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ABSTRACT

He derive the modular transformations for conformal blocks in Wess-

Zumino-Witten models on Riemann surfaces of higher genus. The basic ingredient

consists of using the Chern-Siroons theory developed by Witten. We find that

the modular transformations generated by Dehn twists are l inear combinations

of Wilson l ine operators , which can be expressed in terms of braiding matrices.

I t can also be shown that modular transformation matrices for g > 0

Riemann surfaces depend only on those for j < 3,
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1. In t roduct ion

There lias been steady progress in understanding 2D conformal field theory (CFT)l'1 ' '

recently. Vcrlindc's work on fusion nilrs is l,hc first, indication that one- may classify and con-

struct OFT by starting from some basic data and relations among them'1'!, Subsequently,

Moore and Sciberg obtained polynomial equations for data, such as duality matrices which

enable them lo prove the cunjecturc of VeHindel3' as a by-product. They showed thai

classifying rational conformal theories might he equivalent, lo classifying all solutions to

those polynomial equations.

Rather surprisingly, Willcn found recently that one can attack the WZW models'"!

by studying tliree dimensional Chcrn-Simons theories[fi]. The idea is thai, in the canonical

quantization of Chcro-Simons (CS) theory «f n certain group, the llilbert. space is isomor-

phtc. lo the space of conforinal blocks in the corresponding WZW model. In a. subsequent

paper, Witten forrml ft kind of basis of conformai blocks on any Ricirienri surface!7'. Iti

(.his paper we work out, modular transformations acting on this basis. We found that

the modular transformations under basic Dchn twists around hotnotopy cycles on genus

ij Riemann surfaces are linear combinations of the holonomy matrices .ironmi the corre-

sponding cycles. The nonlrivial liolonomy matrices in WiUen's basis are the ones for ftj

{} — I, • • •, if) cycles which we found to be expressible in terms of braiding matrices. The

fact that modular transformations can be expressed so is mil surprising, Moore and Heilirrg

already suggested it in their fundamental works!'1', using different methods. However, we

found our method simpler and less data involved.

The method we use is similar to the one used by Dijkgraaf and Verlinde in proving

Vcrlindc's conjecture''1'. We find that in W7AV models one can extend the operators defined

by Verlinde for genus oire to higher genus, and in fact the operators can be realized by pnt.h

integrals in the (3hcrn-Simons theory. The result is a, generalization of what was obtained

by Verlinde in the case of genus one, namely the holonomy matrices around b cycles can

he diagonalizcd lo the form of liolonomy matrices nrround a cycles. Die fact l.hnt our
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method is the generalization of the one used in [3] convinces us that our result is valid for

any rational conformal field theory, not only For the WZW models we consider here for

convenience.

Let S(b\), say, be the modular transformation corresponding to the Dehn twist along

cycle fj|. One of our main results is eq.(3.10), for the genus 2 case. This result directly

generalizes to higher genus, with help of eqs.ffl.l), (3.11) and (3.12). The modular trans-

formations generated by Dehn twists along a. cycles, in some sense, are trivial. Since the

modular groups are generated by basic Dehn twists, our result thus provides the basic

blocks for constructing representations of (nodular groups.

Moore and Seiberg conjectured in [!)] that all rational conformal field theories can be

coiisfrurled from 2+t ('hern-Simons theories. If this could be finally proven true, then

our consideration here is essentially complete.

In section 2 we define the Verlinde operators for WZW models and describe the method

we will use for higher genus in the case of genus one. This proves Vcrlindc's conjectures

again. We then present our main result in section 15 and discuss some application in sectoin

I.

2. Renlization of Verlinde operators in the Chern-Simons theory

As shown by Wit ten, three dimensional Chern-Simons theory is closely related to the

Wcss /.uiriino Witten model in two dimensions. Here we shall consider the WZW model

of a givon compact, simply connected and simply laced group (i. Let .1 be a connection

mi a three manifold of a bundle with structure group (}. The Lagrangian

c = — (2.1)

is a general covariant one. The Chcrn-Siinons form (2.1) is not well-defined for a group

when its third homoiopy group is not zero, unless the coupling constant k is quantized.

More (; is an integer, corresponding to the level of Koc-Moody algebra in the WZW model.

