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Abstract

An investigation is made of the influence of toroidal effects, in the form

of trapped particles, on ion velocity distributions in the presence of

ICRH. The analysis is based on a bounced averaged Fokker-Planck equation

including RF-driven quasi-linear velocity space diffusion. A pitch angle

averaged distribution, suitable for calculating weighted velocity space

averages of the distribution, is derived under the assumption that the

Influence of anisotropy can be neglected. For a given absorbed power, this

pitch angle averaged distribution is found to be independent of the aspect

ratio.
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Introduction

Heating of Tokamak plasmas with RF-waves in the Ion cyclotron range of

frequencies (ICRH) has become one of the major alternatives for supplemen-

tary heating. An important consequence of the absorption of the wave

energy is a distortion of the velocity distribution function of the heated

ion species.

Deviations from thermal Maxwellian form play an important role in determin-

ing many "secondary" physical quantities, e.g. absorbed RF-power, col-

lisional power transfer to background plasma particles, fusion reactivity

etc. The fundamental paper on the subject of distortion of ion velocity

distributions in the presence of ICRH is due to Stix [l], who investigated

the effects of ICRH on the distribution function in a minority heating

scheme. The analysis was based on the Fokker-Planck equation including a

quasi-linear RF-diffusion operator calculated by Kennel and Engelmann [2].

This Fokker-Planck equation has subsequently been studied, both

numerically and analytically, in several papers [3-9]. However, toroidal

effects, in the form of trapped particles, have been neglected in these

papers.

Toroidal effects can be incorporated into the Fokker-Planck model by bounce

averaging the Fokker-Planck equation [lO, 11 ]. Numerical studies of the

bounce averaged Fokker-Planck equation have been made in Refs [ll, 12, 13].

Furthermore, analytical treatments have been carried out in Refs [14, 15].

However, the analysis in Ref. [14] is restricted to minority heating and

does not take into account effects due to finite k . The characteristic

features of the distribution is studied in P.ef. [15], but the analysis does

not give any detailed information about the distorted distribution.

The purpose of the present paper is to contribute to the analytical under-

standing of the bounce averaged Fokker-Planck equation. In particular, a

pitch angle averaged distribution, similar to those in [1,7,8], is derived

under the assumption that effects due to anisotropy can be neglected. With

this approximation it is shown that, for a given absorbed power, the pitch

angle averaged distribution becomes independent of the aspect ratio.
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2^ The Bounce Averaged Fokker-Planck Equation

The bounce averaged Fokker-Planck equation for the distribution function,

f, of the RF-heated ions can be written as, cf [lO],

§£ - <^> <Jj- C(f )> + <l-> 4 - Q(f )> (1)

where the bracket denotes the bounce average

1 2it

•K£ / ( . . . ) d 6 for passing part ic les
o

1 B

-s— / (...)dO for trapped particles (A, B are turning
l% A

points)

<l/v > ^ / v » C(f)> is the bounce averaged collision operator and <!/*>

<l/v Q(f)> is the bounce averaged RF-diffusion operator.

It is convenient to express the bounce averaged operators in the midplane

coordinates (v,£) (the midplane is defined as the plane at the poloidal

angle 9 * 0), where v is the velocity and £ » v "/v (subscript 0 denotes

the midplane) is the cosine of the pitch angle at the midplane. The

velocity, v, is invariant along a particle orbit and the cosine of the

pitch angle, n - v /v, can be expressed in £ as

where b(9) = B(9)/B(9-0). The magnetic field is given by

(3)

where e - r/R is the inverse aspect ratio.



In the variables (v,5)> the bounce averaged collision operator takes the

form [lO]

-1

where a, f3 and y are the collision coefficients describing dynamical fric-

tion, energy diffusion and pitch angle scattering respectively, [l].

If the number of non-Maxwellian tail particles is small compared to the

number of particles in the low energy bulk, we may neglect self collisions

between the tail particles. Furthermore, the distribution function, f, is

almost Maxwellian in the low energy range. It is therefore reasonable to

approximate the distribution function, f, of the heated ions with a Max-

wellian when the collision coefficients are calculated. The collision

operator will then be linear in f.

