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ABSTRACY

The motion of a satellite about its center of mass is studied using a
semi-analytical wmethod. Torques produced by conservativa and non conservative
forces are considered. An snslytical model {s proposed for solar radistion torques.
Andoyer variables are used to describe the rotaticunal motion. Analytical equations
are used to transform osculating to a mean set of differential equations. Since
the mean equations are more slowly varying,a mumerical {otegration using large

step size can be perfomed to obtain the mean state at a later time.

IRTRODUCTION

The use of analytical methods to snalyse the rotational wmotion of
artificial satellites has been of prime importance in conaection vith many
satellite nissions. However an analytical solution becoms very cumbersome vhen we
use reslistic models for non gravitational perturbative torques.

In this paper ve present a semi-analytical method to propsgate the
elements that describe the attituds of en artificial satellite. The solution 1is
obtained by first using an averaging method to eliminste ohort period terms,
These mean sst of differentisl oqu-tiox:o are then integrated numerically Cor
analytically vhen it is possible). Since the mesn equstions ars sore slowly
varying than the osculating ones the numerical integration can be perfomed using
larger step size than uysusl.

Furthermore {t will be considered here an artificial Rarth satellite of
cilindrical shape, traveling in a fixed ellipticel oxbic,s0 that all the
torques, vith the exception of gravitational and solar radiation pressure, can be
{gnored. The solar radistion pressure torque will be considered of second order
vith respect to the gravitational.
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SOLAR RADIATIOR PRESSURE TORQUES

The genera) expression for the solar radistion pressure toroues can be
given by (Georgevick (1973)):

o
Ne- !; | l { B(e)r xd+bcas 67 xu MA (1)
R

where: a) k = 1,01 x 10!7 kg m/s; b) R is the Sun-satellite distance; c) r gives
the position of the surface element dA with respect to the center of mass of the
satellite; d) @ is a unit vector along the outer normal; e¢) u is a unit vector
along the direction of the flux £) cos 8 =3 . @}
g) B(0) = a cos 8 + ¢ cos? 8; h) a, b and ¢ are psrameters related with the
coefficients of specular and diffuse reflexions.

Let Oxysz be a system with its origin at the center of mass of the. satellite
victh its axes parallel to the principal central axes of inertia of the satellite.
This system can be related to the absolute equatorial system by the matrix L whose
elements are functions of the Andoyer variables (Kinoshita (1972)). Thus the

> . -
vectors £, n and u can be expressed in the system Oxyz and then:
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vhere the Ni(i = 1,2,3) are functions of the Andoyer variables (Kinoshits (1972)),
of the right ascension a and declination 8 of the Sun, of the spherical

coordinates of the surface element dA and its outer normal.

EQUATIONS OF MOTION

The equations of the rotational motion of a rigid cylindrical artificial
satellite of mass M, taking into account the gravitational potencial between the
bodies and the direct solar radistion pressure can be put in the following form:

ds
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and
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Here, L‘ and "1' for 1 = 1,2,3, are the Andoyer variables.,and, for
i = 4,5,6, are the Delaunay varisbles. Also: a) A(B = A) and C are the principsl
moments of inertia of the satellite; b)f {s g function of the "l acd L,, vhere
the l.1 variables (1 = 1,...,6) appear in the arguments of the cosines. this
function i# ghown in Zgnardi (1986) taking B = A; ¢) P and q (4 =1,2,3)
come from the solar radistion pressure (shsdov was mot considered).

When expressed in terms of Andoyer variables the functions

?1 and Qi
take the following form )

P, - '1('1' Li,'o. 8,8, b,c)= 7P Ptp (6a)
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{=123 3 j=1,2,

vhere Pie and Q,  sre terms independent of 2, and 24

APPLICATIONS OF THE HORI METHOD
L)

The solution of system (3) when P - Q1 e 0, can bo obtained by the Hori
method (Hori (1966)). The first order lolutlon will be (Zan‘f‘i (1986)):

28 ,
L, = 1p+ 8L (7a)
({=1,2,3)
R R T (n)
vhere L! are constants; l“ - l! + “it‘ tl are constants} Gl.t and ut are

periodic functions; n - n‘(l.:. L;) and, ny = O,
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FIRST ORDER PERTURBATIOR IN Pi AND Ql

Applying Lagrange’s method of variation of parametersin the system (3)
we obtain the folloving system (Vilhena de Morases (1981)):
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vhere the barred variables are wean functions of l.: and lt and ‘ii and Bii are
parts of the solution vithout solar radistions pressure given by equations (7a)
and (7b). Also

ng ¢ on, = %% 9
vhere H* is the Hamiltonian of the unperturbed probleam (l’i - Qi = 0) after the
application of the Hori's method.

It is worthy to note that a transformation was introduced to avoid
spurious mixed terms.

The system (8) is, generally, difficult to be integrated analitically
vhen ve consider perturbationsthat are not deterministically kmown. Meanvhile,

neglecting coupling terms we get:

oo +bn + P _ (10s)
(i1=1,2,3

ig - q (10b)
vhere, by equations (6a),(6b),(5¢c), ii - ’{.'63 - Q“, 61 =0 for j =1,2.

These sinplified averaged varistionsl equations of motion, where the
right-hand sidesare free from the fast varying variables ¢; and t,, can be
integrated numerically with large step size.

Given the initial conditions for the osculating elements the associated
averaged elements can be evalusted from the transformation (7) with reasonsble
accuracy by iteration.

Therefore the analytical expression of the solutfion of the system (10)
can be obtained by the method of sucessive approximations and then

lr - lro . l!. t "lo and lr. are constants; f ~1, 2, ) (11a)
L? - Lzo “const. ; je=1,12 (11d)
Ly =L, ¢ Ly, ¢t L4, and LY, are constants (11¢)
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Thus, the solar radiation pressure torque gives rise to secular perturbstions in
all the angular variables li and to a secular variation in the inclination of

the plane vhich is perpendicular to the sangular momentum.

CONCLUSIONS

It has been shoved 2 semi-analytical method to study the influence of
the gravity-gradient and solar radiation pressure torques on the rotstional
wotion of an artificisl Earth's satellite. An analytical expression was given for
the solar radistion pressure torque so that analytical solution to averaged
equations could be obtsined by the method of the successive spproximation. For a
rather sophisticated models and /or other perturbations, s numerical eveluation

may be the most feasible approach to estimate the mean state.
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