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ABSTRACT

Three major effects from the interaction of ¢? ¢~ beams — disruption, beam-
strahlung, and eleciron-positron pair creation ~— are reviewed. For the disrup-
tion effects we discuss the luminosity enhancement factor, the maximum and rins
disruption angles, and the “kink instability . All the results are obtained from
computer simulatious. Scaling laws for the numerical resulls and theoretical ex-
planations of the computor aquired phenomena are offered whereever possible.
For the beamstrahlung eflects we concentsate only on the final electron energy
spectrum resulting from multiple photon radiation process, and the deflection an-
gle associated with low energy particles. For the effects from electron-positron
pair creation, both coherent and incoherent processes of beamstrahlung pair cre-
ation are discussed. In addition 1o the estimation on total number of such pairs,
we also Jook inte Lhe energy spectyum and the deflection angle.

1. INTRODUCTION

These are three major phenomena induced by the beam-beam interaction
which are important to the design of high energy linear colliders. Namely, there
is the disruption process where particle trajectories are bent by the collective
EM field pravided by the oncoming beam, and there is the beamstrahlung process
where particles radiate due to the bending of the trajectories. The third major
phenomenon, i.e_, the electron-positron pair creation, is associated with the fact
thal during collision any high energy photon has a finite probability of turning
itsell into a e*e™ pair with lower energy in general.

The most important impact of disruption is the deformation of the effeciive
beam sizes during collision, which causes an enhancement on the luminosity. In
addition, the disruption angle affects the constraints on the final quadrupale aper-
ture. When the two beams ase colliding with certain initial offset, the disruption
effect between the iwo beams would induce a kink instability, which imposes a
constraint on beam stability. Ironically, this instability helps to relax the offset
tolerance for flat beams because the offsel beams tend to find each other during
the initial stage of the instability. Under 2 multi-bunch collision mode, however,
the kink instability will largely degrade the luminosity through the relatively long
growth time. On the other hand, the direct impact of beamstrahlung is the loss of
the available energy for high energy events, and the degracation of beam encrgy
resolutjon because of the stochastic nature of the radiation. Furthermore, the low

TN B THS BBESETNT IS UHLIMITER MA s T E B



euerpy parhicles resulting either fron: beamstralihing or from pair creation would
be severely deflected by the strong beam-beam ficld, and would therefore npose:
cunstraints in the design of the linear collider interaction point region.

Must of the issues raised above can be studicd by decoupling the disruption
and the beamstralilung eflects. The energy luss due to beamstrablung may modify
the lumnosity enhancement, but this eflect can be ignored since we are onlh
interested i the case where the averapge energy loss is small. Conversely, the
average energy loss, the inal energy specirum and the pair creation process can b
shudicd by assuming no disruption withoul cumpromising too mmch on accuracy.
There is, however, one issue where the two effects are strongly conph-d. This is
the maxnnum disruption angle associated with the large deflections from the Jow
enerpy it hicles

I 1has lecture we review what bas been studied on these issies. The compute
arttibatians are performed using the code ABEL (Analysis of Beatm-beam Effecis
i Linear colliders) described in Ref. 1, but improved consideralily since i was
first wrntten. Althongh it s attempted 1o make this lecture pedagogical, many
tdetails are yelnctantly omitted to avoid fengthiness. The reader is urged to consult
the sited references in these circumstances.

2. DISRUPTION EFFECTS

It will be shown in this chapter that all the disruption effects can be well
describiea] by two Lorentz invariant parameters. Namely, one is the disruplion

parameder D defined as

2r.o. N

J 7
v TOry (o, + ﬂy)

. (2.1)

where v, is the classical electron radius, 4 the Lorentz factor of the relativistic
beam, and ap,ay,a, the rms beam size. Physically, I} measures the strength of
it 1al focusing between the two beams. The other is the A parameter, defised

as
o,

By

where f, , are the f functions at the interaction point of the ¢* ¢~ beams.

“p
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Agy =

Physically, A measures the inherent divergence of the incoming beam. This
s important becanse the collision process takes place within several o,'s around
the interaction point, and the natural vanation of the beam size over such a
distance due to the finiteness of the f-function would have significant impar
on the disruption process. In the study of disruption effects one often chaoses
te fix the beam size au (for round beams) or o, and a, (for flat beams) at the
uwieraction point su that the nominal Juninosity (in the absence of disruption)



can be computed. o such case A is related to the nvasiant emittance ¢, via the
relation A = 1,0, /10§ Futhermure, one can easily verily that Aff) manifests the
initial pliase space area per particle of the beam in units of 1he dassical electron

radins:

(1.3)

which s independent of the optics that the beam experiences. Similar a1 guments
alsu apply o lat beas.

Ity this lecture we assume the same initial parameters fur the colliding electron
amd positron beams. The lungitudinal coordinate s is fixed 10 the center-of-mass
framne whose arigin s the collision pomt of the two bunch centers. The time
courdimate 1 is defined such that t = 0 when the two bunch centers collidee. We
further sntroduce the longitudinal cvordinates z, () = 1,2) co-moving with the
two bundches. The origin of 2, is the center of the jil bunch, and z; is positive
along the dirretion of motion of the beam (see Fig. 1)
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Frg. I. Schematic diagram that defines the various coor-
dinates of the tiwo colliding bunches. For u test particle
in bunch 1 at 2y = 2, the relative coordinate with respect
lo bunch 215 22 = —2¢ ~ .

In our calculations we shall ignure the longitudinal component of the focusing
force, which is of the order 1 /4 smaller thzi the transverse component. Thus the
coordinate 3, of a particle is a constant in 2. It is easy Lo see that particles in one
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bunch 1hat arrive at ~ at tine ¢ should have their co-moving coordinate 2y related
1o s by
s = g+ 1 (2.1

where we adopt the convention that the speed of Hight ¢ = . On the other hand.
particles in the opposite bunch arriving a1 the same space-Lime point would have
then co-muving coonlinate =z related by

s = —z—1 . (2.5)
With these relations in mind, the luminosity for A = U is defined Ly
L = 2fN? /J.rdydsdl np{r.y. 21 ) ualr g 75 l) (2.0)

where f s the repetition rate of collisions, and n,(r,y. 2.1} the distribution fune
Vot of the Jth beam at time 2, wormalized such that

/ ny(r,y, 5y t)dredydzy =1V . j=152 | (2.7)

Sinee we ignose the Jongitwlinal force, the longitudinal distnibutions ane constant

e Lirne, fe

]
/n,{r,y,z,.!)drdy = n,(z) = 7-!—70‘. exp {— g},} . (2.5)

In the absenve of disruption, the Juminosity in Eq. (2.6) can be straightior-
wardly integrated (assuming Gaussian distributions) to get

ﬂ\""

] K]
droy !

Lo =

When A # 0, the above expression should be modified to take into account
the variation of the beam cross section due to the change of the #-function around
the interaction point. This can be done by introducing a reduction factor 7 ,4:

9 ~a?)a}
= — - = 210
A Jro, f 1+ =2/ ¢ { ]
D
such that the luminosity for a linite A o the absence of disruption is
La=naly . 2.11)

Numericzlly, 54 = 0.76 at A = 1.0, and rapidly approaches unity for A < .
Stnce a reasonably designed accelerator would presumably be chosen to work in
the regune where A < | Lo avoid degradation on luminosily, we find it convenient
tu use Ly as a relerence parameter for all values of A,



When the disruption is included, the effective luminosity £ would be different
feom £y, and a lutinosity enhancement factar Hy is intsoduced to account for

the cltange

= £ 219
Hp = o (2.12)

Note that with Hp so defined without 5,4 involved, it is possible that Jfp £ 1
when D is syuall but A s large.

By 1he same 1oken, we introduce a disruption angle enhancement factor Hy.
I the weak focusing limit whese D < 1, the approximate solution of the «quation
of motion for a particle with fupact parameter ry can be shown Lo be

- t ]
dr ~ _,,;: r . (2.13)
103

!
Janal

Thus the nominal disruption angle can be defined as

r. N c
0y = ~— =p=2 . (2.14)
170 a,

The effective disruption angles #p for an arbitrary D is generally different from
Oy, so Hg is defined as

fp
— EBF
He = —90 . (2.15)

2.1 Luminosity Enhancement Without Offset

Our primary interest is the enhancement of luminosity due to the mutual
pinching of the two colliding beams. The details have been discussed in Ref. 2 for
round beams and will be given in Hef. 3 for flat beams. As was pointed out in
Ref. 2, the Juminosity is infinite if the initial beam is paraxial and the compu-
tation is perfectly accurate. This is because a paraxial beam can be focused to
a singular point. In reality, however, a beam will always have certain inherent
divergence, and the singularity is only approached asymptotically. To account
for this effect, as mentioned earlier, a parameter A, , = a,/ﬂ;m is introduced,*!
which is proportional to the emitlance for a given beam size a, . The computed
enhancement factor Hp = L/Ly, where Lg is the geometrical Juminosity without
the effect of the depth of focus related to A;y taken into account, is plotted in
Fig. 2 as a function of L2, and A, for flat beams.

