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Abstract 

We generalize the classical notion of a A'-system to a non-commutative dynamical 
system by requiring that an invariantly defined memory loss be 100%. We give some 
examples of quantum A'systems and show that they cannot contain any quasi-periodic 
subsystem. 
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1 Introduction 

Then1 seems to be genera! agreement [1 l] that classical A'-systems exhibit those mixing 
and chaotic properties which are necessary for the foundation of statistical mechanics. 
Classically they can he characterized by the existence of a subalgebra A C ß with 

(i) anADAV it € Z + , 

(Ü) Vn>o°nA = M, 

0») A„>o^"M=cl. 

Her«- a is the time evolution and V and A mean union and intersection of algebras. 
These conditions are met in particular if there exists a generating subalgcbra .4 0 C M 
with V_x,<n<oo°"-4u = A4, AÜ°=i V£i<*~"~ 7 A = cl . The difficulties of generalizing 
this for non-cominuUlivc algebras M comes from the fact that then even two finite-
dimensional isomorphic subalgebras may generate algebraically an infinite-dimensional 
M. For instance, if .r and p satisfy [x,p\ = i and \ is a characteristic function of [—1, 1] 
ami a : ( J , /> ) —» (/>, - J - ) then AQ — (x(-r), 1 - A'(*)) a n d <rAo generate the whole Weyl 
algebra W and Au A aAu = c\. Nevertheless, Kmch [2] has proposed a notion of a non-
coiiumitative A'-sysU-ni and an associated dynamical entropy starling with the algebraic 
characterization given at the beginning (see also [3,4]). We lu-ve recently [5] given an 
alternative definition of the dynamical entropy of a nou-comrmitative system and we 
propose a corresponding notion of a quantum A'-system. We start with the classically 
equivalent characterization of a A'-system by requiring that the tail A^Lj Vj=\ o'n~}A of 
any finite partition (unite subalgebra) A is trivial (= cl) . The triviality of the tail can 
be rephrased in terms of the entropy 

lim lim [S(A V a'"A) - S{ V a-kA)] = S(A) 

and this can be used as a starting point for a non-comniut..tive theory In [5] we have 
introduced entropy funclionals H(A\,... An) which have the desired properties and 
reduce to S(V"=i A ) i» the commutative case. T'.iey have the intuitive meaning of the 
maximal information to be gained about the .subalgebras A, by a measurement of the total 
system. Using H(At,..., A ) instead of i'(V"=i A„) in the above criterion and replacing 
linij—oc by the mean we get a characterization of quantum A'-systems which roughly says 
the following: The maximal information obtained about any A at previous times can 
never give the full information about A at present, in fact if these times were too far in 
'„he past all information gels lost. 

In this note we will explore the consequences of such a definition of quantum A'-
fcyslems. They show features which contradict what one is used to from finite quantum 
systems. Firstly, A'-systems are ergodic in the sense that the only time-invariant elements 
of the algebra of observables are multiples of unity. Thus the Hamiltoniau // which 
generates the time evolution cannot be an element of this algebra. Even more strikingly 
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Zermelo's recurrence objection is completely rejected in the sense that there are no quasi-
periodic elements ^ cl . 

We shall show thai some infinite quantum systems which are generalizations of clas
sical A'-systems do indeed have our A'-property. Our examples of A'-systems are of the 
type st tidied by Kim h [2], Kümmerer and Schröder [3,4] but we have the advantage that 
we are not obliged to exhibit the expanding subalgebra A. Hopefully also the systems 
relevant for physics, namely bosons or fermions intc;actiug with pair potentials are of 
this class but we are far from having investigated all potentialities of this notion. 

2 The Entropy Functionals 

Our theory is based on finite-dimensional unital "-subalgebras and we shall abbreviate 
this cumbersome construction by "finite subalgebra". The theory can also be extended 
to nuclear C'-algebras without finite subalgebras but for simplicity of exposition we shall 
restrict ourselves to U11 F-algebras M. Furthermore, we shall only consider faithful states 
over M (which means ->(|a|2) > |u>(a)|2 V a £ M, a -£ c l ; . 