To quantize l.ho theory ranonicallv, one starts from a three manifold of the form

D x II, where 1] is a compact Riemnnn surface. Ihe Ililberl space depends only on the

two dimensional surface. In fact, one can only treat the Jlilbert space as n (projeclivc)

flat vector bundle over the moduli space of Riemnnn surfaces £ as follows. The action

(2.1) pertains to a constrained system so one must work in the reduced phase space. The

reduced phase space is the set of all flat conned ions modulo gauge transformations. If

the Iliemann surface has inherited a conforms! structure, then the phase space is naturally

endowed with a conformal structure and the usual symplec.lic form restricted on this phase

space is Kahler, By this Kahler polarization one can quantize the theory consistently. This

procedure seems to be the unique way to canouically quantize the theory fora general group

with our requirements'1'. ISul note thai, our theory will not depend on a specific conformal

structure. We llien consider all possible conformal structures, and at a point of the moduli

space the Ililberl, space coincides with the fiber of a. flat holomorphic. vector bundle. This

holomori>hic vector bundle is just that of the conforms) blocks of the WZW mode! on

Riemann surfaces E,

The moduli space is the quotient of Trc.hmiilcr space by the modular group. A flat

vector bundle over it can be completely determined by its twist properties under the mod-

ular group, namely the modular transformations. Knowing all modular transformations

for a given genus, one can in principle construct the flat bundle over the moduli space,

hence cnlcnlate conforrmil blocks as holomorpbir sections of the bundle.

Now we recall what has been defined For a vector in the Uilbert space on a Hicmann

surface for the ('S theory. Ihe genus zero case is trivial since the Ililbert space is one

dimensional. The first nontrivial case is of genus one. Now the Hilberl. space is isomorphic

to the space of charadcrs. Let us consider the character of the primary field corresponding

to the integrable representation II.:. In a three manifold, given a loop C, we define the

The theory of other kind of groups can be quantized by proper constructions, see [!)].
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Wilson line as iho hoionomv nronml (.'

\Vi(C) = Trl'exp I A.
Jc

(2.2)

('onsider MIR solid torus with boundary X, as illustrated in i ig.l , the vector I.tic Ililbert

space corresponding to I tic character \j is given t>y a pa I. h intcgrn.1 with insertion of Wilson

line l(',-((7)t''], Now (7 is parallel lo the h cycle on the torus.

As fur ;i Ricmann surface ofhighcr genus, one considers the handlebody with boundary

X. (fig.3). Instead of Wilson line:, we use graphs constructed from ttie basic baryon graph

(fig.2 shows the case ofgcniis two). Given three representations /?;, ilj nnd fl.j, we associate

the graph with twit indices < and 7, cacti one corresponds to n chiral vertex of type (»j'O nnc^

( j * ; * / * ) . Mere wr use i* to denote the conjugate nf i, we reserve i for the representation

in the right moving sector coupled to i. The vectors in the Hiluert spate are given by

path integrals with insertion of these graphs as in fig.3. Note that the number of choices

of each vertex in the graph is given by the fusion rule /V l j t, so we find thai the number

of Uie independent graphs is just the number of con formal blocks. Note that in the path

integrals, one must use a specific framing, here we adopt the prescription given in [7], Also

the uomalizatiotis of the bnryon graphs are the same as in [7].

We define the generalization of Verlindc's operators here. Consider any loop 7 on

I), (liven a, representation 7, we construct the operator 7',(7) as follows. To set the

problem of framing, we first consider Uie operators associated with the canonical basis of

thr lioiTiolorry group. The framing of rt, or fcj(2) is given liy requiring that the outward

vectors are tangent to the surface (thus untwisted). Then any other loop is framed by

smoothly cunlKxtinR those generators hy which the loop is presented. Now suppose there

is a graph inside the liandlellody which gives the vector | * } in the Ilillie.rt space. We

send continuously another loop 7 on E into the handlebody, associating this loop with the

Cl Without further noticing, by n,- cycles we mean the homotopy rqitiv.ilenl class of* ;

cycles in I. lie nolntion used in the third of ref.[l], to be more specific for later considerations.

Wilson line " ' , (7 ) . The new state after the action of the operator ''^(7) in given by I.tic

path integral with the presence of the original graph and the additional Wilson line. II is

not too difficult to show that this definition is the realization of the holonorny operators

in canonical quantization. The- abelinn case has been considered in [8].

