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I. INTRODUCTION 

In the original SLC commissioning plans, it was thought that accumulated 
optica] mismatch, generated by focusing errors in the whole machi. ., would be 
corrected at the very end, in the Final Focus. Dedicated correctors for optical 
matching and a special adjustment strategy were planned for this purpose, with 
a large tuning range of up to about a factor four in any dimension of the beam 
phase-space1. 

For several reasons, this does not appear to be feasible. One major constraint 
limiting the magnitude of mismatches which can be absorbed in the Final Focus is 
the background generated in the detector, from electromagnetic debris and from 
muons produced when beam-tails strike apertures there. The apertures in the Final 
Focus, normalized to the nominal beam size, are in effect significantly smaller* than 
in the Arcs, both upstream and downstream of the dedicated optical correctors. 
Because of this, otherwise correctable optical distortions can result in enhanced 
backgrounds, as imperfectly collimated beam tails get magnified by the optical 
distortions, and can get scraped off. 

With the present collimation and shielding arrangements, it is necessary to 
control the beam upstream of the Final Focus in order to inject a nearly matched 
phase-space there. Following work by Stiening in the Linac2, and by Fieguth in 
the Arcs3, we have developed and installed a new system of harmonic focusing 
corrections at the end of the SLC Arcs, to provide such control. 

* The protection collimator PC16, for example, has a radius of 4 millimeters. After normal­
ising by the nominal beam size, it is smaller than the Are 6 millimeter vacuum chamber by 
a factor 6.7. 

••Work supported by the Department of Energy Contract DE-AC03 
76SF00515- 1 MASTER 
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The scheme consists of introducing small regular and skew focusing deviations 
at specific harmonics of the betatron frequency which the phase-space is specially 
sensitive to. The harmonics in question are the zeroeth harmonic and the second 
harmonic of the betatron frequency . The focusing deviations are introduced in 
the Arc lattice by perturbing the strengths of the combined function magnets with 
a set of appropriately rewired trim windings at their backleg . The corrections 
provide an efficient way for adjusting both for errors in the Arc lattice and for 
mismatch at the injection to the Arc, generated by the upstream systems. 

In this note, we describe the specification of this correction procedure as well 
as the present installation. Initial operational experience with this new method for 
adjusting beam-lines is presented elsewhere*. 

We begin with a description of the theoretical work which guided the specifica­
tion. We then define the harmonics in the case of the Arc lattice, and describe the 
wiring modification and the strength of the regular and skew quadrupole compo­
nents which can be generated, as calculated with POISSON5. We also describe the 
intra-magnet wiring arrangement through which the spatial strength modulations 
are produced. 

Finally we present the predicted effects from the present installation, and out­
line possible improvements. 

+ In a circular accelerator, these harmonica correspond to the half-integer resonance in each 
plane, and to the sum and difference coupling resonances. 

t The backleg windings were introduced in the Arc magnets originally to provide a step-wise 
adaptation of the strength of the lattice to the energy of the beam, which loses about 1 Gev 
through the emission of synchrotron radiation in the guide-field. 

2 



IL THEORY OF HARMONIC CORRECTIONS 

II. 1 Concept of Harmonic Correction in a Beam-Line 2 , 3 

In a beam-line where the focusing lattice consists of a periodic FODO array, the 
optical mismatch which occurs from focusing errors is conveniently described by 
an ellipse which rotates in phase-space with the betatron phase-advance6. Because 
ellipses are invariant under rotation of JT, the beats in the beam envelope occur at 
twice the betatron frequency. Therefore, focusing errors which are separated by TT, 
and more generally, which occur at twice the betatron frequency, will build up and 
enhance the optical mismatch. 

Thus it is natural to consider adjusting the lattice and the phase-space in 
a FODO array by introducing controllable focusing perturbations at twice the 
betatron frequency. In general, the focusing errors in the lattice are random. 
Such focusing perturbations will thus add to or subtract from the strength of the 
Fourier component of the random errors which is at twice the betatron frequency. 
Controlling the strength of this harmonic thus enables to either make an overall 
correction of the lattice, or to purposely distort the lattice to minimize optical 
mismatch in the injected beam. This notion can be applied both to regular focusing 
errors and to skew focusing errors. 

Because the perturbations from the errors are random and contain in general a 
systematic component, the accumulating optical mismatch will not remain indefi­
nitely in phase with the focusing perturbations which are introduced. The longer 
the array, the larger the phase-shift between the two will be, and the weaker the 
effects from the controls become, as the system becomes more nanow-band. Be­
cause of this, harmonic corrections cannot be performed over a region that is too 
long, without losing much of their efficiency. 

A second reason why harmonic corrections can in general not be applied over a 
region that is too long arises if the momentum dependance of the focusing, referred 
to as the chromaticity of the lattice, is not or is imperfectly corrected. In this case, 
the finite momentum spread in the beam will cause the optical mismatch from the 
focusing deviations to filament into a larger effective phase-space. The efficiency 
of a harmonic correction can in this case be reduced. Because the SLC Arcs are 
designed to be achromatic, such effects arise only to the extent the chromatjeity-
correction, because of the errors, is imperfect. For the range of errors which we 
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consider , this is a small effect which we will not consider here. 

II.2 Scope of Theory 

The scope of this theoretical description is not that of full generality or rigor. 
The goal is rather to show the basic features of betatron oscillations and of trans­
verse phase-space, as they are imaged through a FODO array which has been 
perturbed by & periodical focusing deviation. We will calculate the effects for each 
perturbation separately, in an idealized system with no errors, and ignore mixing 
effects which arise when several perturbations are applied simultaneously. Such 
mixing effects can change the magnitude of the effects, but do not change th'j 
basic features of the solutions which we will derive. 

The only case of mixing which we will treat is that of a systematic focusmg 
deviation, from the random errors or applied as an independent perturbation, 
combined with a periodic focusing perturbation at twice the betatron frequency. 
Rather than calculating the explicit solution for this case, we will indicate the 
magnitude of the reduction factor which results. 

A practical case of periodic focusing deviation applied to a lattice with random 
errors will be explored through simulation in section VI. 

In order to calculate the effects to be expected from harmonic focusing pertur­
bations in a repetitive lattice, it is convenient to introduce and work with normal­
ized variables. 

II.3 Normalized Variables 7 

The transverse motion of a particle in a focusing array is governed by Hill's 
equation: 

z + Kz=0 (1) 

where z = x,y and s = ct are the transverse and longitudinal coordinates respec­
tively, and where K represents the strength of the varying restoring force from the 
focusing array. 

• We consider focusing perturbations of up to about one percent. 
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The use of the normalized variables u*,s = -4g and dift = -jf where f) satisfies: 

1/30-1^ + 7 ^ - 1 = 0 , (2) 

transforms (1) into the equation of a pure harmonic oscillator: 

UI,J» + «*j» — 0. (3) 

In (1) and (2), / = fs, where / = 2,0. In (3), ii s *%f. The solution of (1) is 
thus: 

* = av/j9cos(^+&), (4) 

where a and b are integration constants, and is referred to as a betatron oscillation. 
By definition the frequency of this oscillation, written as a function of the phase 
variable 4>, is one. 

Although the form in (4) is general, it is specially suited to periodic arrays 
consisting of repeated cells. In this case K, 0 and 4> are periodic with the cell 
length and the betatron oscillation is pseudo-harmonic. An equivalent harmonic 
oscillator can be defined by sampling (4) at each cell: 

{** = ay/]3cos(<f>n + 6), 
with 4>n = no­

where fi is the phase-shift per cell. In what follows, we consider perturbations of 
(3). The solutions we will derive coincide with those of (1) at the sampling points, 
after rescaling by %/?• It is therefore possible to use (1) or (3) interchangeably, as 
long as one considers the restriction of the solution to the sampling points. We 
will use this fact to write simplified expressions for the perturbed motion. 