Before we embark on the theory of general A'-systems we shall first recall the general 
definitions and deduce some useful estimates. Let u b e a faithful state over an UHF-
algebra M and 

w < , .„ > o , £ w„ ,B = u> 
11,...,•„ 

a decomposition. For the multi-index ( i j , . . . , in) we shall use the shorthand / and define 

w L f c ) = £ "''I '-• 
• | . . ' M 

• * J'red 

Furthermore let us denote the entropy function — x !nx by T/(X), U ^ = the restriction of 
*> to A C M, S(v\il>) — the relative entropy of y> and V, ^ (VMIV'M) = ^ M ^ U - Now we 
are all set for 

Definition (2.1) 

IL(A1 A)= S»P E'/Nill + E E ^ ' U ] . 

Remarks (2.2) 

1. Denote by dim .4* the linear dimension of a maximal subalgebra of At,- Given 
M = maX|<*<n dim .4* and t there is a number 6{e,M,n) > 0 such that sup is 
reached within £ by a decomposition with w/(l) > 6 V / and thus # / < 1/6 [5]. 

2. In general a decomposition can be written u>/(a) = u>(X/fi) = u>(<r^.2(j/)a) with 
J"/ € M', J-/ 6 M", o" the modular automorphism of *>. Since // is strongly 
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continuous in u; it is sufficient to take the sup over u// with x/ from a strongly dense 
subaigebra of M". Thus if A4 is a quasi-local algebra we may assume the x/ to be 
strictly local. 

Properties of // (2.3) 

(i) H(At, • •., A«) > Ü and is symmetric in it3 arguments. 

(ii) Monotonicity: .4, D ß , =*• 1IJAU ..., A ) > fL(Bu.. .,Bn). 

(iii) Subadditivity : / /„(>*, , . . . A ) < / U A - . - , A ) + i U A + i , - . , A ) VI < Jt < n. 

(iv) Invariance tinder repetitions: 

WwMi.^i»-- , A , A , - - A ) = / /JA, A , - - , A ) -

L e m m a (2.4) 

/ U A . 4 . . . , A - i M ) - / /w(A,A,-- ,A-i ,#)< 

< sup Ylis(^iU-^M») = tL(A\B) 

Proof: Use a decomposition which gives, within e, Hu,(Ai,A2,.--,An-i,A) as a de
composition for / /«(A» A , . •., An-\,B). Then in the difference all terms cancel except 
the term k = n in the last sum of (2.1). 

Remarks (2.5) 

1. If A and B arc abelian, II(A\B) equals the corresponding classical quantity, i.e., 
IIU(A\B) = HV(A V B) - HJB) (see Appendix 1). Classically / / and 5 coincide 
and we shall use both notations 5'̂  (.4) = 5(u>|>). If only one state *J is involved we 
might skip the subscript. u>. 

2. (2.3 fiv) implies 

/ / (A , . . . ,A- , ,A) - / /M. , . . . ,A- , ) = 

= / / (A, . - . ,A-iMnW/(A,--- ,A-i ,A- . )</ / (A, |A- . ) 
thus 

f / (A, . . . ,A)<//(A) + £ / / ( A + . | A ) 

and 

H(Al,...,An)-h(Bu...,Bn)<'£ll(At\Bi). 
1=1 

To complement these upper bounds by lower bounds we need more information about 
the possible decompositions u>/: 



L e m m a (2.6) Suppose that x/ 6 M give, within £, H^(Bt,.. .,Bn) and that there 
exist M 3 yj > 0,Y,jyj = l such that 

(i) K y ; ! = 0V/,; , 

(» ) 

Then 

v(xih>(y}) 
- 1 <et V/,;\ 

/U-4,ßi,. • .,£,) - //w(5„.. .,*„) > «up 1 2 MftM«) - w(o»>)l - f " r 1 1 -
IHI-i 3 