The data in Fig. 2 are obtained by using a distribution function which is
uniform in z and Gaussian in y and z (UGG), instead of a three-dimensional
Gaussian distribution (GGG), for easiness of computation. The enhancement
factor of GGG distributions for a given Dy can be deduced from i superposition
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Fig. 2 Lumiinosity enhancement factar as a function of
Dy. computed with four different values of A;. The A,
valucs are so chosen that they ane equally separated on
the logrithome scole.
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Fy. 3. Lumunosity enhancemend fuctor for round beams.

of VGG results with disruption parameters ranging from 0 near the horizontal
edge 1o /6/x D, at the beam center. The enhancement factor for round beamns
ia shown in Fig. 3.

By comparing Figs. 2 and 3, one finds that the enhancement factor for flat
beanms scales roughly as the cube-root of the corresponding value for round beans;
which obeys the (ollowing empirical scaling law that fits all data points in Fig. 2



to within MY accuracy.

Hp =1+ DY (5 :’;3)[1.,(./5+ l)+:£lu(0‘—'—‘:{)] N PANT

The reason for the flat beam enbancement not being scaled as » square root of
the corresponding value for the round beam is because the horizontal fucusing can
enhance 1he vertical pinch effect {and vice versa) in the round beam case. whereas
fur flat beams the pinch i the major (horizontal} dinsension can hardly aflect the
disruption in the minor dimeusion.

Iu bath cases, the Chen-Yokuva results indicate a logrithmic divergence of
Hp as a function of A, or Ay, Iu addition. Hp is monotonically increasing as a
function of D, or £3,. at least up to D =100. This second point s qualilatively the
same as that found by Fawley and Ler' but in contradiction to Holeheek” and
Solyak,' where the enhanversent factor first saturates before eventually decreases
at large D's.

The difference appears to be due to the different ways of handling stuchastic
errors. In a Monte Caslo simulation the initial condilion 3s generated by random
numbers, which introduces a statistical Auctuation, and therefore an asymmetry.
of the arder 1£,/Ny, Ny, being the number of macre particles. This asymmetry will
be amplified during collision (i.e., kink instability} due 10 the beamn-bearn force.
especially when the disruption parameter is large. The fact thar the pumber of
macro particles in a simulation is typically much smaller than the actual particle
number, this fluctuation is artificially enhanced if no proper action is taken. Tu
minimize this computation error in the study of luminosity enhancement withoul
offset, the particle distribution funclion should be symmetrized at every time step
in the calculation, so that the heam-beam force has the up-down symmetry at all
tirnes for the flat heam case. Similarly, in the round beam case only the radial
force is computed. This process eliminates the possible instability triggered by
computation errors,

The actual collisions are expected to bave some unavoidable initial offset in
alignment and skewness in distributions. This effect will be discussed in the nest
section.

In order to analyze the physical mechanism of the disruption process which
give rise to the Hy behavior shown in Figs. 2 aud 3, it is useful to investigate
the time evolution of Hp. The differential luminosity (per unit time), dL/dt, can
be defined a:

dC

- = 2]N2]dxdyds m(x,y, 2, t) nx{xr,y,z2.t) . (2.1.2)



By the same token the differential luminosity enhancement factor, dHpfdt. is
defineid by
diy ! dL

= — ——— 218
dt Lo (2.1-5)

such thal

T dli
Hy = / ‘d:D di . (2.1.4)

-0t

fn the ahsence of distruption it is easy to see that

diy i -2 -
= . L D
dt Vox o, “"{ H } L

and fiom tis expression [{dHy fdt) dt = 1, by definition. Figure 4 shows dH , [t
as a function of time for various values of D for round beams, Silimar behavi
15 also seen fur flat beams, though not as dramatic. Here the paramerer 4 s
fixed al 0.05, and the time { is in units of o, fc. In spite of the fact that the Hy,
curves in Fig. 3 are reasonably smooth for each fixed value of A, the curves shown
i Fig. 4 reveals dufferent characteristics throughout the entire range of the value
of 1)

For very small and very large D’s, dH p/dt varies as a Gaussian function
{although for large D regime there are small wiggles superimposed), while for
inedium vatues of 1) there is an obvious spike.

For very small 1), eg., D < 0.6, we find that dHp/dt varies essentially as
Eq. (2.1.5), which reflects the square of the longitudinal particle distribution of
the bunch. When D ~ 0.5, a second peak appears at { ~ 1.6 o,/c. The peak
grows as ) gets larger, and eventually becomes the dominant source for the lumi-
nusity enhancement by ) ~ 0.7. Notice also that the location of the second peak
shifts gradually to the left as ) increases, where the strong disruption induces the
phenumena tu occur earlier in time. Furthermore, while the buildup of the second
peak becomes steeper, its fallofl becomes smoother as D increases. This plicnom-
ena of a second peak appears in the region 0.5 £ D £ 5. Beyond D ~ 5, the
differential luminosity evolves into a new regime. The “second™ peak now occurs
right near the beginning of the collision, and its smooth falloff now recovers the
Gaussian-like variation, except that there appear to be high-frequency wiggles su-
perimnposed. While the time evolution of dHp/dt in both the small and the farge
D regimes behave similarly, their absolute values are distinctively different.

It turns ont that the underlying physical mechanisms are indeed very diflerent
in the above mentioned three regimes of D, classified as follows: (1) the small D
(D < 0.5), or the weak focusing regime, (2) the medium D (0.5 £ D £ 5), or
the transition regime, and {3) the large D (5 £ D), or the pinch confinenient
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Fig. {. Computer analysts on the time evolution of the
luminosity exhancement factor Hp, at various differe
values of I} with A = 0.05.

regune. o the following sections we shall provide theoretical descriptions that
qualitatively explaingihe phenomena occurs in the three regimes.

2.2 The Weak Focusing Regime

The weak focusing regime corresponds to the range 0 < D < 0.5. For such
small values of D, dHp/dt is essentially described by the Gaussian function in
Eq. (2.1.5). The correction to this expression 1o the first order in D can be derived
in the {ollowing way. For the sake of argument we assume A = 0. This is justified
because il turns out that there is no divergence at A = 0 in the correction term
linear i D, i.e., to this order the rorrection arises only through the radial motions
of the particles.

The equation of motion of a particle at z; in a bunch is

d*r iANT )
7 = 3 = Jolr)na (=2 = 2)) , (2.2.1)

10



witl
r

Jolr) = é / ngg(r)rdr . (2.2

where n,a(r) is the unpesturhed radial distribution function normalized such tha
[ nya(r) rdr = 1. To derive the fiest order corrertion we had assuned unperturlial
distribution on the right-hand side of Eq. (2.2.1). The solution of Eg (2.2.1) wirh
mitial conditions v = ry, and dr fdt = 0 a1 { = —oc is given by

iN'r, .
rlt.zg) = ro— " Jul(re} glt.2y) 2.2

wilh

H 1 {
gl .z = / dty ] dty 1 (=M. — ] = ] dty (0 =ty (= — zy)
.- - On — Ok

Equation (2.2.3) can bLe inverted as

4N'r,
rg = +—_}— Joir)gll, 1) (2.2.4)

withia the same order of accuracy. For our purpase we like 16 know the perturlsed
radial distribution function n,{r} at (¢,21). This can e lound by

"l‘(rirl:ll = nlll(rﬂ) %&%
‘ D"
1N 1 dn,
= ney(r) [ i (—- ; = fotr) + “r(.l) y(l.::)}
Tiyp
Accurdingly, the luminosity can be evaluated as
£ o [ rdrd:l ‘iz.' "l(:l) nt(:ﬁ’["vltrnhzl} u"l(rn L, :'.!’] ’
=—{t,+a2)J2

z= / rdrdzy dzy ny{zy) l'l;(i"_!)["rﬂ(r)]:.