II.4 Periodical Focusing Perturbations 

II.4.1 Regular Quadrupole Perturbations 

* From the sampling theorem, (4) is not underoampled by this procedure as long as the cell 
phase-shift is less than T, which is always the case8. In the SLC Arcs, /J = 2£. 
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To study the effect from a focusing modulation with regular quadrupoles, we 
replace K by K + k cos(i/^ + V) i"1 t n e governing equation {1), where k cos(i^ + ij>) 
represents a periodic deviation in the restoring force K, of amplitude k and of 
phase t/i, and with v cycles per radians of phase-advance along the array. For 
the horizontal motion (z = x), the most important deviations are the ones in the 
focusing lenses. Conversely, for the vertical motion (z = y), the most important 
deviations are the ones in the defocusing lenses . We consider small errors so that 
k<£K. 

In the normalized system. the equation of motion in (3) becomes: 

«x.i,+ ( l + S f c o s ( ^ - | - ^ r ) ) u , , I , = 0, (6) 

with gT = 02k, and V r = *!>• The function 0 is sampled at the center of each 
focusing magnet for the horizontal motion, and at the center of each defocusing 
magnet for the vertical motion. Since only errors in the focusing (respectively 
defocusing) magnets affect the motion significantly in the horizontal (respectively 
vertical) planes, the factor gr can be considered constants in (6). 

IL4.2 Skew Quadrupole Perturbations 

Similarly, we write the equations which govern the motion when focusing mod­
ulations with skew quadrupoles are applied. In this case, the restoring focusing 
force, proportional to the beam excursion in each transverse plane, acts on the per­
pendicular plane. This generates cross-plane coupling. The equations of motion 
are in this case: 

«i + tij + g* cos(v<f> + ^*)uv = 0 

Vy + Uy + g* C0S(«>̂  + 0*)« r = 0, 

where g' and V>* represent the amplitude and phase of the skew focusing modulation 

* This results from the fact that in a FODO array, the beam size is naturally larger in each 
lens, ID the plane in which the lens focuses. Because of this, the set of F and D magnets 
form dose to orthogonal sets, in terms of their effect on the one-dimensional beam motion. 
A measure of this orthogonality is given by the ratio of the maximum to minimum beam 
size is the array. In the Arc lattice, this ratio is 2.8. The two sets are orthogonal for all 
practical purposes. 
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along the array . 

Defining u± = ux ± uy, we can rewrite (7) in a form similar to (6): 

u± + (1 ± 9' cos(v4> + tf>'))ti± = 0. (8) 

Next, we show that the perturbed motions, solutions of (6) and (7), are affected 
significantly only for two specific values of the frequency v of the modulations, 
namely: 

i / ~ 0 and v s * 2 , (9) 

corresponding respectively to the systematic component in the errors and to the 
second harmonic of the betatron frequency. 

II.5 First Order Solution 

11.5.1 Method of Variation of Constants 

Following Nayfeh, and along with the method of variation of constants, we 

t The factor g' can be related to the amplitude of skew quadiupole modulations in the 
focusing and in the defocusmg magnets as follows: 

lbs = flh$j**D.t>, 

where ICD,F represent deviations to the focusing and defocusing magnet strengths in the 
regular coordinate system. The largest effect in the first (respectively second) of the two 
equations in (7) occurs in the defocusing (respectively focusing) magnet, since a, (respec­
tively u r ) is naturally the largest there. Therefore the term g' in the first (respectively sec­
ond) equation in (7) is essentially g'D (respectively g'F). Since in a FODO array, /9£ r = 0^t, 
we have g'D = g'F. For this reason, we use the same g* in the two equations in (7). 

Furthermore, it has been shown (through computer simulation) that modulations where 
the skew quadrupole components have opposite signs in the focusing and in ;he defocusing 
lenses produce effects which cancel over one betatron period, except in the case of the 
systematic component, corresponding to f ~ 0. For this reason, we use the same phase ^' 
in the two equations in (7), In the case v a 0, skew quadrupole focusing perturbations with 
opposite sign in the focusing and in the defocusing magnets correspond to a rotation of the 
coordinate system. It can be shown that such a rotation can be expressed in the normalized 
variables by simply exchanging the sign of g' in one of the two equations in <7)9, In this 
case, the two equations cannot be decoupled simply as in (6) 
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solve (6) and (7) by searching for solutions of the form10: 

u = a cos(^+ ¥>)). (10) 

where a and ip are functions of 4> to be determined. In (10) and in the rest of this 
paragraph, u represents u I i l l i + i _ . By taking the first derivative of (10), letting a 
and (j> vary, and by requiring that the result be what it would be if a and <f> were 
constants (i.e. it = — asin(̂ > + tp)), an equation relating the first order derivatives 
a and <fi is found. By calculating the second derivative of u, and after inserting 
it in an equation of the form of (6), we find a second equation relating a and <p. 
Thus we have replaced a second order differential equation in ti by two coupled 
first order differential equations in a and in <p. By solving this coupled system, we 
find that a and î  satisfy: 

— = ld$ sin[(2 - v)(j> + 2<p - V] a 4 
+ sin[(2 + v)j + 2? + if,], (11a) 

difi= |<fy(2cos[i/# + V) 
+ cos[(2-i/)0+2y>-0] 
+ cos[(2+ *-)* + 2 ? + ifl), (116) 

where V = V>T'* and g = gT,>. 
11.5.2 Averaging Method 

To find the behavior of the solutions in the limit of small g<f>, we solve (11) 
to first order. To do so, we first note the fact that for values of u jt 0,2, the 
solutions of (11) are rapidly oscillating functions with amplitudes of order g. We 
will neglect such contributions, as they are bounded by g. Thus for v j* 0,2, the 
motion, solution of (6) and (7), is perturbed negligibly. 

The amplitudes of the functions a and f> can only become significant if the 
functions on the right hand side of (11) are slowly varying functions. This occurs 
for * ~ 0,2. 

Prom now on, we will write go for the magnitude of the systematic focusing 
deviations, corresponding t o c s O , and £2 and ifa for the amplitude and phase of 
focusing modulations at twice the betatron frequency, corresponding to v ~ 2. 
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We first solve for v ~ 0. The solution is obtained by integration of (lib). This 
gives: 

u~c 0 cos[( l + ^ ) ^ + vo], (12) 

where flo and tpo are integration constants. 

Next we solve for v a 2, integrating this time both (11a) and (lib). From 
(lib), and including only the slowly varying term cos[(2 - v)4 + 2<p - fa], we 
note that dip < \g2d$. The total variation of <fi over the interval of integration is 
thus bounded by \gi4>. Thus the right hand sides of (11) stay about constant if 
\g2<f> <• *• We can in this case treat the slowly varying terms on the right hand 
side of (11) as constants in the integration. We obtain in this case: 

« St fl0e** cos|(l + K)4> + Vo]- (13) 

where: 
fA=?sin(2v>o-^2), 

\ K = ^ C O S ( 2 S P O - ^ 2 ) . 

II.6 Physical Description of Perturbed Motion 

JJ.<5.; One-Dimension&l Oscillations 

From (14), (15) and (16), we characterize the effect of regular focusing modula­
tions on the one-dimensional motion, in the limit of small perturbation, as follows: 
Case v~G: 

The fundamental frequency of the oscillations is shifted by systematic regular 
focusing deviations, corresponding to v = 0. This shift is independent of the initial 
phase of the betatron oscillation. 
Case i/ ~ 2: 

The amplitude and frequency of the oscillations are perturbed resonantly by 
regular focusing modulations at the second harmonic of the fundamental betatron 
frequency, corresponding to v = 2. Depending on the phase fa of this modulation 
and on the initial phase ipo of the betatron oscillation, the amplitude will initially 
decay or grow exponentially with a growth rate \, and the frequency will increase 
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or decrease linearly by the slippage parameter it. These two effects are out of 
phase: maximum frequency-slippage coincides with a constant amplitude, and zero 
frequency-slippage with a maximally perturbed amplitude . 

