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ABSTRACT 
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to the calculation of the weak decay amplitudes, weak mixing and 
CP violation. 
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1. INTRODUCTION 
Precision tests of the standard model of the electroweak interactions 

are an essential component in establishing the val idity of the specific 
model or the directions for new physical processes. Many tests require 
knowledge of the strong interaction component of the model. The short 
distance contributions have been previously understood in terms of 
perturbative QCD. The large distance effects are not described by the 
perturbative picture, and various estimates of these contributions have 
been made previously. In most cases, the approximate methods for 
treating the long distance contributions, such as factorization, have been 
inconsistent wi th the short distance analysis given by perturbative QCD. 
In this talk, 1 w i l l present a consistent analysis of both the short and 

long distance components using the large N c expansion method to analyse 
the strong interaction e f fec ts ( 1 ) . 

In Section 2, I br ief ly describe the large N c expansion method and 
then apply it to the standard analysis of the short distance perturbative 
contributions in Section 3. An alternative, bosonized version of QCD is 
described in Section 4 and used to obtain the consistent formulation of 
the theory presented in Section 5. The method is then applied to the 
weak decay amplitudes for K-»7nr, for the B|< parameter of K M P mixing 
and for the E ' /E parameter of direct CP violation. 

2. QCD IN THE LARGE N c LIMIT 
The large N c l im i t of quantum chromodynamics has received much 

attention in the past ( 2 ) . In this l imit, the number of colors, N c , is large 
but the gauge coupling constant goes to zero such that the combination, 
o< = c<c -N c , is held fixed. At leading order in the large N c expansion, 
the theory greatly s imp l i f ies and the higher order terms can be 
systematically calculated. This method was applied to a number of 
models in two dimensions where exact solutions could be obtained ( 3 ) . 
The structure of the large N c l imi t can be most clearly seen from an 
analysis of the Feynman diagrams. 

2.1. Diagram Analysis 
At large N c , the color structure of the Feynman diagrams for any 

process can be analysed by observing that the gluon propagator can be 
viewed as having quark-antiquark color indices and the quark color lines 
determine the appropriate color factors. For a gluon exchange diagram 
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for quark-antiquark scattering (1+3 -> 2+4), the color factors are 

(Xa/2) 1 2 -(X a/2)43 = (1/2) S1 3S42 - (1/2N C) 8 1 2 8 4 3 (1) 

where {X a } are the color coupling matrices. At large N c , the second 
term is suppressed and the color couplings are simpli f ied. 

The leading diagrams have a planar gluon structure. Adding 
additional gluons which preserve the planar structure are higher order in 
the fixed coupling, «., but do not change the order of the large N c 

expansion. Hence, each order of the large N c expansion w i l l involve an 
infinite class of Feynman diagrams to all orders in o<. 

The insertion of internal fermion loops w i l l add extra powers of the 
gauge coupling constant without extra color factors and are generally 
suppressed by a factor of 1/N c for each additional internal quark loop. 
Diagrams wi th nonplanar gluon interactions are suppressed by factors of 
(1 /N C ) 2 . 

The large N c expansion produces a kind of interacting string theory. 
The planar diagrams have the structure of a propagating world sheet 

where the st r ing coupling constant is 0 ( 1 / N c ) . Quark loops are 
associated holes or boundaries on the world sheet. The nonplanar 
diagrams have the structure of higher genus surfaces. It is intriguing 
to speculate on the connection between the large N c expansion of QCD 
and a dynamical string picture for hadrons. 

2.2 Strong Dynamics 
While the large N c expansion greatly s impl i f ies the structure of the 

Feynman diagrams, i t is s t i l l a complex dynamical theory in four 
dimensions. I w i l l briefly review the basic features of the leading 
order theory. 

2.2.1. The effective coupling constant, o<, runs as in regular QCD due 
to the presence of gluon loops although the fermion loop contributions 
are suppressed. The short distance perturbative ^- funct ion given by, 
3(aO = "(1 1/6TT) -oi2. The short distance theory is asymptotically free 
and the perturbative picture should apply. 

2.2.2. The at t ract ive gauge interact ions should st imulate a 
dynamical breaking of chiral symmetry. Nontrivial chiral condensates 
w i l l exist, < 4 ^ > 0 * 0, and the boundstate spectrum w i l l include the 
usual Goldstone bosons, TT.K.T},----. 
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2.2.3. From the structure of the perturbative ^ - funct ion, we also 
expect the theory to have confinement at large distance. Gluon 
condensates w i l l play the same role as in regular QCD. However, the 
effects of small instantons are suppressed being of order, exp(-1/o<) ~ 
exp( -N c ) . Of course, it is not clear whether a di lute gas of small 
instantons has any affect on the confinement mechanism. The large 
scale color f luctuations which are responsible for confinement may 
remain unsuppressed. We w i l l assume, not prove, that the large N c 

theory is confining and produces the usual spectrum of hadronic 
boundstates. 

2.2.4. The spectrum of the large N c theory should consist of 
quark-antiquark boundstates which form infinite trajectories of narrow 
resonances. The lowest mass states w i l l be the usual pseudoscalar 
mesons which are massless in the chiral l imi t . Note that effects 
related to the axial vector anomalies are suppressed contrary to QCD 
where the anomaly produces an expl ici t chiral U(1) breaking. There 
should also exist t rajector ies of narrow resonances for the glueball 
states. 

