. This, ironically, is an over kill since 
the incoherent process corresponds to T ~ 0.6, as can be read from Fig. 20 

4.2 Energy Spectrum 

Since to a large extent N-, is of the order unity and quite insensitive to other 
parameters, and since we usually choose to fix the luminosity in a design, the in­
coherent e ~ e + pairs can not be easily suppressed. Il is thus important lo evaluate 
the energy spectrum of the pair created c*. Assuming constant probability in 
finding the e + at energy eE < uj, the spectrum can be derived to be 

The spectral function F{£,T) is plotted in Fig. 21 for T = 0.2. At the small £ 
limit, /•'(£,T) a l / s . 

T I I I Mi l l I T I I l l l l ! I I 1 111 Ijr 

-1 ' • > ' • " • ' ' •"»• i r n i i i i 

43 



Fig. 21 Tin sptitivl function for tiicolitrint pair crtntiif ?* . 

The energy spertrum of the pair produced positron from the coherent process 
can aho be obtained from the same basic equation thai gives rise lo En. (4.1.3). 
without integrating over the final energy. It can be shown that the spectrum ib 

if11 1 oro I r 8 . ,-> „ , , . , l 

w = ^ T ^ ^ k s , n h * ^ i / 3 { f l H ( 1 + l a n h * y ) A ^ ( o , l ' (' J 2 2 1 

where E is the energy of the positron, and w the photon energy, bath in units of 
the primary electron energy. 

, t I w cosii'jf = — 
A ij{u>-t))' 

and 
8 . * a = — cosh y 

3 \ 

Figure 21 is a plot of Eq. (4-2.2) with T - 1.0, in units of am'/^r-). The two 
curves correspond to beamstrahlung photons at full, i.e., x ~ 1-0, and half of the 
primary e + e ~ beam energy. We see that the spectrum is considerably narrower 
than the corresponding incoherent process. This is even more so when x becomes 
sufficiently less than unity. An intuitive-way of understanding this fact is to realize 
that, although the coherent process at T ~ ] has much larger probability than the 
incoherent one, the eqivalent photon energy of tne beam-beam field at is range is 
barely above the invariant mass threshold for pair creation. This is also reflected 
by the steep exponential decrease of the function (T[T)). Thus the < + e~ pair 
tend to share the initial photon energy evenly, and the damage of the coherent 
process at the TeV range dose not seem to be too harmful. 
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4.3 Deflection Angle 

Finally, we evaluate the deflection angle of these low-energy positrons by the 
brain beam field. As a rough estimation, we assume that the vertical Held beyond 
the beam height extents constantly to a distance equal to the beam width a, . It 
iji then easy to show that the deflection angle for the e + wiih energy £ is 

Bt = 
& % 

*%* 

* * # 
(-5.3.1 J 

e< v5 
The deflection angle lit the above expression is plotted in Fig. 23. For a 1 GeV 
e + , 0t -- 45 inrad. The information on the transverse monemtuni can be easily 
deduced from the above expressions via p± = e0 e . 
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