We will describe the consequences for the phase-space and for the beam enve­
lope in the next section. 
II.6.2 Two-Dimensional Oscillations 

Case v sn 0: (Systematic Skew Component) 

We can use (12) and u± = u z ± u„ to calculate the effects from systematic 
skew perturbation. We obtain: 

ux ^ [ui(0)cos^ + tin(0) sin ̂ ] cos So^ 
+ [—tiB(0)sin^ + tip(0)cos^Jsinpo^ (15a) 

and: 

u„ 2; [—Ux(O)sin0-|- iix(0) cos <)>) sin gl4> 
+ [uy(0) cos 4- + «v(0) sin <j>] cos g%$ (156) 

The results in (15a) and (15b) show that in the case of a systematic skew 
focusing perturbation (y ~ 0), oscillations originating in one plane are gradually 
transferred into the other plane, and that the sum of squares of the oscillation 
amplitudes in both planes remains constant. Thus there is beating between the 
two planes. The period of this beating is determined by g. This is true for both 
the positions u c , y and the angles u S | V , as can be seen from differentiating (15). 
Therefore the beating phenomenon which arises is between the two full phase-
spaces in both planes. 
Case v a 0: (Coordinate Rotation) 

The solutions are in this case simple harmonic oscillators, in the rotated coor­
dinate system. We will not write these solutions explicitly. 
Case v ~ 2: 

* The separation between the two initial phases <PQ, corresponding to maximum growth or 
decay, and to maximum phase-slippage, depends on the magnitude of the perturbation. It 
is strictly 45 deg only in the limit of small perturbation. We will describe the behavior for 
larger perturbation in the aext section. 
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From (8) and (13), the form of the solutions are: 

«± = 4^^ cos[(l ± «±^ + <pf]. (15) 

For initial conditions contained in one of two uz,ux or u v , ti v planes, corresponding 
to the propagation of betatron oscillations launched from one plane at a time (for 
example: uy(0) = u„(0) = 0), one can show that the solutions can b : written as the 
sum of two functions, one exponentially growing and one exponentially decaying: 

uXlV = ^ [ e A * cos[(l + x)* + po] ± e"A* ew[0 - K)* + <#,)]. (17) 

In this case, the oscillations will grow exponentially in both planes for arbitrary 
initial phase. 

It is however possible to find initial conditions such that both u+ and ti_ 
decay simultaneously initially. This has been shown independently by solving (8) 
numerically9. One example of such initial conditions is u x(0) = u z(0) = u„(0) = 
6,(0). 

In the next section, we will analyse the consequences from this cross-plane 
coupling on the areas of the beam phase-space, projected in each plane (projected 
emittances), and for the beam envelopes, in each of the above cases. 

II.7 Physical Description of Perturbed Phase-Space 

II. 7.1 Matched Phase-Space 

In the case of & perfect lattice and when the beam phase-apace is matched at 
the input, it remains matched as it is imaged through the array by the optics. 

The equation of the envelope of the matched phase-space is easily constructed 
from the form of the betatron oscillation in (4). One obtains an ellipse: 

7 z 2 + 2azi + 0z2 = a 2 , (18a) 

where z = j j , 7 =s -^4-, and m = ^ . The quantity in (18a) is called the Courant-
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Snyder invariant7. It can also be written in matrix form: 

( z . i y r - ^ ^ ^ w h e r e T = / J and det(T) = 1. (186) 

The equations in (18) also define the closed phase-space trajectory of a particle 
with initial condition a. The parameters a, ft and 7 are called Twiss parameters. 
They characterize the lattice. They also describe the beam phase-space if and 
when it is matched to the lattice. In this case, the beam-matrix11 o = tl. The 
area ira2 of the ellipse is identified as «r times the emittance e. 

In the normalized coordinates v = -4™ and <* = $$- \/0{i — fyz) defined in 
II.3, the matched phase-space is a circle of radius e. This can be verified by direct 
substitution in (18a). 
II. 7.2 Perturbed One-Dimensional Phase-Space 

Case yaO; 

In II.6.1, we described the effect of a systematic regular focusing deviation, with 
magnitude $J, corresponding to v ~ 0. The motion is in this case simply frequency-
shifted, and the solutions in (12) will satisfy the equation of the matched circle 
defined in II.7.1- The beam phase-space remains in this case matched*. 
Case v ~ 2: 

When the lattice is perturbed by focusing errors, this matched circle is distorted 
into an ellipse. We describe this condition of the beam phase-space by mismatch. 
We characterize this mismatch by the ratio M of the radius of the larger circle 
in which this ellipse is inscribed to that of the initial circle corresponding to the 
matched case, and by the angle 4>a between its major axis and the abscissa (see 
Fig. 1): M and <t>o are the amplitude and the phase of the mismatch. 

* This is strictly speaking only approximately true, as the Twits parameter* is (16b), which 
characterize the FODO array, depend on the phaae advance per cell. For example, it can 
be shown that for a thin lens FODO array13: 

lAafatofl) 
•iap 

where 0± are the maximum and minimum values, occurring in each plane in the lenses which 
are focusing, and respectively deforcing, in that plane. For small systematic perturbations 
of up to one percent, the variation of the Twiss parameters is of the order of one percent. 
We neglect such variations. 
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In II.6.1, we described the effect of a regular focusing modulation at twice 
the betatron frequency, with magnitude yj and with phase 0J, corresponding to 
v 2* 2. We found that the maximum oscillation amplitude which can be reached 
is: umax = e l K 

The phase 4o of the mismatch depends on how far along the array the mismatch 
has propagated, i.e. on the accumulated phase advance <j>, and on the phase i>\ of 
the regular focusing modulation. We can thus write: 

At M + tf-2. (19) 

Since <h> can take an arbitrary value, we can identify: 

M=um„=e**. (20) 

The equation of the distorted ellipse is calculated in terms of M and 4>o, first 
in the coordinates rotated by <ba in which it is erect, and then transforming back 
into the unrotated coordinates. This gives: 

u2(M2 cos2 fa + -jp sin2 fa) + u 2 (M 2 sin2 ô + T L COS2 fa) 

+ 2uti cos fa sin fa(M2 - —) = e. (21) 

The corresponding beam-matrix, written in the normalized system, in terms of the 
amplitude g\ and of the phase i/>J, is: 

where: 

' En = cosh(^) + s inh(^) cos(2^ + tfj) 
E u = - s inh(^) sin(2# + ty) (23) 
£ 2 2 = coshff^) - sinh(f <j>) cos(2^ + VJ), 
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and where e is the emittance. Transforming back into real coordinates gives: 

' oil = #En, 
< 0̂ 12 = E12 - tt£n, (24) 

2̂2 ~ £(£22 + o'^ll ~ 2 Q S I 2 ) . 

For the ideal lattice, characterized by g\ = 0, (24) reduces to (18b) as expected. 

In summary, when the lattice is perturbed by a regular focusing modulation 
at twice the betatron frequency, with amplitude^ a n ^ phase \l>£, the phase-space 
gradually becomes elongated into an ellipse with a major axis which grows expo­
nentially with the accumulated phase advance, at a growth rate fy. This ellipse 
rotates in phase-space at the betatron frequency. The initial value of the phase of 
the mismatch is determined by the phase ^>\. 

From (23), we see that the beam size beats between minimum and maximum 
values, of e~T* and e>* respectively. The beating occurs with a period of ir, as 
illustrated in Fig. 1. Equation (23) (and graphically Fig. 1) also allows us to study 
the behavior of the solutions, both for large and for small perturbation. For small 
perturbation (gty < 1), the first equation in (23) reduces to En ~ 1 + ^ cos(2tf>+ 
V>J). In this case, the separation in the phase 4> between maximally growing or 
decaying solutions, and solutions with an unperturbed amplitude (corresponding to 
M = 1), is exactly 45 deg. This is in agreement with the results from the first order 
calculations described in 11.6.1. For larger j j^ , the initial phases corresponding 
to an unperturbed amplitude move closer and closer to the phase corresponding 
to a maximally decaying solution. For infinite g^, all solutions become eventually 
exponentially growing, except for the "single" one for which, strictly, cos(2^+^5) = 

—1. This has been shown independently by solving (6) numerically9. 
II. 7.3 Coupled Two-Dimensional Phase-Space 

In II.6.2, we gave expressions describing the cross-coupling of betatron oscilla­
tions which occurs from systematic skew focusing errors, corresponding to v t± 0, 
and from skew focusing modulations at twice the betatron frequency, correspond­
ing to v ~t 2. We use these expressions to infer the evolution of the areas of 
the phase-space projections in each plane. The correctness of all forms (except 
(28)) given in this section has been verified through simulation. Results from these 
simulations are presented in section IV. 