2.2.5. The resonances are narrow as the decay amplitudes are 
suppressed in the formal large N c l imi t . The diagrams describing the 
interactions of the normal meson boundstates w i l l include factors of 
1/\/N~c f ° r e a c h external meson in addition to the normal large N c color 
factors. Hence, a two body meson decay amplitude is 0(1/yN~c) a n d a 

two meson scattering amplitude is 0(1/N C ) . At leading N c , the planar 
quark-gluon diagrams can only produce tree diagrams for the meson 
scattering amplitudes as there are no internal quark loops to generate 
the multimeson intermediate states. Again this structure is similar 
to the string theory amplitudes. The amplitudes of the large Hc theory 
may not have the same duality properties as the fundamental string 
amplitudes. 

2.3 Operators 
Local quark operators for currents and densities w i l l have nontrivial 

meson matrix elements. The meson decay constants arise from a 
direct coupling of the currents to the appropriate mesons. The color 
structure implies that the meson decay constants are 0(-v/N c), Fjt ~ 
N c - ( 1 / , / N c ) ~ A/NC, etc. There w i l l also be form factors for the 
various meson matrix elements. Since the leading N c amplitudes 
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correspond to meson tree amplitudes, there should exist a local meson 
representation of the color singlet quark currents and quark densities. 

2.4. Meson Loop Expansion 
The strong interaction dynamics produces meson tree amplitudes at 

leading order in the large N c expansion. Unitarity w i l l demand that 
meson loop contributions must be included in a complete treatment of 
the theory. Meson loop contributions come higher orders in the large 
N c expansion. Indeed, the insertion of an internal quark loop w i l l 
generate a meson loop contribution which is suppressed by a factor of 
1/N C . A two meson loop contribution can only arise from diagrams 
containing two internal quark loops or nonplanar gluon contributions 
which are 0 (1 /N 2

C ) . I note that the only u l t rav io let divergences 
specif ic to the meson loop diagrams are those divergences already 
contained in perturbative QCD. 

3. WEAK DECAY AMPLITUDES 
In the standard model, the basic AS=1 weak transit ions are given by 

an ef fect ive current-current interaction generated by a W-boson 
exchange, 

Hwk = - ( G F / \ / 2 > s r c r C 3 -CS U) L -DW(Q 2) • ( U D ) L ( 2 ) 

where (s 1 ,c 1 ,c 3 ) are determined by the KM angles and D\v(Q2) is the 
W-boson propagator. Using the large N c expansion, the various 
contributions to the weak decay amplitudes can be determined. 

3.1. Leading Order Diagrams 
At leading N c , the strong dynamics affects each current separately, 

as shown in Figure la . Hence the meson matrix elements obey the 
factor izat ion r u l e ( 4 ) where the hadronization of each current is 
independent of the other. These current matrix elements contain only 
planar diagrams and are, therefore, given by the meson tree amplitudes. 

Figure 1 : Factorized Amplitudes 
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3.2. Next Order Factorized Diagrams 
To next order in the large N c expansion, there are factor ized 

contributions coming from the meson loop amplitudes which arise from 
inserting an internal quark loop on one side of the W-boson interaction 
as shown in Figure lb. When these contributions are combined wi th the 
previous leading order contributions, the fu l l factorized amplitude is 
obtained. However, the Fierz contributions which are usually part of 
the factorized amplitudes are not included here but are part of the 
nonfactorized amplitudes considered next. 

Figure 2- Nonfactorized Amplitudes 

3.3. Next Order Nonfactorized Diagrams 
The remaining contributions to this order in the large N c expansion 

are contained in the diagrams of Figure 2. Actually all diagrams shown 
here have the same structure and di f fer only in the location of the 
external meson states. These diagrams contain all the short distance 
physics associated wi th the quark evolution, weak mixing and penguin 
contributions. They also are responsible for all of the nonfactorizing 
strong interaction corrections to the weak matrix elements. 

3.4. Weak Evolution at Large N c 

The usual treatment of weak matrix elements involves the separation 
of the short and long distance contributions using an intermediate 
normalization scale. For low energy matrix elements, the fu l l weak 
Hamiltonian can be replaced by an effective Hamiltonian ( 5 ) 

Hwk -* H e f f = - ( G F / y r ) - s r c , - c 3 -2 i ^ i ( j i ) -Qi(|i) (3) 

where the short distance physics is contained in the coeff ic ient 
functions, RJ(JJL), and the long distance physics is contained in the matrix 
elements of the induced weak operators, Qj(ji). In the standard model, 
the coefficient functions can be further separated by their dependence 
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on the KM parameters, 

Rj(|i) = Zj(ji) + z -yjCji). ^ = S2-S2 + (s 2 -S3-c 2 /c r c 3 )-e- i S (4) 

If the strong interactions are ignored, the effective Hamiltonian of 
Eq.(3) reduces to that of Eq.(2). In the usual t reatment 1 5 1 , various 
four fermion operators are generated including current-current operators 
and those associated with penguins. 