We show that Hi is is Ihe generalization of Verlindc's operators, ft is sufficient lo

calculate the matrices of 7],(o) and l\(b) in the genus one case ''1'. We calculate by the.

method developed in [Bj the partition functions corresponding to figs. I and 5, finding

•%.» (2.3)
(m\T,(b)\n) = JV,™.

These formulas are just ihe ones obtained in [.t].

Ill fact, given an arbitrary graph \\ we can also defined an operator 7'(1') associated

Lo if.. The use of this general kind of operators may play a role in the further study of

WZW models'1'1'. In this paper, we only make use of those operators associated lo Wilson

lines.

We prove the Verlinde conjecture as follows. Consider the Dehn twist along b~l cycle.

Under this twist, we have a —* tib and 4 —• b. Note thai the basis we choose for the Ililbert

space depends on Ihe choice of Ihc homofogy basis. So it) the now basis, a' — i/6, rV ~ b,

Uie matrix elements of /'/)(";), for example, will be the same as those of 7'1(«i) in the old

basis. So in the case of (tie Dehn twist along o~', we must have

''<i("')rnn ~ (T"l" ' i(" ') l") ' = { '"r ' i (°) l"} = 7i(n)»rmi (2.1)

where |ti)' = Yl,n I "O^'mn (' '" ') 's '•'l(l r l c w basis after per form ing ttie Dehn twist. We calcu-

late (m|7',(fl6)|;i) as shown in fig.fi. We do two operations. First, all and b braiding twice,

so there is n factor er.}>(2iri(!im t - / i , — /)„) after resloviug the bariding. Secondly, since the

framing of nb is twisted, there is an addfionai factor c.xp{—2iriA,,) which conlributes. We

f'1) ive note that these operatos are denoted as ̂ ,(n) and 0,(ft) liy Ve.rlinde



Hi us have (in|7',(afi)|n) = cx]t(2iri{hm - hn){m\Tq[b)\n). Suppose Llio modular transfor-

mation of the Dchn twisl is 5(fr'),„,„ and its invecst; S^U 6" ' ) = Smn(/>), 'hr.n we have

(Ami - /in,){m, |7i(6)|Bl) = { m | 7 » | n ) , (2.5)

namely, the matrix f'„,,,, = S(fc)m,nr.xp(27riAn) diagonalizes 7T,(fi), the fusion rules, to the

matrix T,(n). I'llIK is the. statement equivalent U> the Vcrlindc's conjecture, noting that

S(l<) -.= '/ '" '.S'"1 ' / '"1. Urn- we use the notation that T is Ihe modular transformation

c orresponding to the Pedn twist along n, or in matrix elements, 7'mn = Hmne.f.\>(2ti(km -

r/'2l)), and S is the one corrcponding l.o r -» - l / r , vffl -+ ,\m = S B A'mrXn.

Another comlitiiui implies that l!so inatrix 5(fc'') lotnniutos with 7',(i). 'l'hfi fact thai

matrices 7",(fc) can bo siniiiltiineouslv iliagonali/.ctl shows that all Id esc matrices commute

among themselves.

Wr, derive S{t>~f) by using the surgery proccdiirel15'. I'liis is one way we will use in the

next section in deriving S{b~l) on higher genus, it is obvious that S{b~)),n,n = {""I"}'!

equals the partition function of tlie manifold obtained by gluing together I wo solid tori

wild tlie presence of two uuknoted Wilson lines \\'n and !!'„,•, after performing the Dchn

twist along i~' with the first one, where rn* is the c.otijiignte of in. To calm Into this

partition function, we do a surgery along a line parallel to these two lines. Oluing back

n îim Ihe two solir! luri, we have again the manifold ,S"2 x S\ but now with an additional

Wilson line along b. I * v Die rtir.tdod in [fi], we Hnd S(lr^)nm = £ , .¥(')<'„, HT»('J)lm>-

Notice thiit S(l)~ ' ),,iT = (7".S"7')ti, = o.Tp(2Tri/i,).S',,i(7 in our notation. Here we neglect tde

common ptinsr depending on the central charge. We write (his more compactly as

Similarly, we have

(2.6/1)

(2.8/J)

Using the inatrix C delinetl above, we ea.n diagonnlize 5(6 l ) , and hence prove tdnt S(b ' )

is unitary, where (ST)* = C has been used. C is the cliarge conjugation operator.

