

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ СО АН СССР

С.Г. Воропаев, Б.А. Князев, В.С. Койдан, С.В. Лебедев, В.В. Чикунов, М.А. Щеглов

ЭКСПЕРИМЕНТЫ ПО ИССЛЕДОВАНИЮ УГЛОВЫХ ХАРАКТЕРИСТИК МОЩНОГО РЭП МИКРОСЕКУНДНОЙ ДЛИТЕЛЬНОСТИ

IYAF -- 88-52

ПРЕПРИНТ 88-52

новосибирск

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ СО АН СССР

С.Г. Воропаев, Б.А. Князев, В.С. Койдан, С.В. Лебедев, В.В. Чикунов, М.А. Щеглов

ЭКСПЕРИМЕНТЫ ПО ИССЛЕДОВАНИЮ УГЛОВЫХ ХАРАКТЕРИСТИК МОЩНОГО РЭП МИКРОСЕКУНДНОЙ ДЛИТЕЛЬНОСТИ

ПРЕПРИНТ 88-52

НОВОСИБИРСК 1988

© Институт ядерной физики CO AH СССР

:

· ···· ····

1. ВВЕДЕНИЕ

Мощные релятивистские электронные пучки (РЭП) микросекундной длительности с большим энергосодержанием представляют значительный интерес как средство нагрева плазмы в соленоидах. На установке У-1 ведутся работы по получению и исследованию микросекундного РЭП с высокой плотностью тока [1, 2].

Схема эксперимента приведена на рис. 1. Пучок диаметром 20 см генерируется в вакуумном диоде, помещенном в продольное магнитное $B_{\rm a} = 5 \, \kappa \Gamma c$, при напряжении поле на диоде Ток пучка достигает 50 кА $U_{\rm make} = 900 \, {\rm kB}.$ (плотность тока 0.3 кА/см²). После прохождения анодной фольги пучок попадает в дрейфовую камеру, где на длине 25 см осуществляется аднабатинарастающем ческое сжатие пучка В магнитном поле $(B_{np} = 100 \text{ к}\Gamma \text{с в пробке, коэффициент компрессии } M = B_{np}/B_{n} \text{ ра-}$ вен 20), после чего пучок снова расширяется до исходного размера. При сжатии достигаются плотность тока до 6 кА/см² и энергосодержание пучка 100 кДж. Энергосодержание пучка на выходе из диода достигает 130 кДж.

Полученный таким способом пучок предполагается использовать в дальнейшем для нагрева плазмы. Важным параметром, влияющим на эффективность взаимодействия пучка с плазмой, является угловой разброс электронов пучка [3]. В настоящей работе приводятся результаты экспериментов по измерению углового разброса микросекундного РЭП на установке У-1. Измерения разброса пучка проводились как непосредственно на выходе из анода, так и после прохождения пучком системы сжатия.

Рис. 1. Схема эксперимента по сжатию пучка:

а) 1— графитовый катод диаметром 20 см; 2—анодная фольга (алюминированный лавсан) толщиной 10 мкм; 3—6—катушки, формирующие магнитное поле (тонкие линии—силовые линии магнитного поля); 7—фольга; 8—графитовый калориметр или датчик углового разброса; 9—экранирующий катодный электрод; П₁—П₅—пояса Роговского для измерения тока пучка; б) величина магнитной индукции вдоль оси установки. Угловой разброс определялся по закономерностям прохождения электронов пучка через секционированный цилиндрический канал малого диаметра. Кроме того, угловой разброс оценивался по изменению коэфициента отражения пучка от магнитной пробки при установке в камере сжатия дополнительной рассеивающей фольги.

Для измерений первым способом использовался специальный датчик углового разброса. Электронный пучок диаметром 20 см принимался в этом случае графитовым коллектором. В центре коллектора имелось отверстие, через которое часть пучка попадала в цилиндрический канал датчика углового разброса. Диаметр канала выбирался соизмеримым с ларморовским радиусом электронов пучка. Впервые этот метод применялся в экспериментах [4] для измерения углового разброса пучка длительностью 50 нс, генерируемого в плоском диоде в магнитном поле B = 40 кГс (при этом радиус, рассчитанный ларморовкий по полной энергии при E = 0.8 МэВ, составляет $r_l = 0.1$ см).

В настоящих экспериментах датчик располагался в магнитном поле $B \sim 5$ кГс (соответственно, $r_L \sim 1$ см). Анализ применимости метода для этого случая проведен в работе [5], в которой отмечено, что в таких условиях можно существенно увеличить геометрические размеры канала. При этом появляется возможность секционировать канал и регистрировать распределение тока на стенку канала по его длине, что значительно расширяет возможности диагностики. В работе [5] проанализированы также паразитные эффекты, влияющие на точность измерений.

Схема датчика углового разброса приведена на рис. 2. Цилиндрический канал — коллиматор, расположенный на оси системы, состоит из двух диафрагм (1 и 3) на входе и выходе (нержавеющая сталь толщиной 2 мм), а также из четырех графитовых колец 2 толщиной 1—2 см (более подробно см. [5]). Регистрируются токи $I_1 - I_4$ электронов, осевших на стенки канала, а также ток I_5 электронов, прошедших через канал и поглощенных графитовым микроколлектором. Диаметр канала составлял $\emptyset_{\kappa} = 7 \div 10$ мм, его длина $L_{\kappa} = 62$ мм, расстояние между кольцами 0.5 мм. Датчик располагался в области однородного магнитного поля либо непосредственно за анодной фольгой диода, либо на выходе из системы сжатия. Поскольку через пробку магнитного поля с пробочным

отношением M = 20 могут пройти электроны с питч-углом не более $0 = \arcsin(1/\sqrt{M}) \simeq 13^\circ$, то датчик рассчитан на измерение достаточно малого углового разброса.