If the y7 give, within £, H„(A) then 

/ U A ß , , . . . , ß „ ) - / U ß , , . . . , ß „ ) > / U > l ) - 2 e - ^ & 1 _ 

£• 

Proof; Consider the decomposition 

w / . j (o )= - , ( a < T J /2 ( I . » i ) ) -

We iave 

i 

Thus, if we use u.'/tJ as decomposition for ll(A,B],...,Bn) all but the first term of the 
J2k "' ('-.!) can be used to form HU{BX,. . . , #„ ) and we get 

/ U A ß . Bn)-IUBu..,Bn)> 

> J^'/Ma-iyJ) - £iKw(*i)) - 2>Ml/,)) + £>(»/j)SMw;),t " «• 
/ j / 7 J 

Here il>;(a) = u?j(«)/(u/j(l)) is the normalized functional and we used the scaling 
S(*p\\il>) = A(S(^|V0 + V'(l)ln^)- The first three terms can be written 

- > WlX/l/,) In — —;—r > — 

f; v l 9 l i u>(xMyj) ~ l - c , 
since Y,ij^{xlV}) — 1 a n d I ' p 0 + x ) l 5: |ar|/( 1 - |x|). For normalized functionals one 
knows [6] 

and 

HiMI = sup hK«)l-

This estimate for the last term gives the first part of the claim (2.6). The second is 
immediate from 

1 



r> 

Corollary (2.7) If A f cl , then It JA) > 0. 

Proof: Take in (2.6) ß, = cl, / = {1}, r, = 1, 0 < y, = a <E A y2 = 1 - «. IIJA) = Ü 
would imply w(a2) = u>(a)2 V o 6 A. But for a faithful state 

-;(«2) -w(«) 2 - u;((a - ~-(fl))2) = 0 : = > « = -;(«) • 1. 

Lot a be an automorphism of M which leaves w invariant, u; o ., = u,'. 

Definition (2.8) 

hJa,A)= Hm l / U A a A . . . , ^ ' ^ ) . 

Remarks (2.9) 

I. Because of (J.:{,iii) we have liuijt_0o = inf* and since // > 0 we know thai the limit 
exists. 

•_». If .V? is ahelian 
fc-i 

//w( A a A . . . . «r*"'A) = SJ V *M) 

and 
k k-i 

hJa,A) = lim {SJ \J a1 A) - SJ V °JA)). 

Thus (2.3) is a generalization of the classical definition and our results also cover 
this situation. 

Properties of // (2.10) 

(i) TM°\A)< hJ*,A) <hJo\A), 

(ii) hJa~\A)= hJo,A), 

(iii) hwoa-i{acra~l ,aA) = hJ<r,A)V a £ Aul M. 

Proof: 

(i) From (2.3,ii) we deduce / / ( A ß ) > / / (A 1) = I/(A) and by iteration 

A > M ) = Jlim ^HJA,aA, .. .,vnA,.. .,<r f c n-U) > 

> -• lim } / / „ M , ^ ff"'**1'^) = -*.«,(*".>*)• 
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Conversely, ('!.3,iii) tolls us 

lim i - II JA. nA <7nA . ..,ank-lA) < 

< - lim UllJA,<rnA, - - . , f f M , t - , U) + IIJoA,<rn+lA a n ( f c - | ) + U ) + . .. 
n A.—..V A-

. . . + 7Ua n - , >l,<T 2 "- , A... ,<7*-M)} = U<r"M). 

(ii) UJA,oA a-A) = // -,(<r-"A*T-n + ,-4 4) = UJA,o-lA n~nA) In 

(iii) Kill lows because supy* w / = w i , is invariant under automorphisms of Xi. 

3 Quantum /^-Systems 

Proposition (3.1) Met ween the properties 

(i) hJv,A)>i)V A±c\,AcM. 

(ii) Y\H\n-.10hJan,A)= IIJA) VA?cl,Ac M. 

(iii) \\r.hl„»hm^jlljß,ar-+»A an+»>A) - IIJCJ"+3'A,...,0n+>*A)] = JIJP) V 
A,BcM,j, >0 . 

(iv) lini r t-.0 oiin!/t-.x,(//-,(ß^"+ j ,>* T " + M ) - / / J - r ' ^ M <7»+M)l = 0 = » 
B = clV AC M,j, >0 , 

there are the implications 
(ii) => (i) 

ft ft 
(iii) => (iv) 

In the commutative case they arc equivalent. 