Because they are only sensitive to the short distance physics, the 
coeff icient functions can be computed using perturbative QCD and the 
appropriate renormalization group equations. The solution is expressed 
in terms of the anomalous dimension matrix, {tf(cx(Q2))}jj, describing the 
evolution of the weak operators. 

z(] i ) j j = (expC-J^m 2 (dQ 2/2Q 2) -V(<x(Q2)))\] (5) 

The anomalous dimension matrix can be computed direct ly from the 
perturbative quark-gluon diagrams. From the structure of these 
diagrams, all relevant terms in the anomalous dimension matrix are 
0 ( 1 / N c ) ( n . 

The fu l l matrix elements of the effective weak Hamiltonian, Eq.(3), 
can be decomposed according to the large N c expansion. 

<O j (m 2 )> f u n = <Q j ( j j ) > L 0

 + <Qj(p)>F(l/N) (6) 

+ <Qj(ji)>NF(1/N) - J j i 2 m 2 (dQ 2/2Q 2) -{tf(o<(Q2))}j j -<Qj()i)> Lo 

+ higher order terms 

The leading order matrix element, <Qj(ji)>|_0. corresponds to Figure la 
and the (1/N) factorized matrix element, <Qj(j i)>F(i/N). corresponds to 
Figure lb. The diagrams of Figure 2 correspond to sum of the 
nonfactorizing part of the weak matrix element, <Qj(ji)>NF(1/N). a n d the 
part due to the anomalous dimension evolution. For a consistent 
treatment of the weak matrix elements, the nonfactorizing part of the 
weak matrix element must be computed to the same order as the weak 
evolution as they are both a part of a single term in the large N c 
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expansion. Only a consistent calculation can be expected to be 
independent of the normalization scale, j i . 

4. BOSONIZATION 
4.1. Dual Meson Theory 
At the fundamental level, QCD is formulated as a theory of quarks and 

gluons. The large N c expansion implies the existence of an equivalent, 
dual meson representation of QCD. As noted in Section 2, the leading 
N c theory consists of infinite trajectories of stable meson resonances. 

The strong interactions of these mesons can be deduced from the 
leading 1/NC corrections. The leading order terms produce meson tree 
amplitudes from which an effective meson Lagrangian can be derived. 
This theory involves the infinite towers of resonances and the correct 
implementation of an effective Lagrangian formalism w i l l confront 
questions related to the precise duality properties of the scattering 
amplitudes, s imi la r to the problem that confronted the proper 
formulation of string f ield theory. In addition to the strong interaction 
dynamics, there w i l l be a local meson representation of all color singlet 
operators including the weak currents and quark densities. Of course, 
the structure of these operators is closely related to the effective 
meson Lagrangian describing the strong interaction dynamics. 

The large N c expansion produces an ef fect ive theory that seems 
closely related to the string theories. indeed, str ing theory was 
originally derived from the phenomenological structure of hadronic 
physics. The original attempts to apply a fundamental string picture 
to hadrons fai led to produce a consistent theory. However, the 
hadronic string picture may differ from the fundamental string picture 
in a number of ways. Hadronic strings may have a f in i te size or a more 
complicated action which is not contained wi th in the scope of conformal 
field theories. Perhaps a more crucial difference concerns the known 
existence of valence quark and gluon structure. This pointlike structure 
is responsible for al l of the hard processes in QCD, such as jets and 
scaling, but is absent in the fundamental string picture. 

Some hint for the existence of an hadronic string picture is provided 
by the Lovelace-Veneziano fo rmu la ( 6 ) for TT-TT scatter ing. This 
scattering amplitude is a tree meson amplitude involving an inf in i te 
tower of mesons which has the proper high energy behavior as wel l as 
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the low energy theorems of chiral current algebra. 

A 1 2 3 4 = t r { r ' r V ^ M S - T t - c x ' - f 2 ^ ) - ' -r( 1 -o<(s))r( 1 -<x(t))/r( 1 -o<(s)-o<(t)) 

(7) 
+ permutations, 

where cx(s) = 1 / 2 + cx'-s is the usual p-meson, Regge trajectory. This 
amplitude is probably the exact leading N c scattering amplitude for TT-TT 
scatter ing. Unfortunately, we do not yet know the other strong 
interaction amplitudes or any of the amplitudes involving quark currents 
or densities. 

4.2. Truncation of the Meson Theory 
The complete meson theory may not be required to study the low 

energy behavior of meson amplitudes. The low energy theory is 
sensitive only to the low mass states and their interactions. However, 
we can not simply ignore the heavy states but must make a proper low 
energy truncation of the ful l meson theory. As a f i rs t approximation, it 
may be possible to use a nonlinear a model including loop effects for 
the low energy dynamics of the Goldstone bosons, Tt, K, T\ •••. 

An example of the decoupling of the heavy states is given by the 
linear a model. In this model the TT-TT scattering amplitude is given 
by (m2o- = m 2) 

A 1 2 3 4 = $12*34 -X •[ 1 + m 2 / ( q 2 - m 2 ) ] (8a) 

= S 1 2 S 3 4 -X •[ - q 2 / m 2 + (q 2 ) 2 /m 2 ( q 2 -m 2 ) ] (8b) 

If we simply ignored the contribution of the heavy states, we would be 
forced to drop the a exchange term in Eq.(8a). The resulting amplitude 
would not have the correct low energy behavior which is given by the 
f i r s t term in Eq.(8b) and corresponds to amplitude of a nonlinear a 
model. From Figure 3, we see that the nonlinear a model is only a 
good approximation at low energy and it makes no sense to interpret its 
high energy behavior as it vastly di f fers from the behavior of the fu l l 
amplitude. If we are to truncate the fu l l theory to the nonlinear a 
model, then it is essential to introduce a physical cutoff to define the 
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range of momenta where the nonlinear model represents a good 
approximation. Of course, in our case the fu l l amplitude is not given 
by the linear c model but by quantum chromodynamics, w i th an 
amplitude more closely related to the string amplitude given in Eq.(7). 