ANT, 1 o
x {I + -T (-— hakka fll+ nfﬂ) [9“1"-'!) +9“|22)]} .
' nep dr =—(ay+22)/2
(2.2.6)

11
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where the leading tern (unity) corresponds 10 the nominal luminosity Lo, Tle

integration over r can be carried out, which gives

oo J o
! dn, I e
/ rdrn?, ("m dr" Jo+ ﬂ,o) =3 [ rdr uly . (2.2.7)
a 0
Thus the luminosity enhancement factor for small ) s
4N Y [rdru
Hp ~ | 4+ —= [ / "]
v ] frdr o,
(2.2.5)

»*'[ dzy dzs us{zg) "x(:z)[y(h:li 4 y('-=.ﬂ] .
=~z t2,)/2
Sinee the two colliding buuches are symmetric, g(f, 2y} and glt. =) contribute

equally o Hp, where

1
/ Al —ty) ny(=211 = 31) = }/ rdr na(r 4 21)

g(’~:|"
f=—{n+2)f2 ey 8
(2.2.9)
Therefore
' d b3
Hpy =~ -I:\r, [I d r"'" jf dzydzy n(2y) n,(z_:)/ rdr nglr + z4)
J ordrud,)
[}
N d i
=14 0 [f l r""’] jdz j rdr nyz) nglr +3) . (2.2.10)
rdrnm J

Now we introduce normalized coordinates p = rfoy, and { = z/e,. Then

Iy = I+D[‘5. ﬁi:m] /dg ffdr u ) n (it +y)
0

{(2.2.11)

For Gaussian and uniform distributions, this leads to

% (radially Gaussian)} { 7z (longitudinally Gaussian)
x

Hp =14 Dx \
3 (radially uniform) ) 7— (longitudinally uml'urm}

12
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This formula agrees very wetl with the simulation results fur [} £ 6.6, Notne
that for {2 < 1, the empirical expression for My in Eq. (2.1.1) behaves as 1%/,
which is by no means close to the linear behavior in Eq. (2.2.12). This s mainiy
because of the need o suppress the strong &n(1/A) dependence in Eq. (2.1.1) in
the small 1) regime. This strong fu( 1 /A) dependence, however. is necessary 1o it
Lhe mediuim aml large D regimes.

Iiguiously speaking, My caunot be Taylor expanded around D = 0. u
deriving Eq. (2.2.1) we have assumed that the first term rg on R.H.S. of Eq. (2.2.3)
is mnch larger than the secomd term. This is not the case when £ becomess large,
nu matler how small £ is. One obvious example is that al the focal point the
two terms would become equal. For D < 1, however, this focal point lies far
beyoud the tail of the uncoming bunch, thus the subtlety mentiomd above is
alleviated. To be more explicit, from linear oplics it is easy Lo see that the focal
length i the weak focusing regime is propurtional to o/}, thus the density of
the oncoming beam aruund the focal point is proportional to exp {—1/2 "} « 1.
Sinee Hyy comes from multiplication of the local densities of the two bunches, the
corttibution from the focal point is exponentially small,

2.3 The Transition Regime

The transition regime is chatacteriz=d by the appearance of the second peak
in M fdt with relatively short duration. This phenomena alsa conforms with
the fact that in this regime the first foca) point lies jnside the bulk of the on-
coming beam. Becanse of the strong focusing, the deformation of the oncoming
beam cannol be ignored. As we will show later in this section, the leading order
currection in D for the target bunch deformation is equivalent to the second urder
contribution in D to the focusing force. To set the stage for the second order
calculations, however, we shall still start with the first ovder approach where the
equation of motion is given by Eq. (2.2.1). For small z in a Gaussian distribution

we have

dr  4Nr, 2 (20 4 2 ¥
dt = T Jomq 2a%a, OV 307
_ 2Dz (21 + 21)2 .
= —Ea—s exp{— —‘:-,;—;,— - (.’.Jl)

It suflices to sulve the equation

& _ 20 x 212 .
T S = (232)

x

13



which arises from a coordinate transfurmation {rom ¢ 1o {4 21 /2. Let us denate the

two solwtions to Eq. (2.3.2) by ug(1) and ua(f), with initial conditions at 1 = —x
1 1 .
=140 "- . up = t4+0 '!- N (2.3.3;

[}
respectively. We are interested in the solutions near the focal point, whick for ) £
5 uccurs at fy ~ o,/ D. By definition, at the focal point uy(fy) = 0. Numerical
infegration then gives the fullowing approximate solution:

uyfty) >~ - 3 ‘/—ﬁ . {(0HSDSS) (2.3.4)
i o,
while
I [

1 o
e {ts) ~ 3 /D

The last relation comes from the Wrunskian property:

(05<D<S) . (2.3.5)

urty) = —

up(thast) — up(thua(t) = 1 . (2.4.6)
The general solution to Eq (2.3.2) is therefore
T = rouy{t) + xfuslt) . (237
Transforming back to the original coordinates, we have the solution to Eq. (2.3.1)
| Z]
I = Iguy (! + -2—) + :c& uz (1‘ + ?) . (2.3.8)

Generally, 15 < 1, so from Eqs.(2.3.4), (2.3.5) and (2.3.8) we see that a particle
at z; would be focused to the axis at time 8y ~ 0,/ D, or

Q

x

f“-'ﬁ

(2.3.9)

te| b

The focal point is thus at

20,
o= =M—z ~ --E- . (2.3.10)

L]



This means particles at different longitudinal positions zp in one bunch would all
be fucused 1o the same poimt zz ~ 20, /D, but at different times.

This naive picture, however, contradicts simulation results. Two diaguose
were petlormed so apoenitor the detail processes of beatn focusing in this regine:
Figure 5 shews the thne evolution of the average radius #(1, 2} of a set of selected
z slices with zy ranging from —2a, to +20; for 17 = 1.0 and st = 0.05. Here s

dehined s
- 1/

r = '_’/[n,(r]F rdr . (23114
a

where the tadial particle distribution function n,(r) is narmalized such thar [ u,(r)
rdr = | The above definition s equivalent to the delinition of the standard divic

ation ay in the limit of a Gaussian distribution, but in general it puts more weigla

un the rady that have higher particle densities. This is particularly inspired I

the olmervation that during the collision a bunch tends to develop into a care
aml a halo, and the conventional definition of the rms value would not reflect the
cructally important role of the core.

One finds e Fig 5 that most particies at different 2’s are forused alimost
simultancously, at § ~ 0.8 g, /c, which differs with Eqs. (2.3.9) and {2.3.10). This
fact is also reflected by the relatively short duration of the second peak in dif, /d1.
fndeed, the full-width half-maxinum (FWIHM) of the second peak turns omt o
be around 0 4 g, fe throughout the range of 0.7 £ D £ 3. One further diagnoss is
shown i Fig. & for d M pfdz as a function of z, This is the conmulative contribution
of each 2 slice of voe beant to the luminosity enhancement. If all the particles are
focused at the same =3, as the strong-weak picture suggesis, then dHp/d:- st
show a sharp spike. (On the contrary, Fig. 6 shows a smooth curve manifesting
the longitudinal Gaussian distribution of the beam.

To account for these facts, we proceed by including the deformation of the

vn-roming beam i the liest erder in D. To this order, the deformation of a
longitndinal slire at 2y is given by Eq. (2.2.5), and that for the on-coming beam

is obtained by sitaply replacing zp by 20 = =2t — 2y, iLe.,
iN 1 d
nefrid, iy = =% - 21} = ngp(r) [l $ ot (— o Ju+t "rl.l) 9(21)] .
T figp  dr

(2.3.12)
It bs interesting e observe that § does nol appear on the R.H.S. of the above
equation. We can thus improve the unperturbed equation of motion by replacing
Ju{r) with

Nir ) = % / ney(r,t,z9 = -2 - z)) rdr . (2.3.13)
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Frg 5. Twne evolution of the average yadrus & {10 unls
of ay) of a set of sclected z-slices with 2y vanging from
=23, to +20, for D = 1.0 and A = 0.05. Notice tiral
in ths regone of D, different slices are focused to therr
manunuri radeys al abou! the same thne, in this case al
! ~ {.8a,/c

A A Y N B

d_l_lu

ar

Ty i 2 "UJ’ wirad

Fig. 6. Cumulatice contrilution of the luminosity en-
hancement factor d¥H p/dz as a function of z. The Gaussian-
ltke distributian indicates the simaltaneity of the focuseng
process for different z-shices.