Proof: 

(iii) =$• (ii) By (2.3,iii) we have 

[lljA,crnA,...,ak',A)- HjanA aknA))< IIJA). 

If, for sufficiently big n, \\\\\kjy [ ] > IIJA) - £ then also the mean 
{IIJA,onA,...,a(k~l)nA) has'to approach IIJA). 

( i i ) = * ( i ) follows from (2.10,i). 

(iii) =*> (iv) follows from (2.7). 

(iv) = * (i) (iv) says that for A ^ el there is some n such that /ju,(<rn,y4) > 0, thus 

U " , . 4 ) > ; U < 7 " M ) > 0 . 

For the converse implications in the commutative case, see Appendix 2. 
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Remarks (3.2) 

1. It seems that for realistic quantum systems and a the time translation hM(o, A) 
is more instructive than the dynamical entropy h^o) = sup^ Aw(<r, .4) since the 
latter will be infinite in 3 dimensions. Only when combined with space translations 
one can get a finite dynamical entropy of a 3-dimensional abelian group. 

2. Generally h^(an,A) < H^A) (see (2.3,iii)) and not decreasing in n. Thus we 
know that lini„_ 0 0 in (ii) exists. On the other hand, we have neither a proof nor 
a counterexample for the strong suhadditivity which would insure the existence of 
limt_oo in (iii) and (iv). Thus we have to make do with the limit inferiore. 

3. We do not have a counterexample which shows that the conditions (3.1) are not 
generally equivalent but at present we do not venture a conjecture. 

We see that there are two possible generalizations of the positivity of h and two of 
the triviality of the tail, the latter implying the former. To us the condition (ii) seems 
the most suggestive one and we propose 

Definition (3.3) Let a be an automorphism of an UHF-algebra M and u; a faithful 
invariant state. We define an invariant memory loss of {A4, a,u») by 

Jnja)= inf lim h^an,A)/IL{A). 

Generally 0 < mw{a) < 1. W«.' call {M,a,u)) a A'-systcrn, if mw(<7) = 1. 

Remarks (3.4) 

1. Remember that IL{A) > 0 V A j - c l , (2.7), so that mM(a) is well defined. 

2. We cannot offer a non-commutative version of a theorem of Krieger [7] which implies 

/ i w <r) > 0 «=> sup hm , ,. . = 1. 
A¥\x n-~°° In dim ,4 

diin<4<oo 

3. Intuitively speaking is mw{a) the minimal percentagewise information gain by mea
surements after long intervals. For A'-systems every subalgebra has 100% memory 
loss. 

4. In contradistinction to hw{a) the invariant mu(a) depends on the completion of the 
embedding algebra M. If Mo is a cr-invariant algebraic inductive limit of a net of 
finite subalgebras, M its norm closure and M" its weak closure in T W then hw{a) 
is the same for (M0, O,V\M0), (-M» 0,v) and (M"t cry (f i | . . .|fi)) [5]. That even in 
the abelian case this is not the case for m^a) is shown by the following surprise. 
Classically all conditions (3.1) are equivalent to A'-clustering if we consider the 
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system (M", <r, u>) where M" is the von Neumann algebra of u/-integrable functions. 
Now one knows that clustering is lost by mixing of states. On tne other hand, 

M A * ) = Jim ]-Sj\/a'A) 

is concave in u> since Su is. Thus 

M,»(A<0 > 0 => hx„lHl_x)^[A,a) > 0 

and hence there can be only one invariant state. If we start with t'ie algebra M 
of continuous functions for which there are several invariant states the A'-property 
cannot extend for all of them to the strong closure M" but we only have the 
implications 

M is a A'-systein <= M" is a A'-system <* A4" is clustering o M is clustering. 

Nevertheless the A'-property has some kind of stability which follows from the 

Covariance of the memory loss (3.5) 

mu(a) = rM<r - 1) = mu(an) = m w 0 o -i (aaa~A) 

where o 6 Aut M and n 6 Z + . 