Рис. 2. Схема датчика углового разброса:

1, 3-входная и выходная диафрагмы; 2-графитовые кольна-коллекторы; 4-микроколлектор.

В экспериментах по измерению углового разброса пучка, прошедшего через систему сжатия, магнитное поле в пробке составляло $B_{np} = 90$ кГс. При этом поле на катоде было $B_{\kappa} = 3.4$ кГс, на аноде диода $B_a = 4.3$ кГс (пробочное отношение В диоле $M_{a} = B_{a}/B_{\kappa} = 1.26$), в месте расположения датчика на выходе из системы равно 5.3 кГс. При измерениях на входе, когда датчик располагался сразу за анодной фольгой, основная серия экспериментов проводилась при практически неизменной величине магнитного поля на катоде ($B_{\rm k}=3.3~{\rm k\Gamma c}$). Поскольку в этом случае система сжатия пучка (катушки 5, 6 на рис. 1) убиралась, пробочное $M_{\pi} = 1.09$ составляло изменялось Н отношение в лиоле (B_a = 3.6 кГс). Для сравнения проводились также измерения при Ва, равном 6.8 и 1.8 кГс.

Второй способ определения углового разброса заключался в следующем. Угловой разброс пучка при прохождении его через систему компрессии определялся из измерений коэффициента отражения пучка от магнитной пробки. Этот коэффициент регулировался за счет дополнительной рассеивающей фольги, которая могла устанавливаться как сразу за анодной фольгой ускорителя, так и вблизи от магнитной пробки, в области, где величина магнитного поля составляла $B_i = 5B_a$. Установка фольги толщиной δ в последнем положении эквивалентна помещению дополнительной фольги меньшей толщины, равной $\delta B_a/B_i$, на входе в систему компрессии.

3. УГЛОВОЙ РАЗБРОС В ДИОДЕ

3.1. Основная серия измерений углового разброса в диоде проводилась при величине магнитного поля $B_a = 3.6$ кГс и диодном зазоре $d_{A-K} = 7$ см. На рис. З приведены осциллограммы напряжения на диоде и токов $l_1 - l_5$, полученных при диаметре коллиматора $\emptyset_{\kappa} = 7$ мм. Датчик углового разброса располагался непосредственно за анодной фольгой диода. Видно, что осциллограммы тока имеют в начале импульса достаточно плавный характер, а к концу импульса их изрезанность возрастает. (Наличие такой микроструктуры пучка отмечалось в работах [6, 7]). Такая форма тока повторяется практически во всех выстрелах, как это можно видеть из осциллограмм, приведенных на рис. 4, где показаны токи l_5 в разных выстрелах, полученные при толщине анодной лавсановой фольги 10 мкм. Ясно, что измерения углового разброса, например, при l=1 мкс являются более точными, чем в более поздние моменты времени.

Для проверки работоспособности диагностики были проведены контрольные измерения при разной толщине анодных фольг. Соответствующие осциллограммы напряжения на диоде U и токов l_1 и l_5 для $\emptyset_{\kappa} = 8$ мм приведены на рис. 5. В качестве анодной фольги использовался алюминированный лавсан толщиной 10 мкм (*a*), за которым, кроме того, могла устанавливаться дополнительная алюминиевая фольга толщиной 30 мкм (*б*), либо 90 мкм (*в*). Наблюдается существенное влияние толщины анодной фольги на соотношение между токами l_1 и l_5 . В первом случае ток l_5 примерно в 3 раза больше тока l_1 , а в последнем, наоборот, ток l_5 значительно меньше тока l_1 (в течение большей части импульса).

На рис. 6 приведены результаты определенного из этих выстрелов коэффициента поглощения тока на стенках канала $S(l_{\kappa})$ в зависимости от его длины l_{κ} для разной толщины фольги, расположенной перед угловым коллектором. Экспериментальные точки приведены для момента времени t=1 мкс и U=900 кВ. На этом же рисунке приведены расчетные кривые поглощения тока электронов при угловых разбросах $\theta_0=5$, 6, 12, 17, и 20°. Угловой разброс пучка вычислялся по формулам, приведенным в работе [4], для величины поглощения $S \doteq l_c/l_0$, где l_0 —ток электронов, вошедших в канал, а l_c —ток электронов, осевших на его стенку. Расчеты проведены для гауссовой функции распределения частиц по углам со среднеквадратичным углом θ_0 , хотя величина погло

Рис. 3. Осциллограммы напряжения на диоде U и токов датчика углового разброса l₁-l₅ при диаметре коллиматора Ø_к=7 мм (выстрел № 932). Датчик расположен сразу за анодной фольгой.

Рис. 4. Осциллограммы тока /5 в разных выстрелах. A: Ø_K=7 мм (№ 932); Б-Г: Ø_K=8 мм (№№ 1001, 1012, 1015); Д: Ø_K=10 мм (№ 1031).

Рис. 5. Осциллограммы токов I₁ и I₅ при разной толщине анодной фольги. Анодная фольга: А — алюминированный лавсан 10 мкм (№ 1001); Б, В — алюминированный лавсан + 30 мкм AI (№ 1003) или 90 мкм AI (№ 1008), соответственно.

щения слабо зависит от вида функции распределения (см. [5]). Сравнение экспериментальных точек с расчетными кривыми показывает, что для самой тонкой фольги величина углового разброса пучка соответствует $\theta_1 = 5 \div 6^\circ$; при добавлении фольги 30 мкм Al $\theta_2 \simeq 12^\circ$, а фольги 90 мкм Al $\theta_3 \simeq 20^\circ$.