3 T 1 

2 -

A 

1 -

o , .— 
o.o 0.5 q / m 1.0 i-5 

Figure 3= a Model decoupling 

The effective low energy theory w i l l be correctly described by a 
nonlinear a model only in the low energy l imi t . The truncation of the 
ful l amplitudes w i l l generate corrections terms which can be viewed as 
higher derivative interactions, etc. As the amplitudes are extrapolated 
to higher momentum scales, some of the heavy states w i l l have to be 
included in the explicit dynamics of the truncated theory. 

4.3. Chiral Lagrangians 
The lowest energy truncation of QCD which describes the interactions 

of the chiral Goldstone bosons is given by the ef fect ive chiral 
Lagrangian, 

L = (1/4) •f2

7X •{ tr[ DMU-D^LT ] + r -tr[ m + -U + U + -m ] } 
(9) 

+ (1/4) - ^ j t <r/A2y) -tr[ m + -D2U + D2U+-m ] + 

where U = U(TC) is the chiral matrix and D-M = 3P + i-W^x is a covariant 
derivative used to consistently generate the current interactions. The 
f i rs t line of Eq.(9) gives the unique, lowest order terms in the effective 
action where f j t and r are dynamical parameters and m is the quark 

-a- NLCTM 
— ffM 
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mass matrix. We have also included one higher derivative interaction 
as it is required to generate the penguin operator matrix elements; there 
are certainly many other terms which could be included' 7 1 . This 
Lagrangian ignores anomalies and the U(l) problem which play no direct 
role in the weak decay amplitudes studied in this paper; we w i l l 
assume that there is a large singlet mass term for the singlet T\' meson 
reflecting the strong anomalies and consistent w i th phenomenology. 

The meson representation of the weak currents is obtained directly 
from the Lagrangian of Eq.(9), 

W ^ O L = i ( f 2

7 t / 2 ) •{ [ O^LO-IT - U-(8MU +) ] 
(10) 

- ( r / A 2

X ) •[ m-Oj i i r ) - (8 J i U)-m + ] • } j j 

Similar expression are obtained for the quark densities 

W R *L i ) = - ( f V 4 ) T - {U - ( 1 / A 2

X ) -82U + } j j ( 1 1 ) 

where again we include terms which are contained in the leading N c 

expansion but are higher order in the derivative expansion for the low 
energy amplitude. 

4.4. Renormalization 
As noted in Section 2, the 1/NC expansion is a loop expansion in the 

fu l l meson theory. The leading N c contr ibutions are provided by 
evaluating the the expressions given in the previous section in tree 
approximation. In the fu l l meson theory, the next corrections are 
obtained by evaluating the one loop diagrams of the fu l l meson theory. 
The low mass, low momentum contributions generate the correct 
infrared structure which is required to maintain the proper unitarity 
relations at low energy. These contributions are correctly given by the 
loop corrections to the chiral Lagrangian ( 6 ). The high mass or high 
momentum loops of the fu l l meson theory are not those of the chiral 
Lagrangian but ref lect the complete structure of QCD. They w i l l 
generate effect ive counterterms for the truncated chiral Lagrangian 
theory which are insensitive to the infrared behavior of the theory. 

We can use the chiral Lagrangian to compute the low energy 
contributions so long as we introduce a physical momentum cutoff to 
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preserve the va l id i ty of the truncat ion. A background f ie ld 
calculat ion 1 1 1 shows that the leading contributions come from terms 
which have a quadratic dependence on the cutoff scale and these serve 
only to renormalize the effective value of the Lagrangian value of the 
parameter, fjf. 

To determine the lagrangian parameters, we calculate the physical 
decay constants, F|< and Fjr, including the effects of the chiral breaking 
terms and obtain the relations 

F K / F ^ = 1 • ( m 2 K - m 2 T t ) / A 2 x 

(12) 
- ( 1 / 8 ^ ) •[ 2 - I 2 (m 2

K ) - 5- I 2 (m 2

7 t ) + 3- I 2 (m 2

8 ) ] 

where I 2 (m 2 ) = ( 4 T T ) - 2 •[ M 2 - m 2 -log(1+M 2/m 2) ] and 

f2rc(r12) = F 2 ^ • 2 - I 2 (m 2

K ) + I 2 (m 2

K ) 
(13) 

= M 2/(47t) 2 + 0(1 /N c ) 

Using this parameterization, the 1/NC corrections to F R / F ^ are at most 
6% for any reasonable value of the physical cutoff. 

The value of A ^ is found to be 1000 MeV compared to the value of 
900 MeV found by a leading order analysis. The value of this parameter 
is important as it determines the size of the penguin matrix elements. 
The meson representation of the penguin operator is given by 

Q 6 = " 8 •{ I q (S~L qR)-(<JR D L) } 
(14) 

-» 4-f2Tr - ( r / A 2

x ) •{ 8RJ 3pU + } d s 

where we note that the only these tree amplitudes are required to 
specify the penguin matrix elements to leading order in the large N c 

expansion. 

