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1. Introduction

There has heen steady progress in undersianding 2D conformal field theosy (CEF)2
recenlly. Verlinde's work on fnsion rules is Lhe first indication thal one may classify and con-
strinet CFT by slarling from some hasic data and relations among themt®. Subsequently,
Maoore and Sciberg oblained polynomial equations for data such as duality inatrices which
enable thom to prove the conjecture of Verlinde™ as a by-product. They showed that
classiying rational conformal theories might bo cquivalent Lo classilying all solutions to
those polynomial equations.

Rather surprisingly, Witlen found recently 1hal one can ailack the WZW modelst*!
by studying three ditnensional Chern-Simons theories[6]. The idea is (hat ir the canonical
quantizalion of Chern-Sirmons (CS) theory of a certain group, the ilbert space is isumor-
phic lo the space of conformal blocks in the corresponding WZW model. 1n a subsequent
paper, Witten Tound o kind of basis of conformal blocks on any Riemenn surfacel). In
this paper we work out modular transformations acting on Lhis basis. We found that
the modular transformations wnder basic PDehn twists around hometopy cycles on genus
¢ Wicmann surfaces are linear combinations of the holonomy mattices around the corre-
sponding eycles. The nontrivial holonomy matrices in Witlen’s basis are the ones for b;
(7 = 1,---,g) excles which we found Lo be expressible in terms of braiding matrices. 'I'he
fact that modular transformations can be expressed so is not surprising, Moore and Sciberg
already suggested it in their fundamental workst!), nsing diferent methods. However, we
found our method simpler and less dala involved.

The method we use is siinilat Lo the one used by Dijkgraal and Verlinde in proving
Verlinde's conjecinre™. We find that in WZW models one can extend the operators defined
by Verlinde for genus one ko higher genus, and in fact the operalors can be realized by path
integrals in the Chern-Simons theory. The resull is a generalizalion of what was obtained
by Verlinde in the case of genus one, namely the holonomy matrices around ¥ cycles can

he diagonalized Lo the form of holonomy matrices arround a eycles. The fact that onr
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method is the generalization of the one used in [3§] convinces us that onr resull is valid for
any rational conformal field theory, not only lor the WZW models we consider here for
convenience.

Let 5(by ), say, be the modular transformalion corresponding Lo the Dehn twist along
eyele by, One of our main resalts is 0q.(3.10), for the genus 2 ease. This result directly
generalizes Lo higher genus, with help of eqs.(3.1), (3.11) and {3.12). The modular trans-
formations generated by Dehn bwists afong a cycles, in some sense, are trivial. Since the
maodular groups are generaled by basic Dehn twists, our result thus pravides the basic
hlocks for construciing representations of modular groups.

Moure and Seiberg conjectured in [9] thal all ralional conformal ficld theories can be
constructed from 241 Chern-Simons theories. If this could be finally proven true, then
onr consideration here is essenlially comnplete.

In section 2 we define the Verlinde operators for W2W models and describe the method
we will use for higher genus in the case of genus one. This proves Verlinde’s conjecinres
again. We then present our main resull in section 3 and discuss some application in secloin

B

2. Nenlization of Verlinde operators in the Chern-Simons theory

As showa by Witlen, three dituensional Chern-Simons theory is closely related to the
Wess: Zumino-Witten model in two dimensions. lere we shall consider the WZW model
of o given compacl, simply connected and simply laced groap (7. Lel .\ be a conneetion
on o three manifold of a hundle wiih structure group €. The Lagrangian

k 2
L£=— ] Tre{AAadi+ A" {z.1)
A Jar 3

is a general covariant one. The Chern-Simons form (2.1) is not well-defined for a group
when its thied homotopy gronp is not zero, unless the coupling eonstant & is quantized.
flere k 38 an integer, corresponding to the loevel of Kac-Moody algebra in the WZW model.