Сравним экспериментально измеренные значения углового разброса с расчетной величиной разброса θ_i , приобретремой электронами в фольгах. Угловой разброс θ_i вычислялся на формуле, приведенной в [8]:

$$\theta^{2} = 1.57 \cdot 10^{-5} Z(Z+1) \frac{\rho l}{A\beta^{2} E(E+1)} \ln \left(Z^{1/3} \frac{\rho l}{A\beta^{2}} \right), \qquad (1)$$

где E-кинетическая энергия электронов (МэВ); $\beta = \frac{\sqrt{E(E+1)}}{E+0.5}$; l-толщина фольги (мкм); Z, A, ρ -заряд, атомный вес и плотность материала. Для алюминия (Z=13, A=27, ρ =2.7 г/см³)

$$\theta^{2} = 2.86 \cdot 10^{-4} l \left[\frac{E + 0.5}{E(E+1)} \right]^{2} \ln \frac{3l}{\beta^{2}}.$$
 (2)

Лавсановая фольга толщиной 10 мкм при E = 0.8 МэВ эквивалентна алюминию толщиной 2.2 мкм, а соответствующая величина $\theta_i = 1.7^{\circ}$. Видно, что в случае с лавсановой фольгой экспериментальный угловой разброс существенно превышает разброс, который определяется рассеянием в фольге. Следовательно, пучок приобретает некоторый дополнительный угловой разброс непосредственно в диоде. Полагая, что угловой разброс в исходном пучке $\theta_1 = 6^\circ$, находим, что при увеличении толщины фольги до 30 мкм ($\theta_l = 10^\circ$) угловой разброс возрастает в соответствии с формулой $0_2 = \sqrt{\theta_t^2 + \theta_t^2}$. При толщине фольги 90 мкм измеренная величина θ_3 с хорошей точностью совпадает с θ_i (20°), так как исходным угловым разбросом в этом случае можно пренебречь. Таким образом, из рис. 6 видно, что чувствительность датчика к изменению углового разброса пучка достаточно хорошая. Существует, однако, вопрос о точности измерения углового разброса при самых малых его значениях, т.е. при θ₀≤5°.

3.2. Рассмотрим факторы, влияющие на точность измерений. В работе [5] показано, что основными паразитными эффектами в наших экспериментах являются ослабление магнитного поля вдоль оси коллиматора, угол между силовыми линиями магнитного поля

Рис. 6. Зависимость коэффициента поглощения S(l_к) от длины коллиматора l_к. Анодная фольга — алюминированный лавсан 10 мкм (♠), лавсан + 30 мкм Al (●) или 90 мкм Al (■). Ø_k=8 мм, U = 0.9 MB, t=1 мкс. Расчет для θ₀=5, 6, 12, 17 и 20°.

'

÷

и осью коллиматора, отражение частиц от боковой поверхности коллиматора, а также возможные неоднородности тока пучка.

Величина магнитного поля вдоль оси коллиматора измерялась миниатюрным магнитным зондом (напомним, что в наших экспериментах длительность импульса магнитного поля составляет 15 мс и в течение измерений поле можно считать постоянным). По этим измерениям вычислялась кривая поглощения $S_B(l_s) = \Lambda B_a/B_a$ для пучка с нулевым угловым разбросом, которая приведена на рис. 7 для случая расположения датчика сразу за аподной фольгой. B_a — поле на входе в коллиматор, которое совпадало с полем на аноде. Видно, что максимальная величина поглощения при $l_{\kappa} \simeq 6$ см составляла $S_B \simeq 10\%$. В случае расположения датчика после системы сжатия та же величина $S_B \simeq 5\%$.

На рис. 7 приведена также кривая поглощения S_{β} для пучка без углового разброса для случая, когда коллиматор с диаметром отверстия $\mathcal{O}_{\kappa} = 0.8$ см наклонен относительно силовых линий магнитного поля на угол $\beta = 0.2^{\circ}$. Эта кривая построена в соответствии с соотношением (см. [5])

$$S_{\beta} = \frac{I_{\text{nap}}}{I_0} = \frac{4\beta I_{\text{K}}}{\pi \varnothing_{\text{K}}} ,$$

которое справедливо при величине поперечного ларморовского радиуса $\rho \ll \emptyset_{\kappa}$ ($\rho = r_L \sin \theta_0$). В эксперименте величина угла наклона β составляла не более 0.2° и определялась по смещению отпечатка пучка на выходе из коллиматора после прохождения электронов через входную диафрагму с малым диаметром $\emptyset = 1$ мм. На том же рисунке приведена величина поглощения S для **трех** выстрелов с лавсановой фольгой 10 мкм. Приведены также расчетные кривые для соответствующих параметров. Эти данные характеризуют разброс экспериментальных точек в разных выстрелах.

Величины S_B и S_β растут с длиной коллиматора. Видно, что при $l_{\kappa} \leqslant 2$ см величины S_B и S_β достаточно малы и влиянием рассматриваемых паразитных эффектов на измерения можно пренебречь. Максимальное влияние они оказывают при $l_{\kappa} \simeq 6$ см. Приближенную поправку к экспериментальной величине S_{skc} от ослабления магнитного поля удобно вычислять в терминах соответствующих коэффициентов пропускания T (T = 1 - S): $\Delta T = T_{skc}/T_B - T_{skc}$ (это соотношение справедливо с хорошей точностью для малых углов $\theta \leqslant 5^\circ$ и для $l_k > 2\pi r_L$). Эта поправка составляет примерно 10%. Максимальная поправка из-за непарал-

1

лельности *B* и оси коллиматора в полтора раза меньше. Оба этих эффекта для $l_{\rm k} \simeq 6$ см дают погрешность измерения $\theta - \theta_{\rm sc} \simeq 1^\circ$.