5. CONSISTENT WEAK DECAY AMPLITUDES 
The large N c expansion provides a framework for a systematic and 

consistent evaluation of the weak decay amplitudes. By analysing the 
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s t r i c t large N c expansion, a consistent estimate of the weak matrix 
elements can be achieved and combined wi th the usual perturbative 
renormalization group analysis of the short distance physics. 

5.1. Factorized Amplitudes 
For the leading order terms, the diagrams of Figure la contribute. 

Since all components of the matrix elements are at low energy, the 
meson representation of the weak currents can be used directly to 
calculate the tree matrix elements. The amplitude is necessarily 
factorized as the hadronization of each current is independent of the 
other. This approximation corresponds to the usual vacuum insertion 
calculation where the Fierz rearrangement terms are not included. 

The meson loop corrections of Figure lb generate the strong 
interaction corrections to the matrix elements of the weak currents. 
These contributions include the expl ic i t loop correct ions of the 
truncated theory and the appropriate counter te rms ( 8 ) which reflect our 
inability to compute the short distance components of the loops of the 
fu l ly bosonized meson theory. These diagrams obey the same 
factor izat ion properties as the leading terms. Indeed, the fu l l 
factorized amplitude, to this order, is given by the sum of these 
corrections wi th the leading order terms. The expl ic i t loops of the 
truncated theory generate the nonanalytic dependence and sensitivity to 
the meson masses and momenta. In pr inciple, the factorized 
contributions can be determined directly from experiment by measuring 
the purely semileptonic processes to obtain the appropriate meson 
current matrix elements. It is only the nonfactorized amplitudes 
which remain to be determined from the explicit calculation. 

5.2. Nonfactorized Amplitudes 
The class of diagrams shown in Figure 2 are responsible for the 

nonfactorized components of the weak matrix elements to this order in 
the large N c expansion. Al l other terms are higher order in 1/NC. 
The two currents are ful ly connected by the strong interactions. 
However, this amplitude has an extremely simple structure in the large 
N c l imi t which we can exploit for a complete calculation of both the 
short and long distance contributions. The amplitude can be 
represented by a convolution of the W-boson propagator wi th a meson 
tree amplitude, 
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A(p 1 ( ••• ,p n) = K27T)- 4 •/ dq D l ^ w ( q ) -A^Cq.p,, - ,p n) (15) 

As noted in Section 3, this amplitude is responsible for all of the usual 
weak evolution (quark evolut ion, penguins, etc) as we l l as the 
nonfactorizing long distance corrections to the weak matrix elements. 
The amplitude appearing in the integrand of Eq.( 15) is a meson tree 
amplitude wi th external currents. 

The short and long distance contributions are control led by the 
expl ici t momentum flowing through the W-boson propagator. These 
contributions can be separated, at least in principle, by a suitable 
regularization of this integration. An explicit example is provided by 
the analytic regularization 

D ^ W ( q ) -> DM^w(q) •{ [ q 2 / (q 2 -M 2 ) ] + [ - n 2 / ( q 2 _ n 2 ) ] } ( 1 6 ) 

The f i r s t term above contributes at short distance but is suppressed at 
low momentum. The second term contributes at long distance but the 
high momentum components are suppressed. This separation can be 
exploited to use the quark-gluon representation to calculate the f i r s t 
term and a truncated meson Lagrangian for the second term. It should 
be noted that the only u l t ravio let divergences associated w i th the 
momentum integration are those of perturbative QCD which are 
contained wi th in the quark-gluon analysis. The analytic reqularization 
used in Eq.(16) may be too smooth for real ist ic calculations where the 
truncated meson theory diverges rapidly from the correct physics beyond 
the cutoff scale. 

5.3. Short Distance Contributions (Quark Picture) 
If the cutoff scale, M2, is taken suff iciently large, then only the high 

momentum part of the integration w i l l contribute to the amplitude in 
Eq.(15) and perturbative QCD can be used for the calculation. For a 
regularization such as given in Eq.(16), we can simply use the expansion 
in Eq.(6) to compute the contribution from the cutoff f*12 to m 2v/. The 
matrix element w i l l be given by 

<O j (m 2 )> r e g u i a ted ~ <Oj(m 2 )>f U n - <Oj (M 2 )> f u n 

= ( - / u 2 m 2 (dQ 2/2Q 2) -{2f(o<(Q2))}ji -<Qi(|i)> Lo ) 
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- { - J M 2M 2 (dQ2/2Q2) -{2f(o<(Q2))}ij -<Qj(ji)>LO } (17) 

= - J M 2 m 2 (dQ2/2Q2) -{2f(o<(Q2))}jj -<Qj(|i)>LO 

which is just the normal weak evolution to the infrared regulator scale, 
n 2 . 

This contribution can also be computed directly from the perturbative 
diagrams. If the momentum of the W-boson propagator is taken to be 
large in Figure 4a, then the leading short distance contribution comes 
from the box diagram contribution where the gluon has been expanded 
out of the the hadronic matr ix element using the operator product 
expansion as in Figure 4b. The diagram of Figure 4c has a high 
momentum contribution from the explicit box diagram as shown in Figure 
4d. High momentum contributions from wavefunction gluons w i l l be 
higher order in perturbative QCD. 