Substituting Eq. (2.3.12) into Eq. (2.3.13), we find a simple expression:

Nr,

T

Nitr, 21} = fulr) [1 +‘l nm(r)g(z,)] X (2.3 141)



Actually, the above inclusion of the deformation of the on-coming beam, with
the disruption parameter 1) intact, can also be interpreted as the inclusion of the
modification of [J to the next order, namely,

4ANT,

D—~D [l + nir) olz) )] . (2.3.15)
with the distribntion fu(r) unclianged. From this viewpoint the focusing foree for
the bunch core near the axis is increased b}' a Jaclor:
12, 2 '
P4 —-=nlr) glz) = 1 +4D L (2.3.06)
1 a,
Ouee thns s seven, the result from the strong-weak picture (or the first onder
expa wion in £ can be readily modified to include the next order in D, Namely.
the fucal point should vecur at

. ]
P~ - = {23.47)
D1 + 4Dyl zy)]a.} 2
Fromn the definition of g(zy}, we find for small 3
L 1 PR
i i Sl IR (2.3.18)

This implies that the z; dependence in Eq. (2.3.17) is almost cancelled provided
that 17 is not too large (e.g., of order unity). Thus the minimum beam size occurs
at the Lime

t ~ (D) = (2.3.19)

D {1+ DjvE)

We are now ready to derive the luminosity enhancement facrtor Hp, The heam
size of the slice at z; can be derived from Eq. (2.3.8) as

o; = (:g} uj (t + %) + (J"s) us (l + '22—])

= o} [u'f (t+ %‘) + (#)zug (z + %')] . (2.3.20)

Considering that the primary contribution to Hp comes essentially from the high
partlicle densities near the focii of both bunches, we concentrate on the beam size
around { = t7(2), where uy{ty) = 0. Thus Eq. (2.3.20} becomes

2 2
oF ~ a,'-;{[i.,(t,e)] -1+ ["’;{” }
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(2.3.241

L len -\ 164°
=% % \e. /) Tp
]

where Eqs. {2.3.1) and (2.3.5) have been used. The same expressiun holds for o3
of the second beam near { = 5. The enhancement factor is therefure

2 2 Ll
_ . _Zl+22 -0‘0
Hp = /d. d=, T u..p{ 207 } [af+a:_."]
24y [an fi-\ 1642
/dbdt e”’{ ol }[TE ( o, ) M 91)]

et
] dt Y o fe-t,\% 1647 )
LI ) L O et L (23
7 ] o ex"{ a;-’} 16 ( s ) + 90] ( '

Since the cuntribution to fy essentially comes from araund 1 ~ t;, we can ap-
proximately carry out the above integral as

o~ ﬁ ex -1 . J ?
= p{[ﬂ(:wm—xn”} .

Unfortunately, this expression does not fit the transition regime in Fig. 4 too
well numerically. In particular, it is too sensitive 1o 4, and Eq. (2.3.22) gives tou
sharp a peak in dp/di. The disagreement mainly comes from the fact that ¢
is not strictly z; independemt. The residual z; dependence in Eqg. 12.3.17) would
break the simultaneity of focusing among all the z-slices. As a result, at time #
when a slice at zj reaches its minimum size oy, the overlapping oncoming slice al
25 may nal have reached its minimum yel. This slight mismatch between oy and
o2 would potentially relax the sensitivity of Hp on A, as in Eq. (2.3.23).

To incorporate the residual 2y dependence in 1, numerical integration will he
needed. Our result here, however, does indeed qualitatively explain 1he essential
physical process shich daminates the transition regime: nainely, the luminosity
in the transition regime is contributed primarily from a very narrow window of
collision time when the longitudinal slices from head to tail of each bunch are
focused to their minimum size almost simultaneously.

2.4 Pinch Confinement of Bunch Core

In the large D regime (D 2 5) the most striking phenomena is the confinement
of a large fraction of bunch particles near the axis within a small equilibrium radius
throughout the course of collision. We call this portlon of the bunch the core, as

18



apposed to the halo particles that come from cither never being focused Lo the
axis or being lorused but escaping. The occurance of this phenomena, however,
is nothing like a phase transition that appears abruptly at a particulas value of
L. In fact, we already see certain signatures from the slices near the bunch 1ai) in
Fig. 5. where slices at : = =10, —1.5 and -2.0 tend to stay al a pinched radins.
This is why we called the regime for medivan D the fransition regime.

I thas section we devise an analytic description of the large ) regime guided
by simulation rsults. Since the luminosity essentially comes from the confined
cure, we will emphasize the behavior of the core. This is handled, again, by 1he
siean raduts v of a longitudinal slice inteoduced in Eq. (2.3.11). However, for te
sahe ol mathrmatival sitaplicity, the transverse distributions of each longitwlinl
slice is assuined to be Gaussian at any time. The evolution of the beam size is
descrthed by the rms beam size 7,(2,, 8) of a shice at 2, thal comes 1o 5. Since we
assuine viqual beans, we have by mirror symmetry

oy{z,s) = as(z,~5) . {241y

In the linear appronimation of the focusing foree, the equativn of motion of a
particke at zy in the first beam is given by

d-f + My (z,8) =0, {(2.4.2)
ds<

with

(2.4.3)

INF .
Ky(zs.5) = AN, { 1, {z2)

T ldl(:'.': 3)]3}22 = zp — Iy

Whet 1) s very large, the actual beam size is rapidly oscillating during the colli:
siwn. We may smooth out this fluctuation in the focusing force &'y, In this sense
we have introduced a3 in Eq. (2.4.3}, where the bar indicates a sinoothing over
sume shurt interval of 3. Our task is 1o solve Ey. {2.4.2) to obtain r{z).s) and
from which to deduce the beans size ) so as to be sell-consistent with o+ in Iy,

In the case where D is very lasge and the particle in consideration is well inside
the onconung bunch (ie., |2a] 5 (some factor) xa,), the WKRB approximation is
suitable to solve Fy. (2.4.2). Thus, in this case we have

ay
CHINTER K

(C) ros 8y + Casin a0 {(24.4)

r(zy,s) =~

where

0,:] V#i(z,8)ds . (2.4.9)
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Here wee have introduced dimensionless constants C'y and (2. In order to express
3 - . . L] .

them in terms of the initial condition rg and 7, we need a solutiun near the head

of the onioming bunch. where WKS fails. This will be discussed later.

Since cos#y and sin 8 oscillate very rapidly, we may put cos? ﬂ; = sin? 0, =
1/2 awd cus @, sindy = 0. Then, we have

% Levven (2.4.6}

2(: '_,)z —_—
A .8 2

To get the smoothed beam size we average Eq. (2.1.6) over the initial distri-
bution, from which we gel

ai(z1.8) = (r3(21.8)) = {2474

with
(= <— (& +(‘,)> . (2.48)

where () denotes the averapge over the imtial distribution. Then, we get fion
Eys. (2.4.3) and {2.4.7)

8i(21.8) = L feefulzas) (2.4.9)
! V2D \/0‘,1’13(23 =2 — 25 o
Similarly, fur the second beam
&3 £ |entans) (2.4.10)

(:'.'u 5) = 0=
1,/20 ‘\fax":(zl)]zi = zz-]-g.i

Now we can solve Eqs. (2.1.9) and (2.4.10) self-consistently with the resulh

c 1/6 -143
ai{z),s) = Jgo— U’;";(-!}] [axnz(~')] . (2.4.11)
20 -3
Inserting intu Eq. (2.4.3) we obtain
. 402 2]3 4/3
Ki{z,8) = o] [ﬂ:":(-’l )] [0:";{23)] N {2.4.12)
z = — S

Here we have a remarkable formula saying that the beam size is determined only
by local variables; namely, the longitudinal density of the beam of interest at =,

20




and the longitudinal densi.y of the vicoming beam at the same position.  All
the histury ol the particle is packed in one single parameter . Keep in mind,
howerer,-that Eys. (2.0.11) and (2.4.12) do not apply to the head and the tai of
the bunches,

Figure 7 shuws the time evolution of the beam size for five :-slices at 35 =
1.0, 6.5, 0, ~0.5 and — 1.0 g, for D = 100 and A = 0.05. These five curves
are then overplotted in Fig. 7(f). One finds thal there is no distinctive difference
amang the five curves except for the shift in time according to their locations in
the bunch. The shices abruptly shrink when entering the oncoming beam and soun
reach some equilibrivm “core™ with small and rajd wiggles and a slow variation of
the pan radii. The rapid wiggles are related to the oscillations of cos 0y and sin 8.
whereas the slow vanation agrees well with [ng(22)]~3 x exp [(:. — 2:)* fGo?]
in Fy. (24,31}, which ensures the validity of the WK D approximation.

D=100 A=005
_l"'l"“'l 1 | ] ]
1.0 -05 |
| -t |
I \ 1) !
) A i N 1
"' -1.0 " :
. I = - T st e T
r
7 \ !
fb} it A

0 —L.a 1 L

o al
I
(cl
0 1 i 1 1 1
-2 0 2
12.02 clig, VITA4

Frg. 7. Teme evolution of the beam size for five selrcted = -
slices at zy = 1.0, 0.5, 0, —0.3, and —~1.00,, for D = 100
and A = 0.05, shown in the figure frem 7(a) to (),
respectively, The five figures are then overplotted in 7(f).
A confined bunch core can be obviously seen.