We assume an input phase-space where the horizontal and vertical planes are 
not coupled, but where the emittances are not necessarily equal. Let r = e„/ez 
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be the ratio of the initial vertical to the initial horizontal emittances (we assume 
r < 1), and let us normalize the results to the initial horizontal emittanc , by 
putting et(4> = 0) = 1. 
Case v ^ 0: (Systematic Skew Component) 

In this case, it is possible to calculate, from (15), the projected emittances, as 
the beam is imaged through the array. We obtain: 

{ «*(*) = }[(! + ') + ( l - r ) cos j£ 

H(*) = IK*+»")-(1-')«»JM. 
(25) 

Putting r = 0 in (25) shows explicitly the beating phenor • whicn we 
described in II.6.2. One obtains in this case: 

U(tf) = cosW) 
\ tyffl = sin2(fl#) 

The stun of the two emittances is in this case constant, and transverse oscillation 
energy is transferred back and forth between one plane and the other. This condi­
tion describes adequately the imaging of betatron oscillations launched from one 
plane at a time. 

In the special case of equal emittances, corresponding to r = 1, we have from 
(25) that: 

«*(*) = «*W = 1. (27) 
The motion remains in this case unperturbed by systematic skew focusing devia­
tions. 

For an arbitrary value of r, the two emittances will beat between minimum and 
maximum values of r and 1. As can be seen, the variations of the two emittances 
are out of pht.se. 
Case i/gQ: (Coordinate Rotation) 

In this case, the projected emittances are calculated by transforming a four-
dimensional uncoupled beam-matrix through a rotation of the coordinate system. 
We obtain: 

U ( * ) = coS

a(2ffS) + rsin2(2S8) 
\« , (*) = sm 2(2^) + rcos2(25g). 

The same features apply as for the systematic skew component: for r = 0, the 
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sum of the projected emittances is preserved, and for r = 1, the phase-space is not 
perturbed. 
Case i/a2: 

In this case, we write, by analogy with (25): 

f c f » = cosh2 &$ + r 2 sinh2 $ * 
\ ev(*) = sinh2 &<fi + r 2 cosh2 $<t>-

In the special case of zero initial emittance in the vertical plane (r = 0), we 
obtain: 

U « = cosh2(^) 

in accordance with (17), from which all solutions grow exponentially if the initial 
conditions are restricted to one plane. 

The difference between the two emittance projections is in this case constant, 
and the projected emittances grow exponentially in both planes. This condition 
describes adequately the imaging of betatron oscillations launched from one plan<= 
at a time 

In the specia1. case of equal initial emittances in each plane (r=l), we obtain: 

Mtf) = e»M = cosh &4>. (31) 

The two projected emittances remain in this case equal, and grow exponentially*. 

II.8 Summary Description - Number of Independent Perturbations 

Thus we find that, in total, the transverse motion can be perturbed by ten 
independent parameters: 

* Although the envelope grows, there can exist, as we found in (16), individual solutions 
which ate decaying. 
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1. The one-dimensional horizontal motion can be perturbed in three ways, 
namely through a systematic strength deviation in the focusing quadrupoles, 
and through the amplitude and phase of a periodic focusing deviation at 
twice the betatron frequency in the focusing quadrupoles. 

2. The one-dimensional vertical motion can be perturbed in three ways, namely 
through a systematic strength deviation in the defocusing quadrupoles, and 
through the amplitude and phase of a periodic focusing deviation at twice 
the betatron frequency in the defocusing quadrupoles. 

3. The two-dimensional coupled motion can be perturbed in four ways, namely 
through a systematic skew quadrupole component, through the amplitude 
and phase of a periodic skew focusing deviation at twice the betatron fre­
quency , and through an overall coordinate rotation. 

These ten perturbations correspond to the number of free parameters in a fully 
geneial two-dimensional transfer matrix13. 

To the extent that the errors are small and that only one perturbation is 
applied at a time, it is possible to simply parametrize the perturbed motion as a 
function of these ten parameters, as was shown above. In general, however, a full 
parametrization will be complicated as the mixing between the perturbations, not 
considered here, will yield higher order dependances. 

In the case of the four-dimensional beam phase-space, it would appear from 
our calculations that it only can be perturbed in seven independent ways, since 
the two systematic strength deviations, in the focusing and in the defocusing mag­
nets, do not distort the phase-space, and since the coupling effect from the overall 
coordinate rotation can be reproduced through the systematic skew quadrupole 
component, 

This is however in contradiction with the counting of the number of invari­
ants imposed by Hamiltonian Mechanics. As can be shown, two invariants exist 
for hamiltonian systems with two degrees of freedom: the volume of the four-
dimensional phase-space and the sum of the projections onto each coordinate 
plane of any two-dimensional surface in the four-dimensional phase-space14. Prom 
this counting, one expects eight degrees of freedom for the fully coupled four-
dimensional phase-space. We have not resolved this discrepancy. 

In the special case of equal initial emittances in both planes (r = 1), our cal-

t With in both cases the same sign skew quadrupole component in the focusing and in the 
defocusing quadrupoles. 
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dilations show that the fully coupled four-dimensional phase-space has six degrees 
of freedom. This is in agreement with an independent proof15, and has also been 
verified in extensive computer simulations of optical corrections in the Final Focus 
System". 

II.9 Case of the SLC Arcs 

Not all perturbations are equally important in the case of the SLC Arcs. 

Effects from the systematic coordinate rotation can in the SLC be ignored for 
all practical purposes, because the magnitude of the rotation angle can never be 
very large: for skew focusing errors of one percent, the rotation angle is only 1.15 
degree. 

In addition, effects on the phase-space from both the systematic skew quadrupole 
perturbation and the overall coordinate rotation are vanishing if the beam has, as 
is nominally specified, equal emittances in both planes. 

In the case of the systematic skew quadrupole perturbation, there can however 
be significant effects on the betatron oscillations and on the transfer matrix. For 
beams with unequal emittances, the beats which are produced in each of the two 
emittances out of phase and are bounded by the larger emittance (see equation 
(25)). In the case of the SLC, where beams with emittance ratios of about one to 
three are presently measured at the end of the Linac, this is not a large effect . 

Effects from systematic focusing errors, over the whole length of the Arc, in the 
focusing and in the defocusing quadrupoles, would be small in entirely fiat Arcs, 
except for mixing effects with the other perturbations. In the original design, the 
Arcs were rolled around their axis to enable following the terrain of the SLAC 
site, and this generated a strong sensitivity to systematic focusing errors. With 
the adiabatic roll transition which was introduced to remedy this problem, such 
systematic errors will produce coupling effects similar to the ones produced by a 
systematic skew focusing perturbation17. In the case of close to equal emittances, 
the effects on the phase-space from this are small, as was described above, and the 
modified Arcs have sensitivities which are similar to those of a flat Arc. 