Figure 4= Direct Calculations 

These short distance diagrams are just the usual weak mixing 
diagrams used to calculate the anomalous dimensions of Eq.(6) where M2 

replaces the infrared normalization scale, \i2. This gives precisely the 
same result as Eq.(17) except for f in i te corrections related to the 
normalization prescription dependence of the subtraction procedure 
which can be modified to agree wi th the explicit diagram calculation. 
Using the result in Eq.(17), the scale dependence of the regulated matrix 
element is given by 

M 2 8n 2 < O j ( m 2 ) > r e g u l a t e d = (1/2) -{2T(o<(M2))}jj -<Qj(ji)>LO (18) 

where the leading order matr ix element, <Qj( j i )>[_o. i s actually 
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independent of the normalization scale, j i . 
5.4. Fierz Terms 
The above result depends on the the structure of the external states. 

It was essential that the meson matr ix elements produced no hard 
momentum components except for those generated by perturbative QCD. 

Hence the diagrams of Figure 4a do not yield any direct Fierz 
contributions for the high momentum components. However, the Fierz 
contributions w i l l be generated if the external have expl ic i t hard 
components, such as pointlike couplings to external particles (Higgs, 
axions, etc) or heavy quark systems (quarkonia, etc). When they can 
contribute, the direct Fierz terms are opposite in sign to the terms 
generate by the normal weak evolution. This may have some relation 
to the suppression of the 1/N c corrections for D-meson decays, etc. 

5.5. Long distance Contributions (Meson Picture) 
The long distance contributions come from the low momentum part of 

the integral of Eq.(15). For low momentum external meson states, the 
meson amplitude in the integrand is completely determined by the low 
energy effective theory. The truncated chiral Lagrangian given in Eq.(9) 
represents the simplest, f i rs t approximation to the integrand amplitude. 

Using this chiral Lagrangian, the leading contributions from the loop 
integration are the quadratic divergences. In the chiral l im i t , the 
integrals can be done for arbitrary, low momentum meson states. Using 
a coset representation of the chiral f ie lds, the result ing matr ix 
elements are given by 

<Q,(r12)> = - 2-r l2-(47t- f 2

7 r r 2 -<Q 2 (0)> L O (19) 

<Q2(M2)> = - 2-M 2-(4Tt-f 2

7 t)- 2 •<Q 1 (0)> L O 

+ r1 2-(4Tt-f 2

T t)- 2 •<Q 2 (0) -Q 1 (0)> L O (20) 

= - 2 •M2-(4TT-f2

Tr)-2 . ^ ( O ^ L O 

+ ( A 2

X / 4 - r 2 ) •r12-(4TT-f2

T T)-2 -<Q 6 (0 )> L O (21) 

where the explicit forms of the leading order matrix elements have been 
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used to introduce the penguin operator. With this identif ication, the 
mixing structure of the operator matrix elements agrees precisely wi th 
the weak mixing computed from the quark diagrams. We can use the 
above result to compute a meson anomalous dimension matrix. 

rl28N2 <Qj(r12)> = - (1/2) •(25'mesonCM2)}ij •<Qj(0)> L O (22) 

If the quark-gluon amplitudes and the meson amplitudes were both 
exact then the quark-gluon and meson anomalous dimensions would be 
identical so that the sum of the quark and meson amplitudes would be 
independent of the matching scale, M 2, see Eqs.( 18,22). However, we 
have used extreme truncations for both theories, leading logs for the 
quark-gluon theory and the simplest chiral Lagrangian for the meson 
theory. At best, we would only expect these calculations to agree in 
an overlap region where both theories are valid approximations. In 
Figure 5, the two anomalous dimensions are shown as a function of the 
regulator scale, M, and are seen to agree for scales around 600 MeV. 
This seems to be a reasonable matching scale as meson amplitudes 
should begin to feel the suppression effects of the vector meson form 
factors while s t i l l above the constituent mass scale of the quarks. 
The severe truncations of both the quark-gluon and meson calculations 
do not permit the existence of a large crossover region. However, it is 
the fact that these two calculations yield similar results which is 
responsible for the consistency of the result. 

0.4 0.6 0.8 n 1.0 1.2 1.4 

Figure 5= Anomalous Dimensions vs matching scale (GeV) 
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Clearly, there is much room for improvement of these calculations. 
The quark theory could be extended to higher order in perturbative QCD, 
and the effects of dynamical symmetry breaking could be included. The 
meson theory could be improved by including higher derivative terms 
and/or meson resonances such as p, K*. A 1 f etc. 

6. App l i ca t i ons 
6.1. K-̂ TTTT Decay Amplitudes 
The K-meson decay amplitudes have long been a puzzle due to the 

large enhancement (suppression) of the AI=1/2 (AI=3/2) amplitudes. 
The normal short distance evolution and the penguin contributions 
explain a part of these effects. However no direct confrontation wi th 
the standard model has been achieved due to the lack of a consistent 
calculation of the long distance contributions to the weak matrix 
elements. However, we can now use the results of the previous section 
to make a consistent estimate of the fu l l amplitudes including both 
short and long distance evolution effects. 