The bounce averaged RF-diffusion operator can be written as [lO]

4

^R; ,2 .2 > 2 5v

<5>
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where

2 - 2 -
n X n—1 1 n+l X

- / 2~*
Furthermore, v • (k v/w )/b (l-£ ), b » b(9_) is b at the resonance

A J . C 1 K K. 2 2
point, k. is the perpendicular wave number, A * |E_| /|E | where E and E_
are the amplitudes of the left and right hand components of the RF-wave, K

2 ^
is a constant proportional to |E,I , J , and J ,, are Bessel functions of

+ n—1 n+l
order n-1 and n+l where n denotes the heating mode (RF-wave frequency

u)*nu ) and the pitch angle £„ is determined by
cl R

(7)

The step function, o(|!^| - Z, ), accounts for the fact that trapped par-
R

tides which have turning points with poloidal angles less than the poloi-

dal angle at the resonance point will not sample the resonance region.

Effects due to finite E.and k- have been neglected in the RF-operator.

However, this is justified since typically |E | « |E I, |E I, and effects
II • ™ *

due to finite k.. can be neglected if u/k » v , cf [l], this is the case,
II II tl

la the velocity range of interest, for most ICRH scenarios [ö].

3. The Pitch Angle Averaged DistributionMany physically important quantities, like absorbed RF-power, collisional

power transfer to background plasma particles, fusion reactivity etc, are

weighted velocity space averages of the distribution function. The

averages over a magnetic flux surface of these quantities are often of

interest. Thus, averages of the following form are important to calculate.

/ 2*R rd9 / S(v,n)f(v,n)d3v
S (8)

J2itR rd9
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The volume element in velocity space can be written, in the midplane co-

ordinates, as

where d v is the volume element in the midplane coordinates.

In many cases of interest, S is independent of \i (e.g. when S represents

collisional RF-power transfer to background particles or fusion reactiv-

ity). In such cases, eq. (8) can be rewritten as

? 1
R(9«0) /2itv dv S(v) / f<—)

s - , =L-1«
R d e

- / S(v) F(v) 4nv2dv (10)

where we have defined the pitch angle averaged distribution, F(v), as, cf

[15]

I
F(v) - iJS- J £<i-> Ul (11)

Furthermore, note that

\ / <J-> m - ij- /* de / 7 4 - sds - -i- (12)\ / <J-> m - ij- / de / 7 4 - sds -
2 -i vn Z11 o A^TTb / l - b ( i - r )- i vn Z11 o

Approximate model for F(v)

We write the distribution function f(v,^,t) as
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F(v,t)[l+h(v,£,t)] (13)

where the function h(v,£,t) accounts for deviations from an Isotroplc dis-

tribution, and satisfies the condition

* O (14)
-1 vl

If f is isotropic, then f=F(v).

In order to obtain an equation for F(v), we multiply the bounce averaged

Fokker-Planck equation with (l+e)<v/v >£ and integrate it over £, the re-

sulting equation can be written as

31» i_a_rAF+ B ̂ 1 (15)
ot 2 öv L ovJv

where

A ' -<zv2 + i- |- (Pv2) + K v Ro(v,c) (16)
2 öv n Z

B - j Pv2 + KnV
2[G(v) + R^v.t)] (17)

1 , .2
G(v) = / / L - ^ K t v ) ?d5 (18)

,

R

(20)

— — 2
Note that the time derivative of the averaged density n (n = JF(V)4UV dv)

is zero, i.e., the collision and RF-operators conserve the number of par

ticles on a flux surface.

In steady state we obtain the following formal solution



- 8 -

v
F(v) - F(0) exp[- / | dv] (21)

o
This solution requires the knowledge of the function h(v,£). However, in

order to calculate h(v,£) the full 2D problem must be solved. It has

proved very difficult to find an analytic solution that can be used to

evaluate R.(v) and R«(v). We are therefore forced to consider approximate

forms.