In urder w fnd Hp we have to express Cy, C2 and C in terms of the initial
conditions. To this end we need a drastic approximation. The fact that the beam
size suddenly reduces 1o a small value suggests that we may ignore the focusing
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force biefore the parli;les are fucused 10 the core. Therefore, we shall assume that
the focusing furce Ay is given by Eq. (2.4.12) when 24 is well inside the oncomiug
beaip but is zero near the beginning and the end of the collision. The boundary i»
determined by the limit where WKB fails. The condition thar the WKB is vahd
is given by

Jd 1
s Jh7

Shice 2y is a vonstant for a given particle, we can rewrite Eq. (2.4.12} as

it M
Iy = L. exp {— ?"' o } . (2.4.13}
A 3o;

<1 . (2.4.11)

with

s't=s-4
= =3 . (2.4.16)
i m| )

We shail jgnore exp{~z7/607). assuming that vur particle is nowhere near the
licad and the tail of the beas. The solution of Eq, (2.4.14) for 5" < 0 is

s sy . (2.4.17)

where s,{< 0) is a solution to
B(~sy) 45\ _ 5
3lo, exp{aa;_, =1 , (2.4.18)

and is approximately given by

r l
I P 4 :
7 = 43 &n ( r C) . (2419}

The above .v-:, is thus the boundary that partitions the two zones for zero and finite
K)'s. Notc that at s’ = s, K is given by

i () ()= (i) [(VE8)]

(2.4.20)
The solution with the initial condition zg and z; at s’ = 5] is Lhen
. [Fatsp] : ] " )
=z [l\';(S') cosl + zp KGi) Fals) sinf {2.4.21)

2




w llt'l'l'

0=/ ‘/!\'|[.5‘)d‘\" . (2422,

Note that we have nored the derivative of Ky, which is always valid wheneve
|hburr.msl_5 speaking. we should impose

the WIKH approximation is apphml:la
the antzal condinun at s = 0, not at :. = -’n Our treatment is justifivad becaase
for very simall A the dellecting angle fu al s = °‘o is much smaller than a¢, which

1» the tvpical value of ry
Companng Fys (2.4.21) and {(2.4.1) we have

an? : —1/4

() = [n',-‘ h"”'}l 20 - [.—; (If,—) ru( e {-‘1)] 2 (2.0.23)
~1/4 !

A N ST | e - (2.121)

Avetagisg over the initial distribution gives
p [ {3 b\
2y o L s Y 2.4.25
(& e [3 n ( B C')] . (2.4.25)

(24.26)

aml
(‘Tﬂ)a ('T )_ 2
(( (( )__G_DT_A

The latter merely msures the conservation of the linear emittance. Since we
assume A < | and D % 1, we have (C}) 3 (C}). Therefore,

(2.4.27)

=il =5

which, together with Eq. (2.4.25), determines C sell consistently, We now get

-1/
N ZAKARF: [3 1 .
(= (";r) [5!" ( C' . (Z.d.-’h)

While (7 still appears on the RHS of the expression, it varies only logarithmi
cally. We may substitute ' on RHS with some constant times D'/3. As a pood
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approximation we get

; 1/3 )y ME
O = (;—“) [[n (’—,J} (2.4.20)
n 2

which agrees with the exact solution ¢ Eq. (2.4.28) within 1% for D 2 10. Thus.
the smoothed beam size in Ly. (2.4.11) is now writien as

9 e 42 2.4.30
izl = o [J'\/Tr Dh-(n/'}] “”{_i:?—af_"}:z Cone

and the focusing function is

128 AN e zf + 257 :
lk]{ |,.5) [— .D‘ in (?)] Exp{—laa—g'}:,:::l Yy . (2"3]'
These formulas apply for
' 3 D o4
z2] £ 2sy] = 3 {n (3) a, - (2.4.32)
Let us now calculate the enhancement factor f1y. Analogous to Eq. (2.3.24) we
have
o2 2
Hy = dzyd:, L }
o / 172 af{:l,.s) +a§(z ,5) #a? pl =2 — 2

(2.4.33)
Note that 2 dsdl = dzydzs. 1[ we replace o, in this expression with the smoothed
radius &, in Eq. {2.4.29), we get

D 13
Hp=1.374 [D tn (?)] (2.4.34)

via nurnerical integration. As in the case of the transition regirne where Lhe
slight mismatch between o) and o; should not be overlooked, in the confinement
regime the rapid wiggling of the beam size also plays some role and, therefore,
one needs to use o, instead of o,. Averaging the square of Eq. (2.4.4) over the
initial distribution and using Eqys. (2.4.25) and {2.4.30), we get

ai(a1,5) = (z}{21,3))

2 2 4 4
‘ A° . 2235
B 22 [ cos? 0y + ~—sin 8, } exp f,_—th__
D 4 60’; =2y — 2
(2.4.35)

AL 0 = x/2, we have the mininmum beam size o3 ~ |(27)'/M A/Q\/E]DD. Notice
that if we ignore A% and replace cos? 8y by 1/2, we recover the smoothed beam
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sizee m Fy. (2430} Nevertheless the finiteness of A can still contribute to the
Inminosity near the zeroes of cos . Substituting Eg. (2.4.35) into Eq. (2.1.33).
the new 1 now reads !

D dzydzs 3=+ =5
Hy = CRpy— — (=
n/ix a; 4o}

x ["xl' { ___:l%f.:i} (C'." cos’ 0y + i:—’ sin” 0.)
-

. A i
+oexp { ll:!a;'-} ((hu.s .4 Tblll '8, )] )
{2.1.56)

Siwe ) and 0, are strong functions of z; and 72, and C? 3 A?[d, we can
approzmnate |_\' integrate the above expression to obtain

Hy = - 2 / dipdz ex n{ J':i + '7' }[n [ cush (———"‘. — :‘)]
b= nl/n o ! V20 1202
[274‘- -

fur A « (. By numerical integration and by invoking Eq. {2.4.29), we finally

vbtam
O\ (1 D? .
I!D = -’\I [[) {u (-:—!-)] {6 n [l_-_fn-rb_,z_)J - !IJA} . {3.-1.-!4_\]
where Ay = D80 and Ay = 228, The agreement with the simulation s nol

excellent but the fad dependence is correctly expressed. We can also obtain
dH p/dt, discussed in Section 2.1, by replacing d2;dz2 in Eq. (2.4.37) with 2 dsdr
aned by integrating over s. Since only small |21] and |za| contribute in the integral.
we may ignore the vanation of cosh in Eq. (6.37) as a rough approximation. In
so duing, we obtain

dil 12
= V3 Hy exp{ Ja } . (2.4.3%)

dt Iro, :

Comparing this expression with the unperturbed d#y/dt of Eq. (2.1.5), one finds
that dHp; fdt for large D is indeed Gaussian with a slightly larger coefficient for ¢°
in the exponent. ‘This fact agrees with the siinulation results quite well. (Compare
the figure for [} = 100 versus that for D = 0.2 in Fig. 4.) Notice that the functional
behavior exp(—3t2 /a2 } comes solely fromi the WIKH part. On the other hand. the
overall factor in Eq. (2.4.39), which comes from the truncation of K’ at Lthe head
of the buncly, {ike the case for ), does not numerically reproduce the simulation

results.



2.5 Lwminosity Enhancement With Offset

Since the asymmetry in distributions tends to shift the center-of-gravity of
the beanss, it gives rise 10 the same effect as the initial alignment offsets. For this
reasun our study on the effect of imperfections is concentrated on initial offsets
anly.

As will be discussed in the next section, an initial offset triggers a kink insta-
hility, esprcially when the disruption parameler becomes Jarge. As it occurs, this
instability is not always harmful hecause, in the initial phase of the instability. 1he
beamns always tend to find each other, which prevents the otherwise rapid degra-
dativn of the luminosity for large initial offsets. Figure 3 shows the luminosity
etthancenent factor as a function of offset Ay (in units of o) for various values of
[}y, The dotted curve is the geoetrical enhancement factor without beam-beatn
force, which is equal to exp[--.ﬁ';lﬂ. UGG distribution is used and 4, =0.2 far
all curves. The up-down synunetry is not enforced except fur the cases at A, =(0.

Fram Fig. 8 one finds tha¢ the talerance on alignment offset reaches an ap-
tirnun fur values of Dy between 5 and 10. Within this range of D, Hp is still
above unity even at A, ~ 3. Beyond this region of 1, the beam-breakup beconies
severe, while below the beam-beam atiraction is not yel strong enougls.

1E-
o
0.5
Hp |
01
0.05 |
- 1 -
1 1 b [
6 1 2 3 4 5
1008 A! ‘U’J "I

Fig. 8. Hp as a funchion of offset Ay for flul beams.

The same data as in Fig. 8 is replotted in Fig. 9 as a function of Dy, and
cach curve corresponds to a fixed value of A,. {The region of large D, and small
Ay is not very accurate because of its sensitivity to computing errors.} One sees
a saturation and decrease of Hp as a functicn of D, unless A, = 0. One alsu

26



ATAY

Frg. 4}y as a function of Dy for flat beams.

notices that the curves with small offsets, eg., &, = 0.2, resemble the results in
Refs 5and 6, except that our offset was explicitly introduced. In designing a linear
vollider, vne needs to estimate Hy for the chosen D and A. This depends on the
assesinent of potential imperfections of beam-beam collision. Though arbitrary,
it may be safer to adopt the curve for &) = 0.2 or 0.4, instead of Ay = 0, as the
effective enhancement factor.