The s t r ic t 1/N c calculation gives an estimate of the nonfactorizing 
amplitudes of Figure 2. This amplitude can be separated into the usual 
two terms representing the short distance coefficient function and the 
nonfactorizing corrections to the weak matrix elements of the evolved 
weak operators. Because of the long evolution to the my/ scale, the 
renormalization group improvement can be systematically applied to the 
coefficient functions w i th a result which goes beyond the s t r ic t large 
N c expansion. The prediction for the fu l l amplitude combines these 
coefficient functions wi th the operator matrix elements. 

We need the matrix element for both the Qj and Q 2 weak operators. 
There are about 100 Feynman diagrams for the three different matrix 
elements for K->7t7T. The results of these ca lcu la t i ons m are given by 
the amplitudes 

<7T+7T- | Qt(M2) | K°> = ( X / f 2 ^ ) -F,(M2) (23) 

<7T+TT- I Q2(M2) I K°> = X F + (X/f 2

n ) -F2(r12) (24) 

<7r°7T 0|Q 1(n 2)|K°> = - X F - (X/f 27r) "F3(r12) (25) 
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<7T°7T° | Q2(M2) | K°> = ( X / f 2 ^ ) •[ F2(M2) - F^r l 2 ) - F3(f12) ] (26) 

<Tt +7T°|Q 1, 2(rl2)|K + >V2" = XF + (X/f 27t) "[ ^ ( M 2 ) + F3(M2) ] (27) 

where the factorized and leading order matrix elements, Xp and X, are 

X F = X •[ 1 + (fTt/Fji) "(FK/FTT -1) •m 2

T t / (m 2 K-m 2 Tt) ] (28) 

X = 72" -FJX • ( m 2

K - m 2

7 t ) (29) 

The cutoff dependent functions, F K ( N 2 ) , are computed from the 
nonfactorized meson loop amplitudes wi th the result 

F,(M2) = (4Tt) - 2 - ( f T r /F 7 t ) - [ -2-M 2 + (m 2K/4+19-m 2

T r /9)- ln(1+M 2 /m 2) ] (30) 

F2(M2) = (4Tt) - 2 - ( f 7 t /F T t ) - [ M2 + (m 2

K -3 -m 2

7 t /2 ) - ln (1 + r1 2 /m 2 ) ] (31) 

F,(M2) = (47T)- 2 -( f r r /F T t )- [ ( 8 - m V 9 ) - l n ( l + r 1 2 / m 2 ) ] (32) 

where m is a common infrared scale, m^ < m < mx, introduced for 
simpl ic i ty. Note that the quadratic divergences are precisely those 
given in Eqs.(19,20,21) as calculated from the coset f ield calculation. 

This calculation of the meson matrix elements can be combined wi th 
the previous calculation of the short distance evolution to obtain the 
prediction for the fu l l physical amplitudes. The results are given in 
Table 1 as functions of the strange quark mass, m s and the matching 
scale, |i = M. 

The results are sensitive to the value of the strange quark mass 
through the penguin matrix elements. The large AI=1/2 amplitudes are 
rather insensitive to the matching scale ref lect ing the cancellation 
between the operator matrix elements and the short distance coefficient 
functions. The various contributions for the K0-»7t+rr~ decay amplitudes 
are given as functions of the matching scale in Table 11. 
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p=M(GeV) K o ^ 7 T + T t - K 0 - , T t o 7 t o K+^TT+TC° 
0.6 22.9 20.3 1.75 
0.7 22.3 20.0 1.58 
0.8 22.2 20.3 1.33 
0.6 20.4 17.9 1.75 
0.7 20.1 17.8 1.58 
0.8 20.1 18.2 1.33 
0.6 19.0 16.5 1.75 
0.7 18.8 16.5 1.58 
0.8 18.8 17.0 1.33 

Table 1: Weak Decay Amplitudes 

ms(r1eV) 

125 

150 

175 

Data 27.7 26.3 1.84 

Table II : Separate Contributions 

ji=M(GeV) SDCQLC^) LD(Q,,Q2) Penguin Sum 
0.6 9.3 5.6 5.5 20.4 
0.7 8.7 ' 6.4 5.1 20.2 
0.8 8.3 7.0 4.8 20.1 

The long distance contributions continue the normal weak mixing of the 
Q]t Q 2 operators as wel l as additions to the penguin. With these 
matching scales, there are approximately equal contributions to the 
AI=1/2 amplitudes from the short distance, long distance and penguins 
terms. 

The calculation achieves about 3/4 of the actual enhancement of the 
AI=1/2 amplitudes w i th signi f icant strength in the long distance 
component. It also achieves about the right suppression of the 
AI=3/2 amplitudes w i th about 1/3 of the total suppression due to long 
distance effects. This estimate of the strong interaction effects 
seems fully capable of explaining the K-meson decay amplitudes. The 
remaining discrepancy for the AI=1/2 amplitudes may be resolved by 
improving our crude estimates of the meson and quark contributions to 
the nonfactorized diagrams of Figure 2. However, i t may also require 
higher order 1/NC corrections which are di f f icul t to estimate without a 
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better separation of the short and long distance contributions to the 
amplitudes; here a practical formulation of the hadron string theory 
would be helpful. 