Оценим теперь влияние эффекта отражения электронов от боковой поверхности. В контрольных выстрелах при $B_a = 6.8$ кГс продольный шаг ларморовской спирали $l_{\kappa_a} = 2\pi r_L$ для E = 0.9 МэВ составляет 4 см. Следовательно, на последнее кольцо частицы продольный шаг ларморовской спирали $l_{\rm kar} = 2\pi r_L$ для E = 0.9 МэВ составляет 4 см. Следовательно, на последнее кольцо частицы могут попадать только из-за паразитных эффектов. Учет поправок S_B и S_F показывает, что отношение тока частиц $l_{\rm orp}$, отраженных от стенки при $l_k < l_{\rm k}$. и вернувшихся на нее при $l_k > l_{\rm w}$, к току l_c составляет $l_{\rm orp}/l_c \leq 10\%$. Поэтому при $B_a = 3.6$ кГ с для последней точки при $l_k \simeq 6$ см поправка из-за отражения составляет $\Lambda S/S \simeq 10\%$. Она противоположна по знаку поправками, связанными с S_B и S_B , можно пренебречь. Поправку, связанную с отражения составляет $\Lambda S/S \simeq 10\%$. Она противоположна по знаку поправками, связанными с S_B и S_B , можно пренебречь. Поправку, связанную с отражение полчото коэффициента отражения для $\theta_0 \sim 5^\circ$ неизвестно, но, скорее всего, оно близко к $K_{\rm wep} \sim 0.5$ (подробнее см. [5]). Следует, однако, учесть, что вблизи от входа в коллиматор на стенку попадают частицы с максимальными питч-углами, для которых коэффициент отражения меньше. Кроме того, существенная доля отраженных электронов имеет большие углы, и они могут вернуться на стенку на длине $l_k \lesssim 1$ см. Таким образом, учет всех поправок показывает, что средняя величина углового разброса, вычисленная для точек с $l_k \simeq 1$ см и точек с $l_k = 6$ см, приблизительно равна и составляет $\theta_0 = 6 \pm 1^\circ$. Погрешность $\Delta \theta_0 = \pm 1^\circ$ включает в себя и вклад от паразитных эффектов, и экспериментальный разброс от выстрела к выстрелу. Если учесть погрешность калибровки измерительных приборов, то угловой разброс за анодной фольгой при l = 1 мкс составляет в себя на кладот паразитных эффектов, и экспериментальный разброс и при l = 1 мкс составите $\theta_0 = = 6 \pm 1.5^\circ$. составит $\theta_0 == 6 \pm 1.5^\circ$.

составит $\theta_0 == 6 \pm 1.5^\circ$. Заканчивая обсуждение влияния паразитных эффектов на измерения, остановимся на эффектах, связанных с неоднородностью пучка. Оценки показывают [5], что это влияние может быть заметным при достаточно сильной макроскопической неоднородности. Однако как измерения на входе [6, 7], так и на выходе системы сжатия [9, 10] показывают, что значительные крупномасштабные неоднородности пучка отсутствуют. Для выяснения влияния микронеоднородностей пучка были проведены следующие специальные измерения. Коллиматор-коллектор датчика собирался не из колец

(как изображено на рис. 2), а был разделен по азимуту на четыре 90-градусных сегмента. Токи на сегментах совпадали между собой с точностью $\Delta I/I \leq 10\%$, что указывает на отсутствие существенных градиентов плотности тока на масштабе диаметра коллиматора. Из этого следует вывод, что, по-видимому, влиянием микро- и макронеоднородностей пучка на измерение углового разброса в наших условиях можно пренебречь.

3.3. Зависимость углового разброса от величины магнитного поля достаточно слабая. При B = 1.8 кГс величина θ_0 , рассчитанная по точкам с $l_{\kappa} \sim 1$ см, практически такая же, как и при B = 3.6 кГс. При B = 6.8 кГс величина θ_0 несколько уменьшается (примерно на 20 - 30%). Угловой разброс также слабо меняется при изменении диодного зазора d_{A-K} от 5 до 8 см.

Рассмотрим, как меняется угловой разброс пучка при измерениях на входе в течение импульса. На рис. 8 показаны осциллограммы напряжения U и токов I_1 и I_5 , полученные при анодной фольге Al 90 мкм (рис. 8,*a*) и лавсан 10 мкм (рис. 8,*б*). На этом же рисунке приведены зависимости от времени экспериментальных значений углового разброса θ_{sec} в сравнении с величиной θ_j (пунктир)^{*}.

Для фольги Al 90 мкм при U > 500 кВ расчет достаточно хорошо совпадает с экспериментом. При U < 500 кВ в расчетах необходимо учитывать потери энергии электронов в фольге, которые становятся больше 10%. Для тонкой фольги (лавсан, 10 мкм) значение $\theta_{\rm экс}$ примерно в 3 раза больше θ_i в течение всего импульса, т. е. определяется не рассеянием электронов в фольге, а другим механизмом.

Отметим, что при пульсациях локальной плотности тока, особенно сильных во второй половине импульса, максимальное значение локального тока в пике может в несколько раз превышать его исходное (усредненное) значение. Но, поскольку выбросы тока на сигналах $I_1 - I_5$ происходят практически синхронно, то величина углового разброса при этом меняется незначительно (на 20 - 30%). Конечно, надо учитывать, что для очень узких пиков ($\Delta t \leq 50$ нс) используемые для регистрации этих сигналов АЦП Ф4226 [11] могут искажать сигнал. Видно, что угловой разброс

^{*)} Ввиду большого объема расчетов, необходимых для обработки каждой экспериментальной точки, приведенные здесь и далее кривые $\theta(t)$ были получены путем обработки экспериментальных данных на ЭВМ по специально написанной программе.

Рис. 8. Зависимость углового разброса от времени: а—лавсан + 90 мкм А! (№ 1008); б—лавсан 10 мкм (№ 1001); пунктиром — разброс в фольгах.

пучка с течением времени растет и к концу импульса его значение становится θ_{ис} ≥10°.

Таким образом, величина углового разброса на оси пучка, измеренная сразу за анодной фольгой, составляет в начале импульса (при l = 1 мкс) $0_a = 6 \pm 1.5^\circ$.