Sinilar exercise for round beams are shown in Fig. 10 for D up to 50. Here
we find the same generic Leliavior as in the case {or flat beams.

1D'r|nT T YT1ITing LI 2.0
[ 2
5 o
T4 12
HD - ',"- ‘_:_'::E\—'r 16
R - T=IR 20
Vs ,"‘ i:lu
3 1*°
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r
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05 1 5 10 50
umM D (LT

Fig. 10. Hyp as ¢ funclion of offset A for round beains.



2.6 Disruption Angles

One important piece of information for linear collider design is the expected
disrujition angle. Knowledge of the maximum disruption angle is essential tu
determine the aperture of Lhe last element in a final focusing system, so as 1o
avoid Lieing chowered by the debris from the beam-beam collision.

For round beams the simulalion results of the maximum and the rms dis-
ruption angle reduction factors, HJ™" and H;™*, are ploited in Figs. 11 and 12
respectively. The curves for A = 0in the two figures reasonably agree with the pre.
vious results.d These curves for zero emitlance can be well-explained theoreticalliy.t

which predicts the flollowing generic functional bebavior for both JIg* and Mg70*
for A = 0, i.e., a linear increase for D < 1 and a 1/+/D suppression for 1) > 1:

{a+bD, D&,

. {(26.1)
ik D»1,

Hen ~

where a, b and ¢ are some numerical coeflicients which are different for maximuwn
and rms angles, and which are to be fixed by the simulations. From Figs. 11 and
12 we find
087+157D, D«1,
Hyy' = {IIB ‘ D»1, (2.6.2)

and

rmy

0.67 D»1. (2.6.3)

{0.78+0.2OD. D&,
VD

I(.)I I CPR e T T T O T T T

: -

2o A:
o o s 0.4
- -- Q.2

- ce- 0

e

N
! l PN ST B ,_::b
T 1w? Toy 162
[N [ D sattay

Fig. 11. Marmmum disruption angle as @ function D for
round beams, compuled with four different values of A.
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When A4 3# 0, the inherent divergence of the beasm cannut be overlooked when
the distuption ts small. The natural rms divergence angle of a beam is

a5 oy .
-1 26
\\']l‘llt'
a! = 0;2_{_6;2 = ,/5,; . (2.6.3)

Dividing both sides by 8y, as defined in Eq. (2.34), we have the contribution from
linite emitlanre:
o, A

rmns = g 1 l)- '. H

] = % D"’ (2.6.6)

where the definitions of 4 and D are used. The general expression for Hp™7 1
therefore

1" = SO 4 (H Y (26.7)

Inserting Eq. (2.6.3) for HpP* and Eq. (2.6.6) for HZT?, the above expression fits
all the curves in Fig. 11 very well. Notice that the contribution of the second
term rapidly diminishes for D beyond unity. Thus the rms disruption angle is
asymptotically independent of A,

The sitnation fur the maximum disruption angle is slightly more complicate]
since the maximum natural divergence angle for Gaussian distributions is not
well defined. However, as is the case for Hyg, the functional behavior of My
shpuld be similar 1o that of Hg7, and the overall H7**" should be analogous tu
H}™ in Eq. (2.6.7). This is evidenced by the similarity between Figs. 11 and 12,
aside from the numerical differences.
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Now we examine the flal beam deflections. I the disruption parametes s
very small, the transverse location of a panticle during collision is nearly constam.
Then une-can estimate the disruption angles 8; and 8, as functions of the initial
transverse coordinates rg and yg. For very flat Gaussian beams we have

oG

x, O 2 exp {—1° }d! R
0, =—-,/=-D,—TI -_— - . (2.6.5)
* \/; 5. T | GofvPes) ~ 1~ iD
-
yﬂlﬂay
n a ‘.’ K 24y 4
ﬂ. = —ij)y—y' —_— / ¢-‘ ot ‘-—:‘,]_a, . {2649
2 Yo x
C|VE

where the quantities in the square brackets can be expressed by the complex
error function w(zy/v20;) and the real error function erf(ye/V20y). Here the
emittance is ignored. Oune finds that the maximum and rom.s. disruption angle
reduction factor to be

Hme = 0765 , (10 =1.3810,) (26.10)

!,rnj‘; = ‘ll'/2 . {IU =0, = oc) (2.6.1 l)

»»

= \=16V3) (2.6.12)
H;™ = \[x/(6V3) , (2.6.13)

where Lhe nominal angles 8, 4 = D,o;fo. and 8, = Dyo, /o, are assumed. These
resemble the leading constant terms in Egs. (2.6.2) and (2.6.3) when D « |.
(Rigorously speaking, for flat Leams with large but finite aspect ratio, f, reaches
a maximum near yp ~ o, and then decreases; but this is not important.)

The distribution functions of Hy, g and Hy, u are shown in Fig. 13. The actual
singularities at 8; = 8, 0, and #, = 0 are not supposed to be as sharp as those
in Fig. 13 because of finite emittance, various errors, and the disruption «fect.
However, we found from simulations that the gualitative diflerence Letween 1he
borizontal and vertical angles still holds even for D,y not much less than unity.

Figure 14 shows the maximum and r-m.s. vertical disruption angle reduction
factor Mg (0 in units of Dyoy/a,}, as a function of Dy. Here we consider thr
casc for small D; ouly. As in the case for round beams, the dependence on 4,
is not as significant as in the case of Hp except for the small Dy region, where
the beamn divergence is emittance dominated. (The distribution of initial o, is
truncaled at 2.5 standard deviations in the simulation.)
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Fig. 11 Distribution of Hy, o for small Dy .
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Fig 1]. Maromem and r.m.s. verlical disruption angle
reduction factor. The four curves corrrspond to 4, =
0.1 0.2 0.4, 0.5, respechieely.

The simulation results can roughly be fitted by

rms w 1 .
H,.' V 631+ (0.50,)3) /6 (2.6.14)

and H;’:"' ~ 20H;™. Here the contribution of the initial emittance {= Aya, /o,
fur 8, rs) has not been included. The reason that the angle does nut increase
hnearly in [y is that the particle trajectories are bent backwards and oscillate

when 1), is large.
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Su far, the collision is assumed to be head-on. For flat beans the disruption
angle in the presense of verticad offset is also impurtant in determining the aperturne
of the final quads. The mean dellection angle of the entire buncli can be writien
in the form™

1
(-)l'=:;

a -
“ED,HADy.Ay) . (2.6.15)
where A, 1s the vertical offset in units of o, and the weak dependence on A s

ignored. For small disruptions, the function #, approaches the following analytic
furm

HAD,.A,) = ]e"'“dy . (2.6.16)
D
Figure 15 shows H, as a function of A, coruputed by sitnulations, where UGG
distribntion 15 assmmed.

20 (rTTTTTYTITTY T

D =0
¥

50
0 N R I S
0 1 2 3 4 ]

- Ay 0dsaz

Fig. 15. Effective center-of-mass deflection. The curve
Jor Ay = 0 is analytic, while the rest are from simulation.
The dashed ling corresponds to the slope af the zero D,
and zero A, limil, which 1s equal 10 1/2.

Roughly speaking, the maximum disruption angle in the presence of offsets is
the sum of the center-of-mass deflection angle 0, and the maximum angle in the
absense of offsels, 8, snax-

2.7 Kink Instability

If one of the beams is displaced vertically for sonie reason, this offset triggers a
vertical oscillation and, when D is large, the oscillation is enhanced by the beam-
beam force. This phenomena is known as the kink instabifity. Figure 16 shows a
specific example.
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Fig. 16 An crample of kink mstability for D = 2, 4 =
2, and A, = 0.2

In the abuve figure the bunch is sliced longitudinally and the vertical coordi-
nate y of the center-of-mass of each slice (in units of o} is plotted against the
lungitudinal courdinate s (in units of 0,). Each graph corresponds tu a snapshot
of the beam vertical position at a particular time ¢ {(in units of o: /¢). The devel-
opment of the instability can be seen in Lime sequence. The initial offset in this
example is chosen 1o he 0.20,, {full) and the disruption parameter is 13, = 20.

For un*form beams and small amplitude oscillations, the equation of motion

for the heam particles can be obtained from Auid dynamics (the Nat beam version
of the equation is given in Hel. 8),

—-—a __a_ ? 2 n 2% !Jy .
= —wy - AT T c—— T
[3! + fl.‘i] ¥+ wo(ys y:;), wh 5 03 . (2.7.1)

where vy is the y cuordinate of etand e~ beams. Consider the space-time variation
of ys to be of forn explakz — iwt + ¢). The non-trivial solution of the above
equation shonld satisfly the following dispersion relation:

R R
(W+ kP " (ot kP

The most unstable solution is found to be

d
y+ = consl. X exp [:l::(éwus - %) + %uor . (2.7.3)

This salution is in reasonable agreement with the simulation shown in Fig. 16.
Namely, the phase difference between ¢~ and et beams is varified to be x/3, and
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the growth rate is as predicted. Furthermore, Fig. 16 clearly demonstrates the
standing-wave pature of the kink iustability. which agrees with the description of
Fq. (2.7.3).