To quantize the theory canonically, one slarts from a three manifold of the form

3

¥ x H, where £ is a compact. liemann surface. The iflilbert space depends only on the
two dimensional surface. Tn fact, one can only treat the Tilbert space as a (projective)
Nat veclor hundle over the moduli space of Riemann surflaces T as folows. The action
(2.1) pertains Lo a consirained syslem so one must work in the reduced phase space. ‘The
reduced phase space is the set of all flat conneclions modulo gauge Lransforinations. T
the Riewmann surface has inherited a conformal structure, then the phase space is naturally
cndowed with a conformal siructure and the nsual sympleclic form resiricted on this phase
space is Kahler, By this Kahler polarization one can gnantize the theery consistently. This
procedure seetns to be the nrnique way lo canowically quantize the theory for a general group
with anr requirementstt). But note thal our theory will not depend on a specific conformal
structnre. We then consider all possible conformal structores, and al a point of the moduli
space (he {lilbert space coincides with the fiber of a flat holomorphic vector bundle. This
holomorphic vector bundle is just that of the conformal blocks of the WZW model on

Riemann surfares X,

The moduli space s the quotient of Techmiiler space by the modular group. A flat
vector bundle sver H ean be compleiely determined by its twist propertics under the mod-
ular group, namely the wodular transformations. Knowing all modular transformations
for a given genus, one van in principle construct the flal bundle over the mednli space,

henee ealenlate canformai blocks as holomorphic sections of the bundle.

Neaw we recall what has heen delined for a vector in the Milberi space on a Ricinann
surface [or Lthe C§ theory, The genus zero case is trivial since the [lilhert space is one
dimensional. The first nontrivial case is of genus one. Now the Hilbert space is somoerphic
to the space of characiers. Let s consider the characler of the pritnary ficld corresponding

i the integrable representation ft;. in a three manifold, given a loop C, we define Lhe

{1 The theory of other kind of growps can be quantized by proper constraclions, see [9).
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Wikson line as the holonomy around €

Wi(C) = TrPesp )£ L. (2.2)

b
JC

Consider the solid Lorus with boundary X, as illnstraled in fig.1, the vector - the Milbert
space corresponding to the character y; is given by a path integral with insertion of Wilson
line W) Now (7 is parallel o the b eyele on the tarus.

As for a Riemann surface of higher genus, one considers the handlebody with boundary
¥ (fig.3). Instead of Wilsun lines, we use graphs constructed from the basic baryon graph
(fig.2 shows Lhe ease of geans two). Given three representations Ry, Jt; and Ry, we associale
ihe graph with two indices ¢ and €, each one corresponds to a chiral verlex of type (ijf) and
(i*j70*). lere we nse i* to depote the conjugate of §, we reserve 1 for the representation
i the right moving seclor conpled to 4. The veclors in the ilberl space are given by
palli integrals with insertion of Lhese graphs as in fig.3. Note that the number of choices
of each vertex in the graph is given by the Tusion rule Njjy, so we find that the number
af the independent graphs is just the number of conformal blocks, Noete that in the path
integrals, one musk nse & specific framing, here we adopt Lhe prescriplion given in [7]. Also
{he nomalizations of the haryon graphs are the same as in [7].

We deline the generalization of Verlinde’s operalors here. Consider any loop v on
3. Given a represeniation g, we construel the operator Tp(v) as llows. To set the
prablem of framing, we first consider Lhe operalors associated wilh Uhe canonical basis of
the homolegy group. ‘The framing of a; or £;() is given by requiring thal the oulward
vectors are langent Lo the surface (s untwisted). Then any other loop is framed by
smoathly conneeting those generators by which the loop is presenled. Now suppose there
is & graph inside the handlebody which gives the vector [} in the Hilbert space. We

send eontinuonsly another loop ¥ on £ into the handlebody, associating this loop wilh the

2 Without farther nolicing, by a; cycles we mean the homolopy equivalent class of &
cyeles in the notation wsed in the third of rel 1], to be more specific for later considerations.

B

Wilson line Wo(y). The new state alter the action of the operator T.(y) is given by the
path integrat with the presence of the original graph and the addiiional Wilson line. 11 is
nol too diflicult 1o show that this definition is the realizalion of the holonomy operators
in canonical quantization. The abelian case has been considered in [8].

We show that this s Lthe generalization of Verlinde's operators. . is suflictenl to
3

valculate the matrices of T,(a) and T,(b) in the genus one case ), We caleatate by Lhe

method developed in [6] Lhe partition Tinclions corresponding to figs.l and 5, lnding

g _ San
{m[Ty(a){n} = Som brnn {2.39)

(mfT,(B)]n) = N

These formunlas are jnsi the ones oblained in [3].