4. УГЛОВОЙ РАЗБРОС ПУЧКА ПОСЛЕ ПРОХОЖДЕНИЯ СИСТЕМЫ СЖАТИЯ

4.1. При расположении датчика на выходе из системы сжатия эксперименты проводились при зазоре d_{А--к} = 7 см. Анодной фольгой служил алюминированный лавсан толщиной 10 мкм, давление воздуха в камере сжатия менялось в диапазоне $10^{-4} - 10^{-1}$ Тор. Напомним, что магнитное поле на аноде составляло $B_{\rm a} = 4.3~{\rm k\Gamma c}$, на входе в коллиматор $B_{\rm kor} = 5.3$ кГс. На рис. 9 приведены результаты измерений углового разброса пучка на выходе при разной толщине фольг, устанавливаемых перед датчиком. Экспериментальные значения величины поглощения S(l_к) приведены для момента времени t=1 мкс, $U \simeq 850$ кВ, $\emptyset_{\kappa} = 7$ мм, давление газа в камере сжатия $P = 10^{-4}$ Тор. Перед коллектором пучка располагалась фольга из лавсана 10 мкм, либо к ней добавлялись фольги АІ 30 мкм и АІ 90 мкм. Приведены также расчетные кривые для $\theta_0 = 8, 13$ и 20°. Видно, что так же, как и при входных измерениях (см. рис. 6), величина измеренного углового разброса меняется в соответствии с толщиной фольги перед датчиком.

Значение θ_0 для самой тонкой фольги нужно определять следующим образом. Как уже указывалось, в этом случае при $l_{\kappa} = 6$ см $S_{\rm B} = 5\%$, $S_{\beta} \leqslant 7\%$, и весь ток попадает на последнее кольцо в результате паразитных эффектов. Поэтому можно оценить число частиц, отраженных от стенки и попавших на нее при $l > l_{\kappa_0}$ ($K_{\rm orp} = \Delta I_4 / l_c \leqslant 10\%$). Угловой разброс, определенный с учетом паразитных эффектов для точек с $l_{\kappa} \simeq 1$ см и $l_{\kappa} \simeq 6$ см для нескольких выстрелов, составляет $\theta_{\rm kon} = 7.5 \pm 1^\circ$. Предполагая, что транспортировка электронов происходит адиабатически, можно вычислить значение θ_a у анодной фольги:

$$\theta_{\rm a} = \theta_{\rm kon} \sqrt{\frac{B_{\rm a}}{B_{\rm kon}}} = 6.7^{\circ}.$$

Таким образом, видно, что величины θ_a , измеряемые как непос-

редственно за анодной фольгой, так и в режиме транспортировки пучка, в начальной части импульса практически совпадают между собой, и угловой разброс меняется в соответствии с толщиной фольги перед датчиком (см. рис. 6). Из этих фактов можно сделать следующий вывод. Поскольку величина коэффициента поглошения $S \sim \rho \sim \sqrt{E} \sin \theta_0$ (при $l_k > 2\pi r_L$ и $\rho \ll \mathcal{O}_k$), т. е. зависит и от эпергии частиц, и от их углового разброса, то указанное поведение кривых означает, что при транспортировке пучка через систему сжатия при $P = 10^{-1}$ Тор практически не наблюдается ни потерь эпергии нучка, ни увеличения его углового разброса.

Величина углового разброса в начальной стадии импульса практически не зависит от давления, однако в конце импульса такая зависимость появляется. При давленни P =газа $=10^{-3} \div 10^{-4}$ Тор на зависимости 0 от времени в конце импульса наблюдается провал, как это можно видеть из рис. 10. На этом рисунке приведены типичные осциллограммы напряжения U, токов l_1 и l_5 , полученные при $P = 10^{-4}$ Тор, а также величина углового разброса θ_a в сравнении с расчетным значением θ_i . Видно, что в течение $t \leq 2$ мкс токи I_1 и I_5 растут, затем на токе I_1 наблюдается спад, а на сигнале I₅-всплеск тока. Значение величины θ_a в начале импульса (*t* = 1 мкс) составляет примерно 7° (осцилляции 0_а в самом начале импульса, видимо, связаны с неточностью отсчета токов 11-15 из-за их малой амплитуды), затем оно несколько возрастает, а при $l \ge 2$ мкс существенно уменьшается (примерно в 2 раза), так что его минимальное значение становится равным θ_i . Отметим, что на осциллограммах напряжения U и тока пучка никаких особенностей при этом не наблюдается (см., например, [2]). При давлении газа $P = 10^{-1} \div 10^{-2}$ Тор описанный эффект выражен менее ярко.

Одним из возможных объяснений этого факта может быть следующее. При инжекции РЭП в магнитную пробку с M = 20 электроны, имеющие питч-углы $\theta > \theta_{kp}$ ($\theta_{kp} = 13^{\circ}$), отражаются от пробки и начинают осциллировать вокруг анодной фольги. Как показано в работах [2, 9], уже малая доля таких электронов способна приводить к переходу диода в режим коллапса импеданса, и, в конечном итоге, к его замыканию. При давлении $P = 10^{-1} \div 10^{-2}$ Тор практически в самом начале импульса возникает зарядовая (и даже частичная токовая) нейтрализация пучка. Поэтому для приосевых электронов пучка отсутствуют такие факторы, как излом силовой линии на анодной фольге и объемный заряд виртуального катода. В этом случае отражение электронов центральной

Рис. 9. Зависимость коэффициента поглощения S(*l*_к) от толщины фольги на выходе системы сжатия.

Фольга перед датчиком — алюминированный лавсан 10 мкм (ϕ — № 908), лавсан + 30 мкм Al (\bullet — № 907) или 90 мкм Al (\bullet — № 908). B = 5.3 кГс, $\emptyset_{\kappa} = 7$ мм, U = 850 кВ, t = 1 мкс. Расчет для 8, 13 и 20°.

Рис. 10. Осциллограммы напряжения U и токов I₁, I₅ при давлении газа в камере сжатия P=10⁻⁴ Top (№ 906); зависимость углового разброса θ_a от времени; пунктиром — разброс в фольгах.