Our formula (2.fi) seems trivial in the case of genus one. But it is important in tdc

case of higher genus.

3. Modular transformations in higher genus

The formulas of the kind of (2.(5) will play Ihe central role in this section. In fact, Let

C be a cycle picked from the canonical hoinology basis. Again by the surgery argument

and taking into account of the central charge, we find

where by A, we mean /t, — c/2f, c is tde central charge. This formula enables us to convert

the problem of calculating modular transformations into Uie one ofcalculating matrices 7',,.

The formula, can he proven in another way we will shortly demonstrate. It is a well-known

fact that Dchn twists along nonlrivial loops generate the modular group, that is why we

only consider Dehn twists liere.

We denote the vector generated by the graph in (ig.7 as ty(q,, i/,-, iiJ,-,r;, fi). It is easy

to show that this basis is orthogonal:

Modular transformations are global diireoniorphisms of the Hiemiinn surfaces. Untier

a modular transformation, closed curves are mapped to closed curves. Consider a. modular

transformation M which maps n. hortmtopy cycle C to another cycle C. Certainly it will

change Wilson line operator Tn{C) to 7'7((7). Let S{<}) and S(C) be modular transfor-

mations generated by Dehn twists along C and (', respectively. We shall consider the

transformation law

I) | )



Simply by I he argument no used before, we must, have

Since (.he stales |<l>) mill l^1) are arbitrary, we (In

S{C) = MS(C

(3.3)

(3.4)

l,e(, us consider first a single Wilson line operator associated with the n, homotopy

cycle on a liiemarm surface of genus fl. Let the vector be given as in fig-7. Hy some simple

manipulation, we find

namely, by use of this basis, 7',(dj) is diagonal. Similarly we have V'fl(a• °; +1)I*} =

f>i,,nJS<\wi\y)- Wp *"i>riclut]f from these Fads:

(3.6)

and sonic other similar relations.

Now lei. ,S' be Hie modular transformation which maps o cycles to b cycles, namely,

S : «,• - /.,-, fc, — fc,~ V ' ' ' ( - CJIc-arly, 7^{fc,) = .S7 ' , (n , )5- ' . We llicri have

\TqiiH),Tw{b}bjlt] = H, (3.7)

whirli is similnr to (.'(.fi). ('nnside.r llir Drhn twist along a,-, which keeps «y invariant, so

S(tii) ciininmles with T,{aj)- Applying the inodnlnr transformation 5 , we deduce that

.S'(Aj) cuirtTiiiites wil.li 7'T(ftj).

Who« we perform the Dehn twist, a long a, or n f a ^ 1 , , lire line 7,- or u;,- is twistral, so

S(<t,)\V) = ex
(3-8)

Agniti by (lie relation (AT)1' = C for if — I, we can prove the following formula

(3.9)

'Chen by the modular transformation A", we find that the above formula is valid also for

/>(?>,"'), This proves again (3.1).

We now proceed In use this formula to calculate the modular transformation of the

Dehn twisl along 6f'. Here for simplicity, we consider the SU(2) case, since the vertex r is

unique if the fusion rule is not zero, mid we need not distinguish between (lie represennliou

171 and its conjugate m*. As the first example, let us calculate S(b\) in the case of g = 2.

To calculate S(l>\) we need to calculate 7',(ft|), the given entry of the latter is the partition

function of one graph in fig.!) in the manifold A"' x A'1 + A'3 x A*'. We separate this manifold

in to two parts, each one is a manifold S2 x A'1 with boundary A^. On each boundary

there are four punctures, marked by two pairs (qi,q*) and (f/'[,f/i*). We can closed these

two manifolds by gluing n ball R3, in which there is a graph as in fig.10. In fact, path

integrals of those graphs give n complete basis for the Itilbcrt space of A'2 with such fmir

punctures, when m varies. We then obtain two manifolds S2 x A'1 with graphs shown in

figs.ll. We coFisider Rg. I I (a) first. Cuting S2 x .S'1 to result in a, cylinder shows that m = q.