Su far our discussion on the kink instability deals with collisions of two
bunches. Another type of kink instability occurs during the collision of 1wo bunch
trains, each consists of Ny bunches. Oue of the majur problems of such a multi-
bunch operation is the interaction between bunches before and after their colli-
sions at the central collision point. The i** bunch in the electron bunch train
will collide not only with the i™ bunch in the positron train, but also with the
jl< i)Y positron bunch before coming 10 the central collision point. Colliding 1wo
Nat beams at a relatively large crossing angle can help to avoid unwanted dirert
encounters between the ovtgoing bunch debris and the incoming fresh bundhes.
However, due 1o the long range nature of the Coulomb interaction, there still ex-
ists undesirable interference Letween two separated bunches at a distance. Since
the crossing angl- cannot bir made arbitrari®  -ige due to the wminosity cune
sideration, this long range interaction cann- sntirely suppressed. In faci. it
imposes a severe restriction on the stabili: .¢ beams.

Consider the encounter hetween the nf positron bunch after collision and the
m™ (m > n) electron bunch before collision at 2 distance L from the collision
point. A schematic diagram of the systemn is shown in Fig. 17. We assume 1hat
all the bunch encounters uccur within the drift space around the central collision
point.

According 10 Eq. {2.6.15), the center-of-mass deflection angle for the a'
positron bench is

I

1o
Gy“ = E ::D’IIC(D’gAW) + (2‘?‘41

where Ay, is the relative offset between the mi'® electron and the n™ positron
bunch, in units of oy, at their closest encounter. The cumulative oflset for the
m™ bunch before arriving at the central collision point is therefore

&,,,:CZ H(Dy Ap)+6n (2.7.5)

n<m

where &, is the initial offset of the m™ beamn, and the coefficient € is

¢ =D.D, (:-:-:!)2 . (2.7.6)

and 84 = o, /0, is the diagunal angle of the bunch.

The cumulative offset A,, (in units of §{1 + C)™=?) is ploited as a function
of the number of bunches in Fig. 18. Since the factor 8;/8, must be larger {han

M



P

e e

%‘B — — 7 m-a Electron
L - Bunch Train

-~ Central Collision
=" > Point

Paositron
sus  Bunch Tromn [TTY Y

Fry 17 A schematre divgram of multi-bunch colltsion.

unity i order that the crossing angle does not reduce the luminosity siguificantly,
the condition for uegligible growth of the instability, i.e., Ay, < &, according
Fig. 17, is toughly

(Ng-1) DDy 2 . {277}

This unpuses a conatraint on the allowable number of bunches per tram.

3. BEAMSTRAHLUNG EFFECTS

The energy spectrum of the electrons is important for two reasons: (1) the
tip of the spectrum, i.e., the distribution near the initial beam energy, provides
information on the energy resolution for high energy physics events, and (2} the
tail of the spectrum, i.e., the distribution of the low energy electrons, whichk hail
suffered severe energy loss through bard beamstrahlung, reveals the likelihood of
finding large disruption angles. This second issue will be addressed in the next

seclion.
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Fug. 15. Cummulatue offsct as a function of the number of bunches.

The energy spectrum of radiation can be characterized by the Leanistrablung
parameter T, defined as

=2
—18‘ )

where  is the effective field strength of the beam and B, = mi?cfeh ~ 4.4 10"
(Gauss 1s the Schwinger critical field. For historical reasons, this parameter is
related to the parameter £ introduced by Sokolov and Ternov, by a simple {actor
372

T (3.1)

_ (critical energy) _ 3rer® 3.y (3.2)
(initial energy) 2 ap 2

where o is the instanmaneous radius of curvature. Since the twe parameters are
trivially related, we shall employ either of them depending on the convenience of
the situation. The typical value of { during collision is

rZqyN 2
ao,o, 1 + R

= ‘ {34)
where B = o, [0, is the aspect ratio of the beam. The average value of £ is
adsit smaller than Eq. (3.3} (by about a factor 2/3) but we adopt it for the
better description of the spectrum tail which is contributed more effectively from

bearnstrahlung with larger £.
3.1 Energy Spectrum of Final Electrons

Let w(E, 1) be the energy spectrum function of electrons at time t narmalized
as {y(E,t)dE = 1. We assume Lhat the emission of a photon takes place in
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infinitesunally short time instance, at least for linear colliders in the near futuse,
Theu the evalution of the spectrumm function can be describied by the rate equation

%{- - —N,www,rH]Fw,:-:,w-us..rm;. . (3.1.1)

Here, N, (E) 1 the average number of photons per unit timne and F is the radiation
specrum funetion. e, F{E;, E))dEs is the transition probability of an electron
ey energy By 1o the energy interval (Es, Ex + dF2,) during time anterval J1.
Oiwiously, F(E £y) = 0 £2 2 E} and F does nol include the probability o
sty at the same energy without photon emission. The sum over the whole energy
range gives the mnnber of photons:

/ FEs, ENAE: = Ny(Ey) (30,2

The quantun theoretical spectrum function F' is well-known,

"'(":‘v L.) - {E‘.’.(\nyl
£ 2 (3.1.9)
1 = e | f Ksplo)de + 122 Kopata)]
with
w 1 | E~E' 1.1 .
VS TToE e Foofe Y o (1)

wlhere R's are Uhe modified Bessel functions, Ny the number of pliotons per unit
titie by the classical formula, « the photon energy,and € = E'/E the {ractional
energy. The number of emitted photons per electron can be expressed as

ar, N

N, = Nt ith Ny = 2, 31
Y cf u(f]), willi of 212(73-}-0‘“ N ( '5]

where Up{£) is Lhe ratio of the quantumm-theoretical number of photons Lo that
from the classical theory, and is found to be”

} — 0.598¢ + 1.061¢£3P

109226 ‘ (3.1.6)

Uo(€) =

where the relative error is within 0.7%.
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An approximate formula fur the energy spectrum of electrons after collision
can be therefure derived. Tlie details are given in Nef. 10, where the spectral
function £(z) (¢ = £/ Eg) is found to be

A}~ ¢ N _ _"_-’_ r . 343 ay -
vlc) =« [6(6 1)+ 3 _Eh(-’\ny )] , (3.1.7)
with
Ao
1
h(.r):;r— fexp{:rp'”"‘+p)dp (A>0)
2re
A-yoe (3.1.8)
-« n
= Z_’_._
n=ln!l'(n{3} ’
and

! §1y
Ny= ——N 4+ ——N, . 119
1 1+£1y 4 l+E:y k) ( )

{This formmla does not exactly satisfy the normalization condition except for
£, — 0 which leads to Ny = N, = N.1.) The function h(z) can be estimated very
accurately by with relative error less than 2%. Figure 19 compares Eq. (3.1.7)
with the simulation results using the parameters for the TLC and the 1LC."" The
design parameters of the two colliders are summarized in Table ). The histograms
in Fig. 19 are from simulations and the dotted data are computed from Eq. (3.1.7).
The agreement is excellent.

3.2 Maximum Deflection Angle

‘The particle which once Jost a large fraction of its initial energy through beam-
strahlung would, in principle, be severely deflected by the beam-beain field and
cause background problems for high-energy experiments. Consider an electron
which emit? a hard photon at a particular time during Lhe collision and results in
an energy £Eg, with ¢ € 1. The effective disruption parameter for this particle
becames D, /e and D, fe. One might think that Eqs. (2.6.10) and (2.6.11) are
still applicable by replacing D by DJe. However, the collision of a single particle
on a beam with the disruption parameter D/e is diflerent from the collision be-
tween two beams with D/e, although the qualitative feature is the same; i-e., the
disruption angle increases linearly in D for D £ 1 and more slowly for D 2 1.

A simulation was done by monitoring low-energy test particles through the
collision process. The maximum deflection angle for a given £ is found to be
roughly:

38




. 1.0
1. E/Ep AT

Frg. 19 Llectron energy spectrum for TLC and ILC parasneters.

o DIt _
o, 1+ (075D/: P

P

, {e<l) (3.2.1)

0’"0!

where D= D (1)) and o = a,(a,) for the horizontal (vertical) angle.