* This argument ignores mixing effects between several perturbations. It has in particular 
been shown that the upper bound described above can be significantly larger if the sys­
tematic skew deviation is mixed with a systematic phase difference between the motions in 
both planes and a one-dimensional mismatch from regular quadrupole errors13. 
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11.10 Bandwidth Limits 

The effect from the focusing modulation at the second harmonic of the be­
tatron frequency, corresponding to u = 2, is weakened if a systematic focusing 
deviation, corresponding to v = 0, is simultaneously present, from either the er­
rors in the array, or applied externally. This results from the gradual phase-shift 
which accumulates in this case between the resonantly growing optical mismatch 
and the induced focusing modulation (see Fig. 2). The mixing between the two 
perturbations will cause the resonant growth of the oscillations to reach a maxi­
mum and to then decay, in a long-range beating effect. The nominal phase-space 
will be fully restored when the phase-shift between the resonantly growing optical 
mismatch and the induced focusing modulation reaches jr. 

We will not derive the explicit form of the perturbed solution. We can however 
evaluate, at any given point along the array, the reduction in the growth of the 
oscillation amplitudes, by considering the modulation in frequency domain. The 
harmonic strength - or spectrum - of the focusing perturbation introduced along the 
array is given by the modulus of the Fourier transform of the perturbation. Here, 
we consider periodic perturbations • or modulations - which are applied aloag an 
array with finite length, corresponding to a total phase shift of $max = nji, where p. 
is the phase-shift per cell, and n ir. the number of cells in the array. The harmonic 
strength is therefore given by: 

where 6{v) is the Dirac distribution, ® symbolizes the convolution product, and 
dnn(4>) is a function of <j> which is equal to unity between 0 and n/t, and zero 
everywhere else . 

This calculation is illustrated in Fig. 3. The range Ac over which the harmonic 
strength is still reasonably large is given by about half the separation between the 
zeros of the function in (32), or Av = ±l/2np cycles per radians. This corresponds 
to a maximum phase-shift of f, accumulated between the growing mismatch and 

* This function is usually called the "door" function. 

gS(u - Vpert) I 
sin[n^Tf) 

npxv 

n/lic(v - Vpert) 
(32) 
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the focusing modulation, along the total length of the array, or to a maximum 
systematic phase-error per cell of: 

A^ f f l a l = ^ . (33) 

Equation (33) gives the requirement on systematic errors in the array, as a 
function of its length, to maintain strong effects from the induced focusing mod­
ulation. The system of harmonic focusing corrections installed in the SLC Arcs 
extends over seven achromats, or n = 70 cells. The requirement on systematic 
phase-errors is in this case Aftmaz = ±1.3° per cell. 
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III. H A R M O N I C PERTURBATIONS IN T H E SLC ARCS 

III . l Definitions 

A systematic perturbation in the focusing or in the defocusing magnets means 
that each focusing or defocusing magnet is perturbed the same way. 

The cell phase-shift in the SLC Arc lattice is 108° or ^f. Thus a perturbation 
at twice the betatron frequency is a perturbation whose strength is modulated by 
exp(tTpfr) along the cells in the array, where k is the cell number. 

A total of nine* independent harmonic perturbations can be generated in the 
SLC Arc lattice. We will represent the strength perturbations in the focusing and 
defocusing magnets respectively by F and D. We have: 

1. Cosine-like in-plane (regular) horizontal second harmonic component: 

F(k) = glcOS(^k) 

2. Sine-like in-plane (regular) horizontal second harmonic component: 

F(*) = ^sin(yfc) 

3. Cosine-like in-plane (regular) vertical second harmonic component: 

rW 
Z ) ( A ) = 9 J c o s ( H l A ) 

o 

* Only nine adjustments can be generated, out of the ten which are needed to fully control the 
optical transfer. The missing one would be a regular focusing perturbation, as in 7. below, 
but with the same sign in the focusing and in the defocusing magnets. Such a perturbation 
can be generated electrically through the harmonic correction system described in this note, 
or through the already installed backleg windings, but has no optical effects because of the 
achromaticity of the lattice. The only way in which it can be generated in the SLC lattice 
is physically moving the focusing magnets closer or farther horizontally bom the defocusing 
magneto. 
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4. Sine-like in-plane (regular) vertical second harmonic component: 

D(*)- f l Js in(^*) 

5. Cosine-like cross-plane (skew) second harmonic component: 

F(k) = D(k)=gl cos & ) o 

6. Sine-like cross-plane (skew) second harmonic component: 

F(*) = £(*) = <?! sir,(~*) 
o 

7. Systematic regular focusing strength difference between focusing and defo­
cusing magnets (FD-Imbalance): 

F{k) = -D(k)=g*0 

8. Systematic skew focusing perturbation in the focusing and defocusing mag­
nets: 

F(k) = D(k)=Sl 

9. Overall coordinate rotation: 

F(*) = - D ( * ) = ? J 

III.2 Strength Perturbations in the Alternating Gradient Magnets 

111.2.1 B&ckleg Wiring Modification 
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The combined function magnets in the Arc lattice are equipped with backleg 
windings on each coil. These backleg windings have 29 turns and are connected in 
series along one achromat. Their purpose is to provide a step-wise adaptation of 
the lattice to the energy of the beam, which loses about 1 Gev through the emission 
of synchrotron radiation in the guide-field. The strengths of each magnet in the 7 
last achromats are perturbed individually by separately connecting and powering 
4 out of 29 backleg winding turns on the upper and lower coils. The remaining 24 
turns* are connected as for the original use of the backleg windings. A schematic 
of the modified wiring arrangement is shown in Fig. 4. 
1112.2 Strength Calculation 

The separate four-turn-windings axe inter-connected to produce periodic and 
systematic perturbations along the 7 last achromats in a way which we will describe 
below. Each circuit is presently powered with bipolar HCOR12 supplies limited to 
±5 amperes by the voltage requirement. With four turnB in each circuit and with 
the main Arc magnets powered with about 4000 amperes, the maximum strength 
perturbation of each magnet is of the order of ±0.005. 

More precisely, the magnitudes of the nominal and incremental dipole and 
quadrupole components' which are generated on the central trajectory have been 
calculated with POISSON, for Arc-type magnet, nominally powered with 3766 am­
peres in the main coil, and trimmed with 20 ampere-turns in the backleg windings5. 

When the top and bottom windings are perturbed with the same polarity, 
mid-plane symmetry is preserved and the strengths of the horizontally deflecting 
dipole field (vertical magnetic field), and of the regular quadrupole component in 
the combined function magnets are perturbed. 

When the top and bottom windings are perturbed with opposite polarity, a 
vertically deflecting dipole field (horizontal magnetic field), and a skew quadrupole 
component are generated. The magnitudes of the components are listed below: 

1. Nominally powered magnet: horizontal dipole = 5701.60 Gauss, regular 
quadrupole = 715.64 Gauss/mm. 

2. Trimmed magnet with same polarity for top and bottom coils: incremen-

* The bottom windings on each coil have in some magnets been observed to droop and to 
cause partial shorts. As a preventive measure, the lut turn was cut off and disconnected 
on each of the modified coils, 

t We neglect the perturbation to the aextupole component, which is very •mall (leas that 
0.005 of the nominal value) and for which the tolerance for sizeable effects on the beam is 
looee (a few percent). 
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tal horizontal dipole = 27.87 Gauss, incremental regular quadrupole = 3.49 
Gauss/mm. The magnitudes of the perturbations are close to equal in the 
focusing and defocusing magnets, and correspond to a 0.00488 of the nominal 
values. 

3. Trimmed focusing magnet with opposite polarity for top and bottom coils: 
incremental vertical dipole = 14.05 Gauss, incremental skew quadrupole = 
1.59 Gauss/mm. This corresponds to 0.0022 of the nominal values. 

4. Trimmed defocusing magnet with opposite polarity for top and bottom coils*, 
incremental vertical dipole = 16.58 Gauss, incremental skew quadrupole = 
2.15 Gauss/mm. This corresponds to 0.0030 of the nominal values. 

It can be noted that the skew components have about half the strength of the 
regular components. In addition, the magnitudes of the effects from trimming the 
focusing and defocusing magnets with opposite polarity for top and bottom coils 
are slightly assymetric. This may arise from an assymetry in the pole shape which 
exists between the two magnets. 
III.2.3 Polarities of Components 

We use the TRANSPORT polarity convention11. We have determined that: 

1. A positive trim current in both top and bottom coils, to generate regu­
lar quadrupole components, will strengthen both focusing and defocusing 
magnets. This means that both the total bending angle and quadrupole 
component become stronger. 