части пучка связано с их исходным угловым разбросом, но ярко выраженный провал на зависимости 0(1) отсутствует, потому что до его появления коллапс импеданса инициируется нериферийными электронами. Их угловой разброс возрастает за анодной фольгой вследствие излома магнигных силовых линий на ее поверхности [2].

Наоборот, при $P = 10^{-4}$ Тор наблюдается неполная компенсация пучка по заряду [10], и исходный угловой разброс электронов увеличивается из-за провисания потенциала в дрейфовой камере. В этом случае более раннее образование плазмы происходит в центре анодной фольги. Возможно, что наблюдаемое экспериментальное снижение углового разброса связано с появлением анодной плазмы и изменением условий генерации пучка в диоде.

Отметим здесь, что при измерениях на выходе в некоторых выстрелах наблюдалась задержка появления тока в угловом датчике. Максимальная величина этой задержки составляла т ≤ 1 мкс при $P = 10^{-4} \div 10^{-3}$ Тор п т ≤ 0.5 мкс при $P = 10^{-2} \div 10^{-1}$ Тор. Эта задержка имеет случайный характер и, возможно, связана с неконтролируемыми изменениями в технологии подготовки выстрела. Обскурограммы пучка, приведенные в работе [10], подтверждают, что, действительно, при сжатии пучка в начале импульса может наблюдаться «пятнистая» пространственная структура пучка.

4.2. Другим способом определения углового разброса сжатого пучка, как уже говорилось, являлось измерение коэффициента отражения пучка от магнитной пробки. При инжекции пучка в камеру сжатия через тонкую анодную фольгу (лавсан, 10 мкм) ток пучка на выходе из системы компрессии в течение импульса, в пределах точности измерений ($\leq 3-5\%$), был равен току пучка на входе, т. е. коэффициент отражения пучка от магнитной пробки был близок к нулю. Для определения угловых характеристик пучка перед магнитной пробкой устанавливалась дополнительная рассеивающая фольга, дающая известный угловой разброс, и проводились измерения коэффициента отражения пучка.

. . . .

A STATE AND AND A STATE AND AND AND A STATE AND A STAT

На рис. 11 приведены осциллограммы напряжения на диоде и тока пучка на входе (I_{nx}) и на выходе (I_{aaax}) из системы компрессии, полученные с дополнительной фольгой (рис. 11,*a*), установленной в точке, где $B_l = 5B_a$, и без дополнительной фольги (рис. 11,*b*). Видно, что наличие дополнительной фольги (30 мкм Al) приводит к тому, что ток пучка, прошедший через магнитную пробку, становится меньше входящего тока, т. е. коэффициент прохождения пучка $\eta = I_{Bbax}/I_{Bx}$ становится меньше единицы. Замена дополнительной 30-микронной Al фольги на лавсановую пленку толщиной 10 мкм (с

Al покрытием) или установка фольги (Al, 30 мкм) за пробкой не приводит к расхождению между токами I_{вх} и I_{вых}.

По измеренному коэффициенту прохождения η можно, делая различные предположениия о функции распределения электронов по углам в исходном пучке, определить его угловой разброс. В частности, рассмотрим два вида функции распределения электронов в диоде перед анодной фольгой. В первом случае будем считать функцию распределения гауссовой со среднеквадратичным углом θ_0 , во втором — δ -функцией с питч-углом α ($f \sim \delta(\theta - \alpha)$). Определить величину исходного углового разброса (значения θ_0 или α) можно с помощью графиков, приведенных на рис. 12.

Если функция распределения гауссова, нужно пользоваться кривой $\alpha = 0$. В этом случае $\theta_s = \sqrt{\theta_0^2 + \theta_j^2}$ — это суммарный угловой разброс пучка после прохождения рассеивающей фольги. В частности, для осциллограмм, приведенных на рис. 11, в момент времени $t=1.3 \text{ мкс } \eta = 0.85 \pm 0.05$. Величина θ_s (в градусах) составляет $\theta_s = 9.4^{+0.6}_{-1}$. При $U = 650 \text{ кВ } \theta_j = 5.5^\circ$ (в пересчете на точку, где расположена анодная фольга). Отсюда исходный угловой разброс $\theta_0 = \sqrt{\theta_s^2 - \theta_j^2}$ равен $7.6^{+0.8}_{-1.3}$. В более ранние моменты времени (t < 1 мкс), когда разница между $I_{\text{вк}}$ и $I_{\text{вых}}$ становится сравнима со случайными погрешностями измерений, можно принять $\eta > 0.95$ и, соответственно, $\theta_s < 7.5^\circ$. В этом случае для исходного углового разброса пучка можно дать только оценку сверху: для U = 650 кВ $\theta_j = 5.5^\circ$ и $\theta_0 < 5^\circ$, для $U = 850 \text{ кВ } \theta_j = 4.5^\circ$ и $\theta_0 < 6^\circ$.

Для функции распределения $f \sim \delta(\theta - \alpha)$ следует пользоваться кривыми $\alpha > 0$. Питч-угол α находится по известным величинам η в θ_s (в этом случае $\theta_s = \theta_i$). Значения α для этого случая превышаю значения θ_0 (для гауссовой функции) примерно на 10%. Отметим в то же время, что трудно представить механизм, при котором вс электроны в исходном пучке имеют одинаковый питч-угол α . Поэтс му разница между α и θ_0 скорее характеризует точность определє ния среднеквадратичного угла в исходном пучке этим методом.

Заметим, что этот метод дает оценку среднего по сечению пучк углового разброса. Сравнение с измерениями датчиком угловог разброса показывает, что средняя по сечению величина угловог разброса практически не отличается от его значения на оси пучк В целом, измерения двумя методами хорошо согласуются меж/ собой.