In facl, given an arbitrary graph ', we can also defined an operator 1(1') associated
Lo if. The use of this general kind of operalors may play a role in the further study of
WZW modelsU' . In this paper, we only make use of those operalors associaled lo Wilson
lines.

We prove the Verlinde conjecture as follows. Consider the Dehn (wist along 87" cyele,
Hader this twist, we have n — abanmd b — b, Nole Lhal 1he basis we choose for the Hilthert
space depends on the choice of the komology basis. So in the new basis, o' = ub, ' = b,
the matrix elements of To(al), for example, will be the saine as those of 7, (a;) in the ol

basis. So in the case of the Dehn twisl along §7', we nust have
Ty Yo = (o Tyab)[) = Ty (@)} = Ty (hun, (2.1)

where [} = 3, |8 (07") is the new basis alter performing the Dehn iwist. We caleu-
late ({7, (ab}{n} as shown in ig.6. We do two operations. First, ab and & braiding twiee,
so there is a faetor exp(2wi(hy,, + b, — ho) alter resloving the bariding. Secondly, since the

framing of @b is twisted, there is an addiional factor ezp(—2wih,) which contribuies. We

%) we node Lhat these operatos arc denoted as g, (a) and ¢,(F) hy Verlinde
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thus have ({7, (ab)ln} = cap(2mi(h,, — ha){m|T,(B)|n). Suppose Lhe modular transfor-

mation of the Dehn dwist is S(b71),,. and its inverse SpL (57') = Spa(b), then we have

frome (2.1):
Y BBV SO Yoy ez p(@ithn, — i, Yo [Ty (B0} = {m T, (a)]n), {2.5)
myny
namely, the matrix O, = (b} nexp(2rik,) diagonalizes T,(h), the lusion rules, to the
maleix T,(a). This is the siaterment cquivalent Lo the Verlinde's conjecture, noling that
S(h) = T'SPP 0 Here we use the wotation that F is the modular iransfornation
vorresponding Lo the Dehn wist along a, or in matrix elements, Ty = Smpexp{2ri(h,, -
«/21)}, and S is the one correponding to 7= —1/7, X = Xm = Yop SinnXn-

Aunther condition implies that (e imateix (b~} commutes with 7,(b). The fact Lhal
matrices T.{b} ean be simubtaneously diagonalized shows that all (these matrices commute
among themselves.

We derive S(67') by using Lhe surgery procedurel®]. This is one way we wilt use in the
next section in deriving S(b7') on higher genus. It is obvious that $(7" ) = {(mn),
equals the parlition function of the manifold obtained by gluing Logether lwo solid tori
with the presenee of Lwo unknoted Wilson lines W and ., after performing the Dehn
twisl along =1 with the first one, where m* is the conjugate of m. To calculale this
partilion fanction, we do a surgery along a line parallel Lo Lhese two lines. (Hluing back
again the two solid Lori, we have again the manifold §2 x 8 but now with an additional
Wilsen line along . By the method in (6], we find S0 )0 = 3o, S0 {nfTy (b} m}.
Notice that S(h 1), = (FST), = erp(2wih,)8,, in our noiation. Ilere we neglecl the

common phase depending on the central charge. We write this more compactly as
Sy =Y TS 1 (h). (2.64)
7

Sunilarly, we have

Sy = Y TS (h). (2.68)
q

Using the matrix ¢ defined above, we can diagonaiize $(67!), and hence prove that S(6=1)
is unitary, where (ST)? = ( has been used. ' is the eharge conjugation operator.
Our formula (2.6} scems irivial in the case of genns one. Bul it is importanl i the

rase of higher genus.