2. A positive trim current in the top coil and a negative trim current in the 
bottom coil, to generate skew quadrupole components, will generate a neg­
ative vertical kick in the defocusing magnets, a positive kick in the focusing 
magnets, and a negative skew quadrupole in both focusing and defocusing 
magnets. 

HI.3 Magnet Interconnections - Wiring and Layout 

UI.3.1 Intermagnet Wiring 

Each trim winding, top or bottom, is connected in series with equivalent wind­
ings, top or bottom, exactly five cells (corresponding to 3x betatron phase-advance) 
(or ten magnets) apart, along the 7 last acbromats (70 cells or 140 magnets) in the 
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Arcs. Since focusing and defocusing magnets are wired separately, there are thus 
20 independent circuits. Tbe wiring arrangement is illustrated in Fig. 5. 
III.3.2 Nomenclature 

The database formal names for the 20 supplies are listed below. 

SMPS,CA13,1703=Top coil of defocusing magnet. 

5MPS,CA13,1704=Bottom coil of defocusiog magnet. 

SMPS,CA13,1708=Top coil of focusing magnet. 

SMPS,CA13,1709=Bottom coil of focusing magnet. 

SMPS.CA12 ' ~ : 3 - T ^ mil u : Jcfuviising ju-buct. 

SMPS,CA13,1714=Bottom coil of defocusing magnet. 

SMPSsCAl3,1718=Top coil of focusing magnet. 

SMPS,CA13,1719=Bottom coil of focusing magnet. 

SMPS,CA13,1723=Top coil of defocusing magnet. 

SMPS,CA13,1724=Bottom coil of defocusing magnet. 

SMPS,CAl3,1728=Top coil of focusing magnet. 

SMPS,CA13,1729=Bottom coil of focusing magnet. 

SMPS,CA13,1733=Top coil of defocusing magnet. 

SMPS,CA13,1734=Bottom coil of defocusing magnet. 

SMPS,CA13,1738=Top coil of focusing magnet. 

SMPS,CA13,1739=Bottom coil of focusing magnet. 

SMPS,CA13,1743=Top coil of defocusing magnet. 

SMPS,CA13,1744=Bottom coil of defocusing magnet. 

SMPS,CAl3,1748=Top coil of focusing magnet. 

SMPS,CA13,1749=Bottom coil of focusing magnet. 

The last digit of the unit number (3,4,8,9) refers to top or bottom windings 
and to focusing and defocusing magnets. The next to last digit (0,1,2,3,4) refers 
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to the cell number of the first coil in the each string. The first two digits (17) refer 
to the achromat number of the first coil on each string. 
III.3.3 Multiknob Definitions 

The nine harmonic perturbations defined in III.l are produced by linearly 
combining the 20 above supplies according to the coefficients given in the Bame 
paragraph, using the software multiknob facility18. The table below gives the 
mapping relating the 20 supplies to the 9 knobs: 

SINXX cosxx SINYY COSYY SINXY COSXY SYSKEW SYSROT FDIMB 

1703 +0.00 +0.00 -0.59 -0.81 -0.59 -0.81 +1.00 +1.00 +1,00 

1704 +0.00 +0.00 -0.59 -0.81 +0.59 +0,81 -1.00 -1.00 +3.00 

1708 -0.59 -0.81 +0.00 +0.00 -0.79 -1.09 +1.35 -1.35 -1.00 

1709 •0.59 -0.81 +0.00 +0.00 +0.79 +1,09 -1.35 +1.35 -1.00 

1713 +0.00 +0.00 +0.95 +0.31 +0.95 +0.31 +1.00 +1.00 +1.00 

1714 +0.00 +0.00 +0.95 +0.31 -0.95 -0.31 -1.00 -1.00 +1.00 

1718 +0.95 +0.31 +0.00 +0.00 +1.28 +0.42 +1.35 -1.35 -1.00 

1719 +0.95 +0.31 +0.00 +0.00 -1.28 -0.42 -1.35 +1.35 -1.00 

1723 +0.00 +0.00 -0.95 +0.31 -0.95 +0.31 +1.00 +1.00 +1.00 

1724 +0.00 +0.00 -0.95 +0.31 +0.95 -0.31 -1.00 -1.00 +1.00 

1728 -0.95 +0.31 +0.00 +0.00 -1.28 +0.42 +1.35 -1.35 -1.00 

1729 -0.95 +0.31 +0.00 +0.00 +1.28 -0.42 -1.35 +1.35 -1.00 

1733 +0,00 +0.00 +0.59 •0.81 +0.59 -0.81 +1.00 +1.00 +1.00 

1734 +0.00 +0.00 +059 -0.81 -0.59 +0.81 -1.00 -1.00 +1.00 

1738 +0.59 -0.81 +0.00 +0.00 +0.79 -1.09 +1.35 -1.35 -1.00 

1739 +0.59 -0.81 +0.00 +0.00 -0.79 +1.09 -1.35 +1.35 -1.00 

1743 +0.00 +0.00 +0.00 +1.00 +0.00 +1.00 +1.00 +1.00 +1.00 

1744 +0.00 +0.00 +0.00 +1.00 +0.00 -1.00 -1.00 -1.00 +1.00 

1748 +0.00 +1.00 +0.00 +0.00 +0.00 +1.35 +1.35 -1.35 -1.00 

1749 +0.00 +1.00 +0.00 +0.00 +0.00 -1.35 -1.35 +1.35 -1.00 
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Only seven of these nine knobs have been connected and used. The two missing 
ones are the second harmonic skew modulations: SINXY and COSXY. It can be 
noted that for the skew multiknobs, the focusing magnets have coefficients which 
are scaled by a factor of 1,35 with respect to those of the defocusing magnets, in 
order to account for the assymetry between the skew components which was noted 
in III.2.2 
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IV. SIMULATION OF EFFECTS 

rV.l Introduction to Simulation 

We have used ARCSIMl19 and TRANSPORT11 to simulate the effects from 
focusing perturbations at zero and twice the betatron frequency. 

ARCS1M1 is a fast simulation which treats small perturbations of the Arc 
magnets through a linear expansion around the design optical transfer matrix. 
The overall perturbed optical transfer is then reconstructed by multiplying each 
individually perturbed Arc matrix. 

ARCSIM1 is ideally suited to study the physics of the harmonic focusing per­
turbations. However, in its current version, ARCSIM1 does not include steering 
effects from the combined function magnets. Such steering effects do not modify 
the physics but do modify the magnitude of the effects. In effect, through the 
sextupole component in the combined function magnets, horizontal deflections will 
cause regular quadrupole perturbations and vertical deflections will cause skew 
quadrupole perturbations. Because the strength perturbations are at zero or twice 
the betatron frequency, the trajectory excursions from these deflections, and the 
induced optica! effects, will also be at zero or twice the betatron frequency. The 
optical effects will thus add to or subtract from the optical effect from the pertur­
bations of the quadrupole components themselves. In addition, the perturbations 
will also cause net trajectory deviations at the end. As will be seen, the trajec­
tory deviations are large enough to require a correction. To correctly estimate the 
magnitude of the combined effects, we have used a perturbed TRANSPORT deck 
of the Arcs, in second order and including steering effects. 

We first show the maximum effects of the first order optical distortions from 
the nine multiknobs defined above, in a perfect planar SLC Arc lattice. We do 
not consider second order optical distortions which arise from deviations in the 
achromaticity of the optical transfer caused by the first order distortions. Such 
effects have not been calculated in detail, but are estimated to be small. 