ころうちい うちょうちゅう あたいろう しゅうちょうちょう

¢

Рис. 11. Осциллограммы напряжения на диоде U и токов пучка на входе I_{вх} в систему компрессии и на выходе I_{вых} из нее.

Вверху — с дополнительной 30-микронной Al фольгой, внизу — без дополнительной фольги. Дополнительная фольга устанавливалась перед магнитной пробкой, в области, где $B_i = 5 B_a$.

Рис. 12. Зависимость коэффициента прохождения электронов через магнитную пробку от величины углового разброса.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Как следует из проведенных измерений, характерное значение углового разброса пучка за анодной фольгой в начале импульса составляет $0_a = 6 \pm 1.5^\circ$. Если предположить, что угловой разброс пучка набирается, в основном, вблизи катода, то его величину 0_k можно вычислить из соотношения

$$\theta_{\kappa} = \sqrt{(\theta_a^2 - \theta_j^2) \cdot B_{\kappa}/B_a},$$

которая составляет $\theta_{\kappa} = 5.5 \pm 1.4^{\circ}$. Рассмотрим, в какой степени полученные результаты соотносятся с существующими представлениями о механизме генерации пучка и процессах в дноде.

Оценим, какой должен быть угловой разброс в диоде, используя результаты работы [12]. Причина углового разброса электронов — неколлинеарность электрического и магнитного полей, главным образом, непосредственно возле катода.

Для случая катода с бесконечной эмиссией, когда ток ограничен пространственным зарядом, величина углового разброса определяется из соотношения

$$\sin \theta_1 = \frac{4\pi j_k}{\omega_n} \frac{\sin \epsilon}{\sqrt{\gamma^2 - 1 B_k}},$$
(3)

где j_{κ} —плотность тока на катоде; $\omega_{\mu} = eB_{\kappa}/mc$; γ —релятивистский фактор. При t = 1 мкс плотность тока, попадающего в угловой коллектор, составляла обычно $j_0 \simeq 200$ А/см². Даже если формально подставить в приведенную формулу угол между электрическим и магнитным полями ε , равный 90° (sin $\varepsilon = 1$), то при типичном значении магнитного поля на катоде $B_{\kappa} = 3.3$ кГс, $\gamma = 2.6$ (E = 0.8 МэВ) величина θ_1 составляет не более 1°.

Для случая катода с ограниченной эмиссией

$$\sin \theta_2 = E_{\kappa} \frac{\sin \varepsilon}{\sqrt{\gamma^2 - 1 B_{\kappa}}}, \qquad (4)$$

где E_{κ} — напряженность электрического поля на катоде. Аналогично, при $\sin \kappa = 1$ и средней по зазору величине $E_0 \sim 10^5$ В/см получим $0_2 = 2 \div 3^\circ$.

Увеличенный угловой разброс ($6 \pm 1.5^{\circ}$) может возникать, если локальные значения j_{κ} или E_{κ} существенно превосходят их средние значения. Такое может осуществляться если, например, эмиссия

электронов происходит из далеко отстоящих друг от друга длинных острий, на которых возникает сильное искажение и усиление электрического поля (в этом случае также є ~1). Но если такая ситуация и реализуется в начале импульса, то образующаяся затем у катода плазма должна вскоре эти острия заэкранировать. Отметим, что в экспериментах не наблюдается зависимости θ_0 от величины магнитного поля, как это должно быть, согласно формулам (3), (4). Однако само по себе это обстоятельство не может исключать какой-либо ИЗ указанных механизмов, поскольку локальные значения величин јк или Ек сами могут зависеть от величниы Вк. Поэтому причина превышения измеренного углового разброса над разбросом, приобретаемым в самой тонкой фольге, примерно в 3 раза, является сейчас неясной.

Можно лишь высказать некоторые соображения. В работе [7] отмечалось, что характерная микроструктура пучка, возможно, обусловлена неустойчивостью эмитирующей поверхности плазмы. Этой же причиной можно объяснить величину измеренного углового разброса пучка. Действительно, как видно из экспериментов, локальная плотность тока может в несколько раз превышать среднюю по сечению, причем осцилляции тока усиливаются к концу импульса. Не исключена также возможность увеличения углового разброса в результате взаимодействия электронов пучка с внутридиодной плазмой [13]. Но из-за неопределенности параметров этой плазмы оценить такое прирашение углового разброса весьма затруднительно.

Наконец, отметим, что эксперименты по измерению углового разброса замагниченных сильноточных РЭП микросекундной длительности авторам неизвестны. В наносекундном диапазоне длительностиллучка выполнено несколько таких работ (см., например, эксперименты [4, 14-16]. В работе [4] для плоского диода в магнитном поле $B_1 = 40$ кГс при $U_a = 0.8$ МВ ($E_a \sim 1$ МВ/см) и анодной фольге Ті 6 мкм (0₁=7°) экспериментальные значения углового разброса составляют $\theta_a = 10 \div 12^\circ$. Этот результат не исключает возможность того, что угловой разброс в исходном пучке (в дноде) также равен 0_к ≈ 6°. В работе [14] кольцевой пучок генерировался в дноде с магнитной изоляцией при напряженности поля В = 90 кГс и напряжении на диоде U_д=3 MB. Измеренные значения разброса в диоде составляют 0₁ ≤ 1.8°. В экспериментах [15] пучок генерировался в co сплошным катодом при $U_{a}=2$ MB. бесфольговом диоде τ≤250 нс, B_д=6.6 кГс. Угловой разброс возрастал в середине импульса от $\theta_a = 1.5^{\circ}$ до $\theta_a = 6^{\circ}$, что авторы объясняли образованием анодной плазмы. В работе [16] электроны ускорялись в диоде с плоским графитовым катодом при зазоре d = 1.5 см и $E_{\pi} = 210$ кВ/см ($U_{\pi} \sim 0.3$ МВ) и затем доускорялись до энергии, соответствующей $U_{\pi} = 1.3$ МВ. Магнитное поле отсутствовало. Величина углового разброса для электронов, прошедших первую ступень ускорения, составляет $\theta_{\pi} = 0.5 \div 1^{\circ}$ и согласуется с расчетами.