3. Modular transformations in higher genus
The formulas of the kind of (2.6} will play the central role in this section. In facl, Let
' be a cycle picked from Lhe canonical homology basis. Again by the surgery argnment

and taking imo account of Lie central charge, we find

S(C) = 3 etrithatbolg, n(c), (3.14)
7

S(()) - ZC_?".(’..'+A")ng(:;’];;((,"), (3] H)

q

where by fa,, we mean fir, — /24, cis the central chatge. This formula enables us Lo convert
the problem of calenlating modnlar iransformations inlo Lhe one of calenlating matrices 15,
The formula can be proven in another way we will shorlly demonstrate. His a well-known
fact that Dehn twists alang nonlrivial loops generale the modular group, that is why we
only consider Dehn twists here,

We denale the veclor generated by the graph in fig.7 as (g, i, wy, e, ). W is easy

Lo show thal this basis i orihogonak:

|
Qb (gl g, wh G i (g di w6 G = ooy H5,,.,,;5%5;5“1.‘...;5,,‘,'_5;,;:. (3.2)
dna g

Madular transfortrations are global diffeomorphisims of the Riemann surfaces. Under
a madular transformation, elosed enrves are mapped Lo closed enrves. Consider a modular
transformation M which maps a homaelopy eyele ¢ to another eyele . Cerlainly U wilb
change Wilson line uperator T{C} tu 1,06 Let () and .‘)‘((:‘) be modular transfor-
mations generated by Dehn twisls along ¢ and €2, respectively.  We shall consider the

transformation law

) — [¥) = A |w)

Ty = T (C), S(0) = S(0),



Simply by the argomenl we nsed before, we must have

(BIT(C) W) = (BT (C)) = (LA T (C) M | W)

o ! (3.3
(BIS()19) = (BISIONF) = (1A SEMW),
Since the stales [$) amd [W) ace arbitrary, we deduce
TC) = MT(CYM™!,  §(C)= MS(CIM ™. (3.4)

Let us consider first a single Wilson line operator associated with Lhe #; humolopy
eycle on a Rierann surface of genus g Let the veclor be given as in fig.7. By some simple

inanipulation, we find

T )l) = 222 ), .- (35

AR 1
. s Con - ot -1
namely, by nse of this basis, Ty(a;) is diagonal. Similarly we have To(min )W) =

8w/ 8o, ¥ We conclude from these facts:
[Tyl )y Tula;)] =0, [Ty(a), Tulejajf] =9, {3.6)

and some other similar relations,
Now lel § be the modular transformation which maps a cycles 1o b cycles, namely,

S = b by — bﬂn:‘h;. Clearly, T,(b) = 8T, {2;)8~'. We then have
[1a(b), Tl =0, {To(b), Tul(bibyy ] =0, (3.7)

whick is similar to (3.6). Consider the Dehn twist along ai, whieh keeps a; invariant, so
S(a;) commules with Ty{a;). Applying the todular transformation S, we deduce that
S5(8;) commutes with 7 (b; ).

When we perform Lhe Tehn twist along a; or n.,-u.l-‘_:!, the line g; or w; is Lwisted, so

()| ¥) = exp(2wihg, )|V} 58)

S(njal )W) = exp(2miky,,)|¥).

1

Again hy the refation (ST)? = €' for g = t, we can prove the following formula
Sta7')y =Y " exp(2mi(hy — o/ 12))S0,4Tyla:). (3.9)
1

Then by the modular transformation 5, we find that the above formula is valid also for
S(h7"). This proves again (3.1).

We now proceed Lo nse Lhis formula to caleulale the modular transformation of ihe
Dehn twist along b, 7. Ilere for simplicily, we consider the SU(2} casce, since the vertex  is
unique if the fusion rule is nol zero, and we need not distinguish between the represenation
m and its conjngate m*. As the firsl example, lel us caleulate S(b) in the case of 7=2
To calendate S(b ) we need Lo caleulate Ty{8), the given eniry of the Jatler is the partition
Minetion of une graph in hg.9 i the manifold §7 x §' 457 x §'. Weseparate this manifold
in to tbwo paris, cach one is a manifold 52 x §' with boundary 82, On cach boundary
there are four punctures, marked by iwo pairs (:,¢7) and (g}, ¢)"). We can closed these
two manifolds by gluing a ball B3 in which there is a graph as in fig.10. In faci, path
integrals of those graphs give o complete basis for Lhe Hilbert space of §2 with such four
punctures, when m varies. We then oblain two manifolds 7 x §' with graphs shown in
figs. bl Weconsider fig.1 1{a) first, Cuting §? x §' to result in a cylinder shows that m = q.
Note that in figs.}l we still mark the orientations of lines, even though in the case of the
gronp SU(2), this is nat necessary. Aflter perform cuting and gluing procedure, fig.11(a) is
changed to fig. 12, where the simple basyan graph resides in the manifold 5%, Now wa turn
o fig. [1(b}. SLiN using culiing and gluing, we oblained fig.13, which in tuta is equivalent
io fig.tl, we find g5 = g2, oltherwise we have the vanishing resull. Separating the graph in
fig. 11 into Lwo halves, we linally reach fig. 15, with two {etrahedrons. A given Letrahedron
is related to thie braiding malrix, as Wiltten pointed out in [7]. Here we simply write down

whal we have obltained by Lhe operations described above:
(a1, 95, 0| T (b Yqu, gu, w1}
(g, a2, mi|q g2, wy)