6.2. Weak Mixing, the B|< Parameter 
Weak mixing occurs due to the incomplete GIN cancellation for the 

AS=2 processes which lead to K°^K° transi t ions. The basic box 
diagrams for these transi t ions are dominated by short distance 
processes. Standard renormalization group methods' 5 ' can be applied 
to integrate out the short distance physics in favor of an effective four 
fermion operator, Q = (S D)|_-(S D)|_. The transit ion amplitude is given 
by 

<K~° | H w k | K°> = { ri ,00 -m 2

c

+Ti2(M) -m 2t 
(33) 

+ T \ 3 0 I ) - m 2

c -logCmVm 2,:) } - ^ | Q(ji) | K°> 

The coefficient functions evolve wi th anomalous dimensions associated 
w i t h the four fermion operator which t ransforms as the 2_7 
representation of SU(3). The same class of diagrams given in Figures 
1,2 applies to this process and a similar separation of the weak matrix 
elements can be made as in the previous section. The B« parameter is 
defined as 

<K~° I Q(|i) I K°> = B K ( j i ) "(1 6/3) -F 2

K - m 2

K (34) 

Using fu l l factorizat ion, including Fierz terms, B« = 1. In the leading 
order of the large N c expansion, B|< = 3/4 because the Fierz terms are 
dropped. The factor iz ing contributions generate the renormalized, 
physical value of F« in Eq.(34). The long distance, nonfactorizing 
contributions can be calculated from the meson loops. 

<K"o I Q(ji) I K ° > m e s 0 n = 4 -F 2

K - m 2

K •{ - (4TT-FK)-2 

(35) 
•[2-M2 - ( i o /3 ) - m 2

K -logU+MVm 2) ] } 

Combining this result wi th the factorized amplitude, the B« parameter 
becomes 
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(36) 
BK(M) = (3/4) -{1 - (4TT-FK) - 2 -[2-M2 - (10/3) - m ^ -log(1 + M 2 /m 2 ) ] } 

which must be adjusted to the usual definit ion of the B« parameter by 
the appropriate short distance evolution. By varying the precise 
matching conditions' 9 ' , this estimate gives 

B« = 0.7 ± 0.1 (37) 

It is interesting to compare the matrix elements for K 0 - ^ mixing 
and AI=3/2 K-meson decays. These transitions involve different matrix 
elements of four fermion operators in the same SU(3) representation, 

<K"°|Q(ji)|K°> = 4 -F 2

K - m 2

K •{ 1 - ( 4TT -FK) - 2 

(38) 
•[2-M2 - (10/3) - m 2

K -log(1+M 2/m 2) ] } 
and 

<7T+7t° | Q 2(p) | K + > = F K • ( m 2

K - m 2

7 t ) •{ 1 - (47T-F Kr 2 -
(39) 

•[2-M2 - ((1/4)-m 2K+3-m 2

7 t) -log( 1 +M 2 /m 2 ) ] } 

The quadratic divergences are ident ical , re f lect ing the common 
anomalous dimension. The coeff icient of the log divergences differ, 
ref lect ing the explicit chiral symmetry breaking. For a matching 
scale, M ~ |i ~ 700 MeV, the long distance corrections for K°-K~° mixing 
are small as the quadratic term is cancelled by large log terms in 
Eq.(38). For the K-meson decay matrix element, the log terms are 
small and the quadratic term provides the additional suppression needed 
to explain the observed magnitude of the Al=3/2 amplitude. 

6.3. CP Violating Amplitudes, E'/E 
The direct CP violat ing amplitudes come from "top" penguin 

contributions. The methods described above can be used to calculate 
E ' / E . The result depends on the KM angles as well as the value of the 
top quark mass. Under some assumptions' 1 0 1, the predicted values are 

e'/E = (3.2 -» 1.1) - 10 - 3 , mt = (40 -* 100) GeV (40) 
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7. CONCLUSIONS - OUTLOOK 
The large N c expansion permits a consistent calculation of both 

short and long distance contributions to the nonleptonic weak matrix 
elements. The calculations imply that there is signif icant strength 
contained in the long distance physics. For the K-meson decay 
amplitudes, about 3/4 of the observed enhancement of the physical 
AI=1/2 amplitudes is identi f ied while the fu l l suppression of the 
AI = 3/2 amplitude is achieved, as shown in Tables I,II. The B|< 
parameter is computed to be BK = 0.7 ± 0.1. The CP violating decay 
amplitudes imply that E 7 E = (1.1 -» 3.2) -10" 3 . 

This analysis represents the f i rs t attempt at consistent calculation 
of the weak matrix elements in the continuum f ie ld theory. The 
expl ic i t calculations can clearly be greatly improved. The short 
distance, quark-gluon theory could be taken to higher order in 
perturbative QCD and certain nonperturbative aspects, such as dynamical 
symmetry breaking, could be included. The long distance, truncated 
meson theory could include higher derivative interactions or higher mass 
meson resonances. A more precise procedure for matching the long and 
short distance component could also be achieved. Higher order terms in 
the large N c expansion appear d i f f i cu l t to include in this formalism 
without something like a practical hadronic string theory. There is 
also no direct extension of these techniques to heavy quark systems as 
it is more d i f f i cu l t to separate the effects of the short and long 
distance components. 

It is encouraging that even the simplest approximations seem to 
yield consistent resul ts in good agreement w i t h the observed 
phenomenolgy. These results should be compared w i th those of lattice 
gauge theory which provides an alternative consistent method for 
calculating these processes, not restricted by the l imi tat ions of the 
large N c expansion. 
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