The mintmmum value of ¢ can, in prnciple, be as small as 1/4. But the real
problem is about huw small a £ should one care. Siuce the number of photans
N, per beam particle for linear colliders in the near {uture is of order unity,
the spectral function P{<) given in Eq. (3.1.6) is always dominated by the factor
7Y in the spectrum tail, where y > 1 (i logarithmic sense). Therefore, if 1he
arceplable backgronnd count is n out of N electrons, then the punimum & of
concern is approximately determined by y = lug(N/n), -

)
Emin = —————l T {l ]gg( "v,")

With this value of €, one can directly estimate the maximnm deflection angle using
Eq. (3.2.1). Since the dependence on w is only logarithmic, one can set n = |,
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Table 1. Parameters for TLC and TLC (A, = 17 mn)

¢x [mrad|
ey Inirad]
D,
D

Ax
Ay

- L)L
= é
. N,
&

2.33 » 1074

0.043
6.97

0.0002
0.60
1.61
0.15
1.33
3.43

TLC 1ILC
Ey [TeV] 0.5 025
N 8 x 10¢ Tox 10%
ay [nm) 190 140
o, frm) I J
ag|pm] 26 65
ft 140 147
2.58 x 107! 5.2 x -1

52 x 1071

0.027
3.4

0.7
.47
1.71
0.01
0.35
0.1

+ Quantities computed by simulations.

Thus, for example, €m0 = 0.013 (0.188), 8 po; = 10 (0.95) mrad and ¢
0.4 (0.15) mrad for TLC (ILC} parameters.

4.

During the collision of the e*e™ beams, there are finite probabilities that a
photon will tarn itself into a e*
lower energies in general, one of the two particles in each pair will have the same
sigh of charge as the oncoming beam. (For the sake of argument, consider a low
energy e¥ moving against the positron beam). Unlike the case of a Jow-enerp:
e” moving against a positron beam, where the potential tends to confine the
particle in the beam profile, in the case of a positron the potential is unconfining
and the particle can, in principle, be deflected by a large angle and thus create
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e~ pair. Once the e~eY pairs are created with




severe hachground problems. This eflect would therefore impose a contratat on
the final focus design.

It ueciers that the ¢ Ye ™ pair can be created by either real or virtual photons
These photons, in turn, can pair-produce through twa dilferent physical processes,
namely, the coherent and the incolierent processes. While the imcolwrent process
has heer studied earlier?”" it is recently realized' 'that the coheremt process is

tvel Nt seveT,

ltecall that in the case of radiation by e~ {e¢?) during beam-heam collision.
there are essentially two mechanisms that induce the radiation. Namely, there
15 oan “incoherent  process, or Bremsstrablung, associated with the individual
e et scatterings, and there is also a “coherent  prucess due 1o the interaction
between the radiating charged particle and the macruscopic bram-beam EM fiechl.
At hiph energies and strong fields, the coherent process tends to duminate over
Lhe incolerent one. This is actually why our discussion on beam energy lus» has
been focused only on the beamstrahlung process.

The beamstrahlung photons once emited would have to travel through the
rematnder of the oncoming beam before entering into free space, and would there-
fore turn themselves intu ¢~ ¢t pairs. Analogous to the case of radiation, ploton
pair creation also involves coherent and incoherent processes. Here again. at high
energivs and strong ficlds the coherent process will dominate oyar the incoberemt

one,
4.1 Beamstrahlung Pair Creation

It is well known that the cross section {or incoherent pair creation is

o{re —» eete”} ~ %i-‘-arf ]og(‘;:—f)cm"' . (4.1.1)
which is a very slowly varying function of the photon energy w. For TLC, 7 =
I x 105; the cross section is ~ 5 x 10726 cm? for pliotons at full energy. The beam
parameters for TLC listed in the above Table gives the average number of the
beanstrahlung photon per beam particle as N, ~ 1.3. On the other hand, it can
be shown ' 'that the effective luminosity for such a cascading process is 1/2 of the
original. Thus, the number of e~et pairs created per bunch crossing can easily
be evaluated;

e = %aht — rt;"'c—}M ~2x10° {.1.2)
rep

where £, = 1.3 x 10Mem™2sec™!, and fop = 220 sec ™! in this design. To be sure,
this process provides a non-negligible amount of e et pairs.
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The rate of photon pair creation in a homogenevus magnetic field has been
- 1% . .
studied by many prople.”’ and hos been generalized to imhomogeneous fields by

Baier-and Katkov!®' In the asyinptutic huuits che rate can be ex| ressed as

IVl o7 —UIJ

d T el vl

= {(1.1.3}
§ (2 315161 oY . =13
23) Gl SR

Here y = Yoo/ E plavs the similas role as T in the case of besmstrahlung Notiee
that \ is independent of the initial particle energy 4, as the process does not care
where the photon was originated. Let

& _ oY

a3 = “n'ﬂﬂ - {41.1.4)

To a very poud approximalion."'
. 4
T = 016K (50) (4.1.5)

for all values of y.
Imegrating over the collision tine (again, only half of the e”e* collision tine}
we have
Vio.oT
I'=—=—TQ)
< A (4.1.6)

|
= fz‘ndT(X] .

Next we evaluate the mean value of T{1} by weighting over the beamstrahhung
spectral function,

dry, laec,

£y -
-&—u— = ; 72 /h_-,l_;(.r}dr-i— E ]\al](‘y) 1 (41.!)

and

a0 = /m,mdw / /d_ . (4.0.8)

The total number of e"e* pairs created through this coherent process is therefore
1
Nevem = gNona(T(T)) . (4.1.9)

A plot of {T(T)} is shown in Fig. 20, where the solid curve is from the exact
form of dnyfdw in Eq. (4.1.7) and the dashed curve corresponds to an asymptotic
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expression tor dny fdw at large y. The closeness hetween the twu curves suggesis
that only the spectrur tip contribute effectively Lo the coherent pair creation
process  Frows the TLC parameters, ng ~ 19, so we find that

Ny- ~5x107 (4.1.10)

&

which is much larger than the incoherent process.
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Fig. 20. The function (T(T}) vs. T.

It should be noticed, however, that {7°) drops exponentially for T £ 1. There-
fore, for next generation linear colliders at the range of 1 TeV, which would typ.
ically have T ~ I, it would not be at all difficult to redesign the machine such
that the coherent process can be entirely suppressed. For the above-mentioned
TLC parameters the condition is T < 0.3. This, ironically, is an over-kill since
the incoherent process corresponds to T ~ 0.6, as can be read {rom Fig. 20

4.2 Energy Spectrum

Since to a large extent N, is of the order unity and quite insensilive to other
parameters, and since we usually choose to fix the luminosity in a design, the in-
coherent e"e? pairs can not be easily suppressed. It is thus impertant to evaluate
the energy spectrumn of the pair created e, Assuming constant probability in
finding the et at energy £E € w, the spectrum can be derived to be

73/2)*3 o

e L ND. YW . M.
Srr(i/3) g v FleT) (3.2.1)

Nosle) =

The spectral function F(e,T) i1s plotted in Fig. 2} for T = 0.2. At the small ¢
limit, Fe,T) o L fe.
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Fig. 21, The spectral function for incohevent pair ereated e,

The encrgy spectram of the pais produced positron from the coherent process
can alo be obtained from the same basic equation that gives rise 1o Ey. (4.1.3).
without integrating over the final energy. It can be shown that the spectrum is

d?J _ 1 am ] [8
dydi - VIr 9 elw —g) L3y

sinh” yliypsla)+ (14 lal]}lzy)[\‘J,J(ﬂ)I c(1.2.2)

where £ is the energy of the pesitron, and w the photon energy, Loth in units of
the primary electyon energy,
1 2

cosh? d
osh = = ————
R "EL)

and

a= % cosh?y

Figure 21 is a plot of Eq. (1.2.2) with T = 1.0, in units of am]v/3ry. The two
curves correspond to beamstrahlung photons at full, i.e., ¥y = 1.0, and half of the
primary ete™ beam energy. We see that the spectrum is considerably narrower
than the corresponding incoherent process. This is even more so when x becomes
sufficiently less than unity. An intvitive.way of understanding this fact is to realize
that, although the coherent process at T ~ 1 has much larger probability than the
incoherent one, the eqivalent photon energy of tne beam-beam field at is range is
barcly above the invariant mass threshold for pair creation. This is alsa reflected
by the steep exponential decrease of the function (T(T)). Thus the e~ pair
tend to share the initial photon energy evenly, and the damage of the coherem
process at the TeV range dose not seem to be too harmful,
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4.3 Deflection Angle

Finally, we evaluate the deflection angle of these low-energy positrons by the
Leani-bearn field. As a rough estimation, we assume that the vertical field bevond
the beam height extents constantly to a distance equal 1o the beam width ;. 1t

15 then easy Lo show that the deflection angle for the et with energy = is

2 o (D 2 .
A GVE 0. > 750" :
B‘ = (4.3‘1)
gy D -2
tr i , 6 < A 0y

The deflection angle in the above expression is plotted in Fig. 23. For a 1 GeV
et, 8, ~ 15 mrad. The information on the transverse monemtum can be easily
deduced from the above expressions via p; = ef,.
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Fig. 23. The deflection angle as a function of ¢*eneryy.
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