4.1 Isotropic approach

A widely used approach is to neglect the influence of anisotropy, i.e.,

using h(v,£) • 0. This approximation is valid in the limit of weak ani-

sotropy and should therefore be reasonable for velocities well below the

characteristic velocity v , where v is the characteristic velocity as-
Y Y

sociated with the pitch angle scattering [l]. Furthermore, in Ref. [7]

this isotropic approximation has been shown to provide useful and accurate

results for many physically meaningful velocity space averages, including

such high energy characteristics as cololisional power transfer to elec-

trons and fusion reactivity. One might conclude that the isotropic approx-

imation is reasonable when F(v) is used to calculate velocity space

averages, although it does not describe the detailed form of the anlso-

tropic high energy tail correctly.

If the isotropic approximation is used then R.(v) « 0, R«(v) • 0 and there

only remains to calculate the function G(v).

We write G(v) as

G(v) - g -(v) + A g..,(v) (22)

where

( 2 3 )

It i s possible to calculate g (v) analyt ical ly by expanding the Bessel
n

function in a power serie. According to Ref. [16] we have
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J2(v
n

(-1)" Off»' ;2(^) (1.52)n+kff5
k-0 4n^K [(n+k)!]"4 (2n+k)!k!

Thus in order to calculate g (v) we must evaluate integrals of the form

(25)

This integral is solved in appendix, and the result is

T , 2m!i „ r2x"f 7 . 2m!!* (1 V
"f 7 2m!! "(nrf T

bR

Thus, we obtain

, x Z (-l)k (2n+2k)! (2n+2k+2)H r
kl V

n k-0 4 n + k [(n+k)'.]2 (2n+k)!k!(2n+2k+3)!! "ci

An interesting feature of the "isotropic" solution, eq. (21) with R.(v) • 0

• 0 and G(v) given by eq. (22) and (27), is that for a given K , i.e.& n
for a given absorbed power, the solution is independent of the inverse

aspect ratio e. In fact it is identically the same as in Ref. [7] where

toroidal effects have been neglected! One might therefore expect toroidal

effects to have only a weak influence on velocity space averaged quanti-

ties, S, if S is independent of the pitch angle. This conclusion is sup-

ported by the numerical results of Refs [12,13], where the influence of

toroidal effects on the fusion reactivity has been shown to be weak.

5. Effects of anisotropy

Although it is very difficult to treat the problem with anisotropy, some

qualitative remarks can be made. In the high energy tail, where the pitch

angle scattering is weak, the distribution is peaked around £s±£»> since
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the RF-induced diffusion transfers the resonant ions towards higher v

until £»±E« The function h(v,5) should therefore be of importance in the
R

high energy range.

The anisotropy will influence F(v), as compared to the isotropic model in
2

two different ways: (1) the function K v R.(v), which acts like a diffusive
n 1

term, will tend to decrease the slope of the tail, (ii) the function

K vR.(v), which acts like a friction term, will tend to increase the slope

of the tail. In analogy with the results in Ref. [8], one might expect the

first effect to dominate in the tail, whereas' in the transition region

between bulk and tail distributions the second effect can be important.

The success of the "isotropic" model, for calculating velocity space

averages can, at least partly, be understood from the fact that these two

effects work against each other.

Conclusions

An investigation has been made of the influence of trapped particles on

the velocity distribution of RF-heated ions. The analysis was based on a

bounce averaged Fokker-Planck equation. A pitch angle averaged distribu-

tion function, defined in such a way that it is useful for calculating

quantities averaged over velocity space and over a magnetic flux surface,

was derived under the assumption that effects due to anisotropy could be

neglected. For a given absorbed power, this pitch .ingle averaged distribu-

tion turned out to be independent of the inverse aspect ratio e> One might

therefore conclude that velocity space averaged quantities, which are

averaged over a magnetic flux surface, is only weakly influenced by trapped

particle effects, unless they are strongly weighted in favour of the ani-

sotropic high energy part of the distribution function.
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Appendix

We vant to calculate the following integral:

1
I -/

2.«
(AD

. 2 2
we change variable to i * /? -£R, and obtain

W - x2] ix (A2)

Integrating by parts yields

1 f 2ntfl d

since

we obtain from (A3)-(A4)

( A 3 )

(A*)

2m!!
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