Proof: (i) The first and the last equalities follow from (2.10,ii and iii) the other from 
the definition of m. 

The conditions (3.1) require that any finite subalgebra has to keep changing under the 
evolution a. This seems to contradict the usual situation where all observables converge 
towards their thermal expectation values. This puzzle is resolved by noticing that the 
convergence is weak and only strongly converging elements form converging algebras. In 
fact, in a faithful state u> strong convergence of any a ^ cl to u(a) is impossible because 
ana -* u;{a) implies ana2 —» u>(a)2 but we have seen (for a' - a) that w(a2) > w(a)2. If 
the cyclic vector |fl) € HM corresponding to u is the only invariant vector no a ^ cl can 
converge strongly to any operator: Strong convergence of ana = U~naUn requires that V 
£ > 0 3 N with 

\\(U-naUn - (/-mo(/m |ft)| | = \\(Um~n - l)a|n)|| < e Vm,n > JV. 

Thus (U - l)a|Q) = 0 or (a - cl)|fi) = 0 for some c € C. Since |Q) is separating this 
implies a = cl. (The Fock vacuum is not separating for the CAR-algebra and there the 
annihilation operators converge indeed strongly to zero for the free time evolution [8].) 
Thus the absence of strongly converging operators is not characteristic for A'-3ystems but 
implied by our general setting. For /{"-systems also quasiperiodic elements are excluded 
and thus all finite quantum systems are excluded too. But also 11IA-factors with a their 
modular automorphism do not qualify as A'-systems. 
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Definition (3.6) Let Q be the set of finite subalgcbras A which are quasiperiodic in 
the sense that V e > 0 3 n € Z + and 0 e Aut A such that 

| |(<r n0a-a)|fi)| | < e||a|| Va 6 A 

Theorem (3.7) For /(-systems Q is trivial (i.e. Q = {{cl}}). 

Remarks (3.8) 

1. Q contains all <r-invariant finite subalgebras and a K-system can have none 
of those. The adjective finite is essential, there may be infinite-dimensional in
variant subalgebras. For instance, in the CAR-algebra elements of the form 
E a / , • • • a/* a»i - • •a»*>^ ^ n a r e f° r a " n 6 Z + '-algebras. They are invariant 
under all evolutions which conserve the particle number and some of them lead to 
K- systems. 

2. We have to insist on '-subalgebras because the finite algebra generated by an an
nihilation operator aj in the Fock vacuum |fl), af\il) = 0 would qualify in (3.6) for 
any quasifree automorphism some of which may lead to a A'-system. 

3. Since there are classical /(-systems on compact manifolds (3.7) might seem to con
tradict Poincare's recurrence theorem. However, as has been pointed out previously 
(see f.i. [9]), Zermelo's recurrence objection does not hold for /-""-functions as ob-
servables. Though almost all orbits in any neighbourhood keep coming back to it 
they do it at different times such that functions never come close to their original 
form. 

For the proof of (3.7) we need 

Lemma (3.9) Assume that for a 6 Aut M we h?ve 

| |(a-<r(a)) |n) | |<e|M| V a e A dimA = d. 

Then there exists c(d) such that 

HJA\oA)<c{d)£\ne. 

Proof: From the arguments which lead to (2.2,1) we can also in the sup in (2.4) restrict 
ourselves to decompositions with u>i(\) > 6 to get Hw[A\oA) within £\. This number 6 
depends only on d and £\ and with the continuity of S used in the proof of (2.6) we reach 
the conclusion as 

HJA\*A) < SUA) - S„(*A) + J>.-(l)[Sfc(,4) - S*M)J. 
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Now ü,\oA = « j O a\A and 

as M' 3 Xi < 1. Since I^a ' iO) = 1 we can appeal to the continuity of S to complete the 
proof. 

Proof of (3.7) First of all the Ws depend only on the algebras. Thus for 0 , 6 Aut A, 
we have HU(A\,.. .,A„) = Hu(@iAi,.. .,QnAn) anc1 we might ignore 0 . Secondly the 
invarianceof u; under a says H„(akA\ak+1A) = Hu(A\crA) and using (2.5,2) we conclude 

lim lim -!—H(A,<TnA,...,<JnrA)< lim H{A\anA) = 0. 