Effects from rolls, which are present in the stretch of Arc lattice where the 
harmonic correction is introduced, will result in not fully orthogonal controls. The 

* ID theory, trajectory deviations would be resonant if tbe deflections were at the betatron 
frequency, and not at zero or twice the betatron frequency. In reality, because of the phase-
slippage induced by the second harmonic (see 11.6.1), the steering effects will grow slightly 
as the cancellations of deflections n apart no longer occur perfectly. 
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magnitude of the effects is however not strongly affected, since the component of 
the perturbed phase-space which is coupled into the other plane across each roll is 
not driven in that plane. In addition the component of the perturbed phase-space 
which is coupled into the other plane is not very large. To illustrate this point, we 
show the magnitude of one of the optical distortions in a lattice with the actual 
rolls installed in the present North Arc. 

The plots shown are made with ARCSIM1, but the strengths of the knobs have 
been adjusted so that the maximum effect at the end of the Beven achromat long 
stretch corresponds to the magnitude calculated with TRANSPORT, including tbe 
steering effects (this fudging exercise has however not been done for the phasing 
of the knobs). 

We then show one simulated example of empirically correcting a lattice per­
turbed by errors with the harmonic correctors denned above. In the case of a 
systematic regular focusing error, we also illustrate the bandwidth limit discussed 
in 11.10. 

TV.2 Simulated Effects of Harmonic Correctors 

TV.2.1 One-Dimensional Oscillations 
Case v ~ 0: FD-Imbalance 

A nominal horizontal oscillation is shown in Pig. 6a. The same oscillation, but 
with the focusing and defocusing magnets perturbed through systematic regular 
focusing errors of ±0.005 respectively is shown in Pig. 6b. As can be seen the 
amplitude of this oscillation is perturbed negligibly, but its frequency is shifted. It 
can be calculated that the corresponding shift, including optical effects from the 
displacement of the trajectory, is9: 

(AH , ,AJ I , ) s (±87deg,TH5deg). 

The trajectory displacement can also be calculated: it is 42pm9. Both agree well 
with simulated values. 

A plot of the unperturbed and perturbed horizontal beam envelopes is shown 
in Fig. 7a,b. As can be se< I, the beam envelopes are negligibly perturbed. 
Case v ~ 2: Regular Secot i Harmonic 

Two one-dimensional horizontal oscillations with the same initial amplitude, 
but with two different initial phases separated by 90cleg, and with the focusing 
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magnets perturbed through regular focusing periodic modulation at twice the be­
tatron frequency, with amplitude ±0.005, are shown in Fig. 8a,b. The two initial 
phases have been chosen to obtain a maximally growing and a maximally decaying 
oscillation. As can be seen, the predicted maximum growth is about a factor four. 
The beats generated in the horizontal and vertical beam envelopes are shown in 
Fig. 9a,b. As can be seen, the orthogonality of the focusing and defocusing mag-
nets which was noted in 11.4.1 is almost perfect (i.e. there is almost no effect on 
the vertical beam envelope). This orthogonality is however not fully preserved if 
rolls are present in the lattice. To illustrate this point, we show in 9c,d the beats 
produced in the horizontal and vertical beam envelopes, from the same perturba­
tion as in 9a,b applied to the North Arc with the present roll configuration. A 
reduction of the effect in the horizontal plane and some coupling into the vertical 
plane can be seen . 

Identical effects can be obtained for vertical oscillations with the defocusing 
magnets perturbed through regular focusing periodic modulation at the twice ihe 
betatron frequency. 

The displacement of the trajectory is nearly 300/im from these knobs. This is 
large and requires a correction at the very end in order to be able to launch into 
the Final Focus. 
TV.2.2 Two-Dimensional Oscillations 
Case v cz 0: Systematic Skew Component 

The coupling of an initially fully horizontal oscillation into the vertical plane, 
from the systematic skew knob set to its maximum of 5 amperes, is shown in Fig. 
10a,b. As can be seen the maximum effect is just under 50%, which is rather weak. 
The same coupling would be obtained for an initially fully vertical oscillation into 
the horizontal plane, and for any input phase of the oscillation. 

Plots of the corresponding beam envelopes are shown , for a nominal initial 
phase-space in the horizontal plane and for zero initial phase-space in the vertical 
plane (Fig. lla.b), and for a nominal equal initial phase-space in both planes 
(Fig. 12a,b). These two cases correspond to the beating effect described in II.7.2 
through (26) and (27) respectively. In the case of nominal initial phase-space in 

* A slightly smaller effect from these rolls would have perhaps been seen if the harmonic 
correction had been installed in a region where the major rolls are matched. Such a region 
could have been the region between the beginning of aehrom&t 14 and the end of aehromat 
20. 

f In order to make the effects more visible, we have calculated the perturbations of the 
envelopes for a systematic skew perturbation with three times the maximum knob strength. 
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both planes (Fig. 12a,b), the envelopes are not perturbed, as was found in (27). 

The displacement of the trajectory from setting this knob at its maximum of 
5 amperes is about 30/im. This is a small effect (partly because the knob is weak). 

Effects from the systematic coordinate rotation are very small and are not 
illustrated here. 
Case v ~ 2: Skew Second Harmonic 

The coupling of an initially fully horizontal oscillation into the vertical plane 
resulting from the skew second harmonic knob set to its maximum of 5 amperes 
is shown in Fig. 13a,b . As can be seen the maximum effect is quite small. The 
same coupling would be obtained for an initially fully vertical oscillation into the 
horizontal plane, and for any input phase of the oscillation. 

Plots of the corresponding beam envelopes are shown', for a nominal initial 
phase-space in the horizontal plane and zero initial phase-space in the vertical plane 
(Fig. Ha,b), and for a nominal initial phase-space in both planes (Fig. 15a,b). 
These two cases correspond to the exponentially growing cross-plane coupling ef­
fects which were described in 11.7,2 through (30) and (31) respectively. 

The displacement of the trajectory from setting this knob has not been calcu­
lated in detail but appears to be large enough to require a correction at the very 
end, to launch properly into the Final Focus System. 

IV.3 Systems with Errors 

IV.3.1 Bandwidth Limit from Systematic Error 

In Fig. 9.a, we showed the beat in the one-dimensional horizontal beam en­
velope caused by a regular second harmonic focusing perturbation. In Fig. 16, 
we show the same envelope, but now perturbed also by a systematic focusing per­
turbation corresponding to 3° per cell, or about twice the maximum systematic 
perturbation which can be caused by the FD-Imbalance. This corresponds to just 
over twice the maximum cell phase-shift which can be allowed for the harmonic 
knobs to work properly, as stated in 11,10 by (33), As can be seen, the growth 

* The two skew second harmonic knobs have not been tried experimentally. 
t In order to moke the effects more visible, we have calculated the perturbations of the 

envelopes for a skew second harmonic perturbation with five times the maximum knob 
strength. 
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in the beating envelope is in this case reversed half way through, and is nearly 
cancelled at the end. 
IV.3.2 Empirical Correction of Randomly Perturbed Lattice 

Fig. 17 shows the horizontal beam envelope imaged through the seven achro-
mat long stretch, perturbed by random regular focusing errors only, with strengths 
normally distributed with a standard deviation of 0.01. The particular "seed" 
shown in Fig. 17 was chosen as one which generates significant growth of about 
a factor two. With this magnitude error, such a large growth represents a rather 
improbable case . Fig. 18 shows a correction of the case presented in Fig. 17, by 
combining the sine-like and cosine-like regular focusing second harmonic correc­
tors. Correction is found empirically rather easily for such one-dimensional cases. 
In lattices fully perturbed with regular and skew focusing errors, the empirical 
method is in some cases difficult. 

• AB per IV.2.2, a factor two growth can be generated with a regular focusing modulation at 
twice the betatron frequency of amplitude 0.0025 (half the knob strength). For randomly 
distributed regular focusing errors with a standard deviation of 0.01, the one standard devi­
ation expectation value for the strength of the component at twice the betatron frequency 
is ^ = 0.0012, where n = 70 is the number of cells in the seven achromats. Thus a 0.0025 
strength would correspond to about two standard deviations of the strength distribution, 
or about 5% of the seeds. 
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V. LIMITATIONS AND PROSPECTS 

V. l Strength Limitations 

The strength of the controls provided in the installation described above is 
severely limited in the case of the cross-plane coupling correctors (the "skew knobs"). 
Stronger "systematic skew knobs" in particular would be important for future op­
eration with assymetric emittances, to fully cancel the coupling between the two 
emittances. They do however not appear to be essential for the present operation 
with close to equal emittances, a case for which they have no or little effect on the 
beam envelope (see II.7.3). 