6. ЗАКЛЮЧЕНИЕ

Таким образом, приведенные измерения углового разброса электронов показывают, что его характерная величина за анодной фольгой из лавсана толщиной 10 мкм в отсутствие системы сжатия пучка составляет $6 \pm 1.5^{\circ}$. Этот угловой разброс практически сохраняется при транспортировке пучка через систему сжатия пучка с пробочным отношением M = 20. Угловой разброс в области максимального сжатия в этом случае составляет величину $\theta_{np} = 27 \pm 7^{\circ}$. При низком давлении в камере сжатия ($P = 10^{-3} \div 10^{-4}$ Top) в диоде могут возникать условия, при которых наблюдается заметное снижение углового разброса пучка.

Авторы благодарны Д.Д. Рютову за постоянный интерес к работе и полезные обсуждения.

ЛИТЕРАТУРА

- 1. Воропаев С.Г., Князев Б.А., Койдан В.С. и др. Получение мощного микросекундного РЭП с высокой плотностью тока. — Письма в ЖТФ, 1987, т.13, вып.7, с.431—435.
- 2. Воропаев С.Г., Князев Б.А., Койдан В.С. и др. Работа мегавольтного микросекундного диода при инжекции РЭП в магнитную пробку. — Препринт ИЯФ СО АН СССР 87-2. Новосибирск, 1987; Proc. of the 18th Intern. Conf. on Phenomena in Ionized Gases, Swansea, U.K., 1987, v.1, p.202.
- 3. Аржанников А.В., Бурдаков А.В., Койдан В.С. и др. Увеличение эффективности взаимодействия сильноточного релятивистского электронного пучка с плазмой. — Письма в ЖЭТФ, 1978, т.27, № 3, с.173—176.
- 4. Аржанников А.В., Койдан В.С., Логинов С.В. Определение углового разброса замагниченного релятивистского электронного пучка по его прохождению через микроотверстия. Препринт ИЯФ СО АН СССР 81-10. Новосибирск, 1981; ПТЭ, 1983, № 4, с.36.
- 5. Чикунов В.В. Развитие метода определения углового разброса замагниченного РЭП по его прохождению в цилиндрическом канале. — Препринт ИЯФ СО АН СССР 87-84. Новосибирск, 1987, 17 с.

- 6. Воропаев С.Г., Койдан В.С., Лебедев С.В. и др. Мощный релятивистский электронный пучок микросекундной длительности для нагрева плазмы. ДАН СССР, 1984, т.276, вып.1, с.111—115.
- 7. Воропаев С.Г., Князев Б.А., Койдан В.С. и др. Мощные электронные пучки микросекундной длительности для нагрева плазмы в соленоидах. — В кн.: Доклады 3 Всесоюз. конф. по инженерным проблемам термоядерных реакторов, Ленинград, 1984. — М., 1984, т.1, с.298 — 308.
- 8. Экспериментальная ядерная физика/Под ред. Э.Сегре. М.: ИЛ, 1955, т.1, с.241.
- 9. Воропаев С.Г., Князев Б.А., Койдан В.С. и др. Исследование транспортировки РЭП через магнитную пробку. — Препринт ИЯФ СО АН СССР 86-82. Новосибирск, 1986.
- Воропаев С.Г., Князев Б.А., Ларионов А.В. и др. Определение профиля обратного плазменого тока в экспериментах по магнитной компрессии микросекундного РЭП. — Препринт ИЯФ СО АН СССР 87-87. Новосибирск, 1987.
- 11. Хильченко А.Д. Широкополосный регистратор формы однократных импульсных сигналов. ПТЭ, 1987, № 3, с.124.
- 12. Рютов Д.Д. Об угловых характеристиках электронного пучка, получаемого в бесфольговом диоде. — Препринт ИЯФ СО АН СССР 83-146. Новосибирск, 1983.
- 13. Arzhannikov A.V., Koidan V.S., Sinitsky S.L. Deceleration and Scattering of Relativistic Electrons at a Collective REB-Plasma Interaction.—Proc. of the 16th Intern. Conf. on Phenomena in Ionized Gases, Dusseldorf, 1983, p.348-349.
- Sheffield R.L., Montgomery M.D., Parker J.V. et al. Generation of a Cold, Intense Relativistic Electron Beam Using a Magnetised Foilless Diode. – J. Appl. Phys., 1982, v.53, N 8, p.5408 – 5413.
- 15. Sloan M.L., Davis H.A. Design and Testing of Low Temperature Intense Electron Beam Diodes. – Phys. Fluids, 1982, v.25, N 12, p.2337–2343.
- Bekefi G., Harteman F., Kirkpatrick D.A. Temporal Evolution of Beam Emittance From a Field-Emission Electron Gun. – J. Appl. Phys., 1987, v.62, N 5, p.1564 – 1567.

С.Г. Воропаев, Б.А. Князев, В.С. Койдан, С.В. Лебедев, В.В. Чикунов, М.А. Щеглов

Эксперименты по исследованию угловых характеристик мощного РЭП микросекундной длительности

Ответственный за выпуск С.Г.Попов

Работа поступила 12 февраля 1988 г. Подписано в печать 7.04.1988 г. МН 08255 Формат бумаги 60×90 1/16 Объем 2,5 печ.л., 2,0 уч.-изд.л. Тираж 250 экз. Бесплатно. Заказ № 52

Набрано в автоматизированной системе на базе фотонаборного автомата ФА1000 и ЭВМ «Электроника» и отпечатано на ротапринте Института ядерной физики СО АН СССР, Насроибиет 620000 пр. сидденика Паррантьова 11

Новосибирск, 630090, пр. академика Лаврентьева, 11.