Thus a nontrivial C? would violate even the weaker condition (3.1,i). 
So far our theory is based on an invariant state u> but in physics one considers th'* 

dynamical system (M,s) as the primary object and quantities appearing only in Jru,(A*'w' 
as mathematical artefacts. To get a characteristic which does not refer to a particular 
state but depends only on the topological structure of {M,<f), we introduce 

Definition (3.10) The topological memory Joss is m(o) = infu /mUI((7) where inf goes 
over all faithful extremal invariant states. We call (M,cr) a topological A'-system, if 
m(a) = l. 

Remark (3.11) For a von Neumann algebraic system (M",<r) there will be only one 
invariant state and there is no distinction between m(a) and rnw(a). However, in physics 
we have a C"-algebraic system {M,cr) with many inequivalent representations and there 
the distinction makes sense. 

Covariance of the topological memory loss (3.12) 

m(a) = m(a~x) = rn(an) = mfaaa'*) 

where a € Aut M, n € Z + . 

4 Examples of Quantum if-Systems 
As in [5,10] we shall first examine the generalization of the Bernoulli shift of the classical 
theory, i.e. the shift of the quasilocal CAR-algebra. 

Theorem (4.1) (M,a) with M the C'-algebra generated by aj and aaj = aej, 
(af)(x) = f(x + s), s € R" \ {0} is a topological A'-system. 
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Proof: Since for all faithful states u H^{A) > 0 V A ^ c\ it suffices to verify that 
V £ > Ü 3 n with /. w(a n , .4) > fIu(A) - £. According to (2.2,2) we may choose the 
x, in u;,(a) = uj(af/2(xi)a) strictly local such thit [onkx„TJ] = 0 V i,j,k > 0 for n 
sufficiently big. Therefore x/ t = l\k

xl a"' '" 1 '^, is a candidate for x; in the decomposition 
for HU(A, a" A,..., anlk-l)A). We estimate 

M " n M ) = Hm lHw(A,anA,...1a
n{k-})A)> 

*—oo k 

> lim \Zv(u,(xIk)) - ][>("(*.•)) + HJA)-e, 

if the x, give //u,(./4) within e. Now consider the abelian algebra Ma = (S)*!-^ A-, each 
J k being {1,2, . . . , r} , r = # / i < oo. The shift <r0Jfc = J t + i is an automorphism of Ma 

and w(xy) a state u>0 over Ma with w0 o <ra = u>a. The quasilocal structure of M and the 
extremal invariance of u imply already the following clustering [11]: For all strictly local 
a € M and e > 0 3 A C R" such that 

Mxa)-a;(x)u;(a)|<e| |x| | V x 6 A -

This implies that (Ma,aa,u>a) is A'-mixing (see (Appendix B, (iv)) and therefore a clas
sical A'-system. For them the properties (3.1) imply 

lim lim } X > M x O ) = Hm ^ (oT. / i ) = //„.(/,) = J^vH'i))-
n—»oo Jc-»oo K ^T n-»oo " *~r 

Corollary (4.2) [M,aoa~x) is for all a 6 Aut M a topological A'-systein. 

Proof: Follows from (3.12). 

Examples (4.3) 

1. Consider u = 1 and a quasifree time evolution r°aj = aj0 ft[k) = e~"^ f(k) with 
/ the Fourier transform of / . If £ is a strictly monotonic function with l/e'{k) 
integrable, this automorphism is conjugate to the shift which reads in Fourier space 
/(*) - e"kf{k). f(k) -» g{e) = \/y/P{e)f(k{e)) is a unitary map L2(R,dk) -> 
L2(R, de) and a~Xf>./ = ag is an automorphism of M such that aatn~y = T,°. Thus 
(M,T) is a topological A'-system. 

2. Introduce in example 1) an external potential such that the Mtfller operator 

fi+ = lim e , 7 "c- ; / o < 

. — 0 0 

exists and is complete. (H0, H generate r°, resp. T). If H has no bound state then 
{M,T) are a topological A'-system since fttt~

,HotQjl = e~'Ht and thus T and T° 
arc conjugate. If there is a bound state /> then (M,r,u) is for no u> a A-system 
since aj% generate a finite invariant subalgebra. 

