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ABSTRACT

The string action enjoys Sierra's bosonic local symmetry on which Siegel's it-

symmetry closes. This bosonic symmetry is analyzed in Dirac's Hamiltonian for-

malism and its generators are identified.
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In an interesting paper. Sierra observed[l] that the actions for a masses relativistic

le and for the superparticle[2] enjoy invariance under local transformations, which

induce the usual reparametrization invariancc. The local Siegcl symmetry doses on these

bosonic symmetries[3). In this letter, following arguments similar to SierraVlj, and using

Dirac's formalism for constrained Hamiltonian systems[4,5,6], we show that the bosonic

string enjoys a similar local symmetry and find its generators.

The bosonic string is described by the constraints

Tit = P

where X^(r,a) is the position of the string in space-time, and /"'(r,?) is its conjugate

momentum, with equal time P*isson bracket

- el). (2)

Instead of (1), we find more convenient the linear combinations

with

Q% = P^±deX^. (4)

The string action

S s= / drdc XP^X1* - \+H- — X-H-1 (5)

enjoy» the following local gauge invariance:

= \d* (<+Q>+- <-Qt)

ff\-)t- -\-dai-
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This is the natural generalization of Sierra's gauge invariance for the particle. The variation

of the action (5) under (6) is

t - 2 V

which vanishes only if e± — 0 at the end points. Hence, the symmetry (6) does not admit

the interpretation of P 2 - (c^A*)2 as a symmetry generator (as in Ref. 1 for the particle).

This was to be expected, because the string is a general-covariant system and the gauge

symmetry is not internal[7,8,9j. The interpretation of Ref. 1 is possible, nevertheless, if

we require the action to be invariant under the transformations

1

with S\± to be determined. One finds that SS vanishes if and only if

(9)
SX. = -ittd^X-Q-J-PiQ-»

with periodic boundary conditions for X±. Identifying the total derivative term as

SS — I drdcrdrda {$ • (generator or constraint)} ,

the generators of the /3-symmetry for the string are

£ l ss 0. (10)

Could these considerations be generalized to the case of higher-dimensional extended

objects, such as membranes? The answer is not clear, since in general one does not know

how to write th» constraints as a perfect square Q2. Work along this lines is in progres$[10 .
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