Note that in figs.11 we still mark the orientations of lines, even though in the rase of the

group A7/(2), this is not necessary. After perform cuting and gluing procedure, fig.l i(a) is

changed to fig. I 2, where I he simple baryon graph resides in the manifold A'1'. Now we turn

to fig. I l(b). Still using cutting and gluing, we obtained fig.13, which in turn is equivalent

to fig.t I, we find f/j = q-2, otherwise we have the vanishing result. Separating the graph in

fig.I I into two halves, we finally reach fig.15, with two tetrahedrons. A given tetrahedron

is related to the braiding matrix, as VVil.ten pointed out. in [7]. Here we simply write down

what we have obtained by the operations described above:

-'-';• -'—•—V^ ^—^r = exp[27Ti(/i, + A13 - A.,,,, - A,j)]

05.10,1)
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Substituting r.q.(3.IOA) into eq.(3.l) we obtain

ft,, -

'''I,?!''!!,™', ' \ '"I 7| /

I here is another simpler way to achieve this result. The operations involved arc similar

lo those indicated in fig.23 in [7]. Hut in thai way it is hard to manipulate the phases

appearing in the graphs.

We thus see that, modular transformations generated by the IMin twists along b cycles

are expressed in terms of braiding matrices. Similarly one can calculate 7',(fcj). Proceeding

further, we can prove that the fundamental elements we need to know are 7',(6j) on the

liiomnun surfaces of genus three. When JJ > 3, one can prove that all 7',(fcf) can be written

in the forms of those on g = 3. This in trim implies thai modular transformations for

genus greater titan ',) can be written in terms of modular transformations on genus 3. Our

result I lion indicates that the independent data for modular transformations are those on

genus I, 2 and 3. Modular invariance on higher genus are ensured by modular invariance

on genus I, 2 and 3. This is an interesting result.

lor completeness, we write down for two relevant cases on genus 3. Again the group

is ,S7''(2). First

fiecimdlv, «e cnlcnlate '/',,(«;), which is quarl.ic in braiding matrices:

('/i • i'/, 7:!. 7a- »'i, "-'al'^CiaJki, <li, <l:\, 7a, " 'I . "'s)

/«„ | /»,, - /)•„,, - ft,,,, - h • - I^J)-^ J -^-^^-W^-T^

(3.12)

When r; > 3, 7',(Aj) can be ex|)ressrd in either 7'7(6i) or 7'T(4j) on genus 3. Tor

example we have 7',{fc|) oc T,{bi)\g-3 and T,(6;) oc 71,(62)|,=3, when j > 2. Therefore,

modular irnnsformHlions for 17 > 3 can be expressed in terms of those for g = 3.

4. Some application and conclusion

We discuss here only one application of our result. Further applications will be con-

sidered iti [I3j. Dijkgranf and Vorlindc proved in [3] that, if there is a nondiagonal version

of the modular invariant CFT, there is a nontrivial automorphism of the fusion algebra.

We run extend their result to include the braiding matrices. Suppose we. have n theory in

which the total tlilbert space is

This means that, the one-loop partition function can be in general written as

7, = x • 'I - X, (-1.2)

where II is an integer matrix. Dijltgraaf and V'erlinde showed that IT viewed as a ma.p,

maps i to a unique i in the right sector. Then it is not hard to show that iV,ji = WJJJ-. If

the matrix 11 is nondingonal, then this means there exists a nontrivial automorphism of

the fusion algebrn.

Our consideration in this paper so far is restricicd to the W/VV models. We believe

that our method used here can be extended to any rational CFT. So the results obtained

in the Insl section should S>p valid in the general case. We apply our results to some

consideration on genus 2 similar to that by Dijkgraaf and Vcrlinde.

On higher genus, one can use the factorization argument to show that the partition

function is the sum of products of the generalized characters in both sectors, each pair arc

coupled according lo i —r i. t'or genus 2, we use X(I)I,«,I»I) ' " denote the character corre-

sponding to |*(7i , 1/2, tti|)) we considered in the last section. Now we have a. generalized

matrix 11(2) such Ilia I, the partition function on the liiemann surface of genus 2 can be

12



written as 7(2) = x • "(2) • X- Now any modular transformation must commute with 11(2),

if our theory is modular invariant.