Unfortunately, so far we are not able to control the tail properties in this generality. 
We can show only in a special case that the strongest condition (3.1,iii) is not empty. 
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Proposition (4.4) Let a be the shift on a quantum lattice system, r the tracial state 
and A strictly local. Then 

lim Üffi*-oolWr(ß,«7 n A^ + , l A.. . ,a n + , M) - tfr(ffnA<rn+'M,...,an+'M] = HAB) 
n *oo 

V ji >0, 8 any finite subalgebra of M. 

Proof: In the tracial state any subalgebra is invariant under modular automorphism 
and thus V Ä C M exists the canonical -onditional expectation 7 : M —* Ä which 
conserves T : T = T ^ 07. Similarly in the decomposition for HT(AX,... ,An) one has i / 6 
(VJ«i Ak)" = Ä since 77(a) s= r(x/a) = r(7(x/)a) V o € Ä Thus in the decomposition 
for HT(<rnA1o*+>,A,...ion+>>A) we can take the x, 6 (U~, an+iA)". H{B) can be 
obtained, within e, by strictly local y,. Thus, for sufficiently big n, x/ and J/J commute 
and r(xiyj) = T(x/)r(yj) V I,j. Then all conditions of (2.6) are met and this proves 
proposition (4.4). 
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Appendix A 

f In the classical theory one defines 

HW{A\B) = HW{AVB)-HU(B)- (A.l) 

We have to prove that it coincides with 

HJA\B)= sup £ ( 5 ( w M , i - S M " i ) 5 ) (A-*) 

in the abelian situation. Using in (A.2) for the u>, the minimal projectors P} of A, ^j{a) = 
u^/'jO) the r.h.s. becomes SUA V 5) — 5,(5). There only remains to show that no other 
decomposition u/,(a) = uj{Q,a) can give more Now 

E(S(«4*U-s(«k)»> = 

= &,(>t) - S„(A V C) - £,(5) + 5.(0 V C). 

Here Ä* are the minimal projectors in B and formally we considered ^(Q.PjIik) as state 
over the probability space (i,j,k) with C the elements depending only on /'. Now mono-
tonicity and strong subadditivity say 

SW(A) - SUA V C ) - SUB) + SUB V C) < 

< SUA) - SUA V C ) - SUB) + SUA v B v C) < 
< Sw(.4 v B) - 5,(5). 
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Appendix B 
Classically a A'-system (M,T,u>) is characterized by the following equivalent condi

tions [12] 

(i) 3 Mo CM with 

1. TMoDMo 

2- V ~ -oc. TnMQ = M 

3- AT«-oc ' ' ^ 0 = Cl 

(») K=o Vk-c* 7*A =•• cl for all finite A C M 

(iii) h{T,A)>0VA, 1 < d i m ^ < o c 

(iv) T is A'-mixing. This means for all finite A C M, A € M and e > 0 3 A; such that 

\«>(A<jnB)-u>(A)u(B)\<e\\B\\ VBe\'okA, n>N. 
*=o 

We add now some more equivalences. (.4 and B are finite subalgebras.) 

(v) Ynnn^00h(Tn,A) = fl{A) 

(vi) l i n w //(0|Vr=„T kA) = //(Ö) 

(vii) l i n w H(B\\JXLnrkA) = 0 = > 0 = cl 

To show the equivalence we appeal to [12,13] 

Lemma: 

(a) H{B\A) is continuous for monotonic limits in both arguments, 

(b) H{B\A) = 0*=>BcA. 

It says (ii) <=> (vii), (ii) => (vi). Next we argue that (vi) ==> (v) because 
00 00 

H(A) = lim H{A\ V TkA) < lim H{A\ V T"A) = lim h(r,A) < H{A). 
n-*oo , * n-*oo * n-̂ oo 

Finally (v) = • (iii) because h(T,A) > ^h{Tn,A). 

> 
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