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ABSTRACT

The string action enjoys Sierra’s bosonic local symmetry on which Siegel’s x~
symmetry closes. This bosoni¢c symmetry is analyzed in Dirac's Hamiltonian for-
malism and its generators are identified.
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In an intetesting papes, Sierra observed{l] that the actions for a massless relativistic
particle and for the superparticle[2] enjoy invariance under local transformations, which
include the usual reparametrization invariance. The local Siegel symmetry closes on these
bosonic symmetries[3]. In this letter, following arguments similar to Sierra’s’l], and using
Dirac’s formnalism for constrained Hamiltonian systems[4,5,6], we show that the bosonic

string enjoys a similar local symmetry and find its generators.

The bosonic string is described by the constraints

My = % (p? +(8. X)) =0

Hy =P.3X=0

(1)

whete X¥#(r,0) is the position of the string in space-time, and P#(r,a) is its conjugate

momentum, with equal time Peisson bracket
[PX(0), X" (o)) = n**8(s - o). (2)

Instead of (1), we find more convenient the linear combinations

My = (M, £ M) = 105, ©
with
QL = PP, X~ 4)
The string action
S = / drdo [PPX¥ -2 -2 M| )

enjoys the following Jocal gauge invariance:
. 1
§XH = §(¢+Q‘,:, + C-Q‘:)
1
§PF = 530 (‘+Q: - ¢-—Q‘i)

6y = é4 +(0oMi)es — Ny Oges

(6)

SA- = é. = (Osd-)em — A_Bge
1



This is the aatural generalization of Sierra’s gauge invariance for the particle. The variation

of the action (5) under (6) is .

1 T3 3 hd
88 = 5/ da(t++e-)(P'-3:.\")
Lat

T2

m ]

L) o2 . ) !

+1/ Jr/ dord {n(Q X~ 2N HL) - (@ Xy - 1K)
“Jn Ty

which vanishes only if €4 = 0 at the end points. Hence, the symmetry (6) does not admit
the interpretation of P? - (3,.X)? as a symmetry generator (as in Ref. 1 for the particle).
This was to be expected, because the string is a general-covariant system and the gauge
symmetry is nct internal(7,8,0]. The interpretation of Ref. 1 is possible, nevertheless. if

we require the action to be invariant under the transformations
1
6x# =2 (3103 + 84Q2)
1 .
§P* = 3 9 (84034 - BLQ2),
with §14+ to be determined. One finds that §S vanishes if and only if
60y = 2840504 Qeu) = B4Q+u

M- = —23%3,(A-Q-u) - BEQ-4

with periodic boundary conditions for A.. Identifying the total derivative term as

(9)

5§ = / drdod,8, {3 + (generator or constraint)} ,

the generators of the 3-symmetry for the string are

Ff = PPQL ~ 0. (10)

&

Could these considerations be generalized to the case of higher-dimensional extended
objects, such as membranes? The answer is not clear, since in general one does not know

how to write the constraints as a petfect square Q2. Work along this lincs is in progress(10’.
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