Note that what were used in proving the automorphism of the fusion algebra are

the following facts, first If is symmetric. Second, we have Sji/Sn,j = S;]/Sn j ^ \ this is

equivalent to Sij /Sii j = S;J/SOJ. l,et II be an operator such that |<T>) = 111*). Now

the above statement amounts to HTJJ(«)1I = 7',(rt). Similarly we have in the genus 2 case

II(2)7'$(ni)1I(2) = 7',(«|). (Consider the modular transformation S we discussed before.

We have 7',(ft|) = 57^{«| ).S'+, thus we have.

(4.3)

where (hr fact that .S* commutes with 11(2} is used. VVe note thai H(2) is also symmetric,

since the partition function /?(2) must be real. This is also used in the above derivation.

Substitute what we have obtained for T^(bi) in the last section, and note that actually

we cnn neglect the cxnf.ro factors besides the square of the braiding matrix. This is because

h; — hi = integer, and of what we stated in the last paragraph. We prove that the squared

terms are equal to each other more concretely. For i = 0 we find S{\j/Snj = Snj/Snj = I.

So .%,j/.S'n/i = S^j/Snj, = S"oj/Sn,o, this proves

S<> we find thai, there are also notilrivial automorphisms of squares of braiding matrices.

It is simply the generalization of the result obtained in [I!]. Similar consideration applies

to germs ii case.

In conclusion, in l.his paper we showed thnt all modular transformations can be ex-

pressed in terms of braiding matrices and modular transformations of genus one characters.

This is similar to what Moore and Seiberg suggested'1'. Indeed, by the use of Wittcn's

("hern Simons theory, we find explicitly the relations. However, in contrast to Moore and

S«if)rrjf's work, ostr method shows that the S(j) modular transformations of the one point

functions on the- torus nre not independent data in reconstruction of the projective lint

liolomorphic vector bundles over moduli space of the Ricmann surfaces. Rather, ivc ex-

pect that they <:ait also be expressed in terms of braiding matrices I'3 '. Also what we find

shows that the theory is guaranteed to be modular invariant for every genus provided i(. is

modular invariant for genus I, 2 and ,1.

The polynomial equations are fundamental as the basic ingredients to ensure the

modular in variance. One can in principle construct modular transformations by starling

from these equations. Kill things are not so clear as much ns in the case when we used

Chern-Sirnons theory. Tor example, in proving the second equation in (2.3), one has to

carry many operations!'*'1!. Our results obtained here provide many relations among the

braiding matrices. These relations are not. easy to prove by using directly the polynomial

equations. In addition, we would like to point out that the relation fj ( »,fcjfî  't>~' = 1, will

provide a relation among braiding matrices. For example, the relation will be ofquartic

polynomial equation in the genus 2 case.

We believe further developments along the line in this paper arc possible.
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Figure captions

l'Mg.I A solid torus with a Wilson line inside it, represents a vector in the Hilbcrt space on

the genus one lliemnnn surface.

Tig,2 The baryon graph, with Uvo vertices.

Fig.I! A stale generated by the graph inside the handlcbody.

I'ig.'l Two Wilson linns reside, in 52 x ,9', parallel lo the nonlrivial cycle, with an additional

Wilson line linking one of them.

lpig.5 Three parallel Wilson linr, the partition function is not zero only when A',™ ^ 0.

Pig.fi Three Wilson lines, among them t.ivn are brawled.

Kig.7 A general graph in constructing a basis of Hilberl space on the Riemann surface of

genus i).

l'ig.8 The action o n ; { r n ) .

Fig.9 The partition function of this graph is an entry of the operator '/*,(&,) when <] = 2.

Fig. 1(1 A basis for four punctures of two conjugate pairs.

Fig.11 Hy use of the basis nf Rg. 10, we separate the graph in fig.9 into two ones.

h'ig.12 1'igl I (a) can be cast into the bnxynn diagram.

Fig.13 This is I lie graph obtained from the one in fig. 11 (b), by cuting q? and 7j, and gluing

I hem in other way.

I'ig. I I This graph is equivalent to fig.13.

I'ig.lf) Separate the graph in fig. I I into two halves, (lien attach each on<- a vertex, we obtain

two tetrahedrons, which in turn can be written in terms of braiding matrices.

Ifi
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