In addition, in the presence of systematic regular focusing errors of more than 
one degree per cell, the strength of the correctors for one-dimensional mismatches 
are significantly weakened. More generally, the strengths of all the correctors are 
weakened by phase errors distributed in the stretch where the harmonic correction 
is installed. 

V.2 Guide-line for Upgrade 

The obvious upgrade would consist in raising the maximum current through 
the rewired backleg windings, from the present value of about 5 amperes, to twice 
or three times that. There may be an impediment to doing this from the limited 
elasticity in the copper wires composing the windings: after the controls have been 
turned on and off a large number of times, the repeated thermal contractions and 
dilatations may cause the windings to sag. An enhanced support mechanism would 
perhaps be required. The possibility of this sagging is presently being examined. 

Another possible upgrade would consist in repeating the installation in one or 
two new stretches upstream of the one described above. Because of the observed 
tendency of the bottom turn of the backleg windings to droop (see the footnote at 
the bottom of page 22), it may be desirable, as a preventive measure, to implement 
the wiring modification in the remaining 16 achromats. In this case, two new 
installations similar to the one in achromats 17-23 could be installed in achromats 
9-16 and in achromats 1-7. The existing supplies could in this case be kept, as knobs 
in adjoining stretches could be combined to enhance the effects. The drawback of 
this is evidently a much increased complexity, as one would then have to deal with 
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a theoretical* total of 27 knobs, with their relative phasing "and so on". 

In summary, if the possible sag in the wires from heating can be solved with 
a better clamping mechanism, or otherwise shown not to be a problem, and if it 
is not essential to implement the wiring modification as u preventive measure for 
the sagging of the last wire, our recommendation would be to upgrade the power 
supplies. 

V .3 Predictive and Precision Control 

The harmonic corrections are presently performed successfully as approximate 
and empirical adjustments to control the beam shape at particularly sensitive 
places at the entrance to the Final Focus, where significant backgrounds can be 
generated by optical mismatches, or to adjust the overall lattice of the Arcs to be 
close to nominal*. 

More work would be required to design fully predictable model-driven correc­
tions for precision control of phase-space parameters at the end of the Arcs. This 
may be doable by using empirically determined transfer matrices for the Arcs, to­
gether with a perturbation technique similar to the one described in IV. I 2 0 , Some 
attempts which were made in this direction have shown that this is not straight­
forward, and requires a detailed understanding of the propagation of measurement 
errors involved in the empirical matrix determination. More work in this direction 
may enable precision controlling the phase-space for future optical optimizations 
of the SLC Arcs. 

* In practice, the coordinate rotations do not matter, so "only" 24 knobs would be used. 
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FIGURE CAPTIONS 

(1) Mismatched one-dimensional phase-space. The beam-size beats between 
maxima and minima of M and 1/M respectively. 

(2) If a systematic regular focusing error is present, the focusing modulation 
being applied and the beat of the beam size become gradually out of phase. This 
weakens the effect of the harmonic corrector. 

(3) Harmonic strength associated to a focusing modulation over a finite length. 

(4) Wiring modification of backleg trim windings. Pour of the twenty-nine turns 
are connected to a separate circuit, via the upper right terminal. The twenty-five 
remuning turns are connected as for the original use of the backleg windings, via 
the top terminal, except for the bottom, which is removed from the circuit. 

(5) There are twenty independent circuits connecting the 280 top and bottom 
coils of the last seven achromats in the Arcs. In each circuit, top and bottom coils 
of magnets separated by five cells are connected in series. 

(6) Horizontal betatron oscillation in seven achromats of the SLC Arcs, with 
no errors (a), and with a 1% FD-lmbalance (b). 

(7) Horizontal beam size in seven achromats of the SLC Arcs, with no errors 
(a), and with a 1% FD-Imbalance (b). 

(8) Horizontal betatron oscillation in seven achromats of the SLC Arcs, with a 
cosine-like regular quadrupole modulation at twice the betatron frequency in the 
focusing magnets, corresponding to COSXX=5 Amperes, and for two initial phases 
amounting to maximum growth (a) and maximum decay (b). 

(9) Horizontal and vertical beam sizes in seven achromats of the SLC Arcs, 
with a cosine-like regular quadrupole modulation at twice the betatron frequency 
in the focusing magnets, corresponding to COSXX=5 Amperes. Cases (a) and (b) 
correspond to respectively the horizontal and vertical beam sizes in entirely flat 
Arcs. As can be seen, the modulation affects mostly the horizontal motion. Cases 
(c) and (d) correspond to respectively the horizontal and vertical beam sizes in 
the last seven achromats of the North Arc, with the present roll distribution. As 
can be seen, some coupling is generated in the vertical plane, and the beats in the 
horizontal plane are weakened by about 25%. 

(10) Horizontal (a) and vertical (b) betatron oscillation in seven achromats 
of the SLC A.-cs, with a systematic skew focusing perturbation, corresponding to 
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SYSKEW=5 Amperes. 

(11) Horizontal (a) and vertical (b) beam size in seven achromats of the SLC 
Arcs, with a systematic skew focusing perturbation, corresponding to SYSKEW=15 
Amperes. In these plots, the initial emittance is zero in the vertical plane. An ex­
change of oscillation energy from the horizontal nlane to the vertical plane can be 
seen. 

(12) Horizontal (a) and vertical (b) beam size in seven achromats of the SLC 
Arcs, with a systematic skew focusing perturbation, corresponding to SYSKEW=15 
Amperes. In these plots, the initial emittances are equal in the horizontal and ver­
tical planes. In this case, the skew focusUg perturbation has no effect on the beam 
envelopes. 

(13) Horizontal (a) and vertical (b) betatron oscillation in seven tu:hromais of 
the SLC Arcs, with a skew focusing modulation at twice the betatrou frequency, 
corresponding to C0SXY=5 Amperes, 

(14) Horizontal (a) and vertical (b) beam size in seven achromats of tb« SLC 
Arcs, with a skew focusing modulation at twice the betatron frequency, corre­
sponding to SYSKEW=25 Amperes. In these plots, the initial emittance is zero in 
the vertical plane. Growth of the phase-space in both the horizontal and vertical 
planes can be seen. 

(15) Horizontal (a) and vertical (b) beam size in seven achromats of the SLC 
Arcs, with a skew focusing modulation at twice the betatron frequency, correspond­
ing to SYSKEW=25 Amperes. In these plots, the inttial emittances are equal in the 
horizontal and vertical planes. Growth of the phase-space in both the horizontal 
and vertical planes can be seen. 

(16) Horizontal beam size in seven achromats of tbe SLC Arcs, with a cosine­
like regular quadrupole modulation at twice the betatron frequency in the focusing 
magnets, corresponding to COSXX=5 Amperes, and with a systematic focusing 
perturbation of 1.33% in the focusing magnets. As can be seen, a beat in the beam 
size is initiated as in Fig. 9a, but is reversed in the middle of the section and 
vanishes almost at the end. 

(17) Horizontal beam size in seven achromats of the SLC Arcs with the focusing 
magnets perturbed by random quadrupole errors with a 1% standard deviation. 
The particular "seed" was chosen as one which generates large beats at the end. 

(18) Horizontal beam size in seven achromats of the SLC Arcs with the focusing 
magnets perturbed by the same random quadrupole errors as in (17), and corrected 
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by superimposing a quadrupole modulation at twice the betatron frequency in 
the focusing magnets, corresponding to COSXX=3.9 Amperes and to SINXX=0.7 
Amperes. As can be seen, the correction is almost perfect at the end. 
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