= expl2mi(hy + hyy — By = fg0)]

S04
Su,g7 0wy g ( g q2 ) ( )
Son, Sn,wj e Nuny g )
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Substiluting eq.{3.10A) into eq.(3.1) we oblain

(q'll qfll !I‘Ji i"r"(hl-l )Wl » @2, Wy
(fﬁ y 2, 1N |'TI 142, "*'I}

) = Z.:-_.\:[:[21\1'{24’1.,r gy = hy = )50,
! {3.108)

“20,.q7 Lgﬂ,uq Hz , q G2
S“.vusu,m; N wy g

There is anotlier simpler way Lo achicve this result. The operations involved are similar
fo those indicated in g 23 in [7). Hut in thal way it is hard Lo manipulate the phases
appearing in the graphs,

We thus see that modular trapsformations generaled by the Dehn twists along b cycles

are expressed in terms of braiding matrices. Similarly one ean caleulale T,(bz). Proceeding

further, we can prove that the fundamental clements we need to know are T,{8;) on the '

Biemann surlaces of genus three. When g > 3, une can prove that all T, (b;) can be written
in the forms of those on g = 3. This in lrun implies that modular (ransformations fur
genns grealer an 3 ean be wrillen in terms of modnlar transformations on genus 3. Our
resubl then indicates that the independent data for modular transformations are those on
genus 1, 2 and 3. Maodular invariance on kigher genus are ensured by modular invariance
on gewus 1, 2 and 3. This is an inleresting resull.

For completeness, we wrile down for Lwo relevanl cases on genns 3. Again the group
i ST7(2). Virst

4 @ty Ty w0y T (00 gy, 2, G, 2, oy, tg) = eap(2milhy + by, — f, — byt )}

| Sn m; Sn .7'— [ P T
SRS BN s AL 2 7 4z [
; ! thm" ( ”q’.,m'l ( ) bq:‘q;‘shq",‘sqﬂs‘i;'swzmi‘_

. ' '
-c"u‘,,;'l ey wyq wy

(3.11)

Secondly, we ealenlatle 1,(b;), which is quartic in braiding mairices:

{r e, gy g, w0, (B2)lgr, g2, G2y 72, w0, wn)

, 5
Sorwy Sy 5‘(1,.;"2 So.q,

g e !
= oeap(2wi(2hg + by, g, = by g, - h’?'? - hq";))ﬁﬁ S ot S0t 009 0,5
v REALN AR APt 5 ] 92

0
q ¢ ¢ M q g 7 g
By, B, Y B, Tians o ) Bayat Basa
T (H'| f{{;) Fzom! (?U| 'I;) 72,00, (")2 q;) ’-’rp.w, (w? ‘I‘z) LRI SR )
(3.12)
bl
v g e K i AP N NN A o

[

When g > 3, T;(h} can be expressed in either T5(81) or T5(b3) on genus 3. For
example we have 7,(b,) o Ty(b1)]g=3 and T,(b;) o Ty(b2)|g=3, when j > 2. Therelore,

modular transformations for g > 3 can be expressed in terms of thuse [or g = 3.

4. Some npplicat%on and conclusion

We discuss here only one application of our resull. Further applications will be con-
sidered in {13]. Dijkgraal and Verlinde proved in [3] that if there Is a nondiagonal version
of the modular invariant CFT, there is a nontrivial antomorphism of the fusion algebra.
We can extend their resull to faclude the braiding matrices. Suppose we have a theory in

which the tolal [Tikheri space is
H o= D[] @ (] (1.1
‘This meauns that, the one-loop partilion funciion can be in general writlen as
A=% -y, (1.2)

where 11 is an integer mairix. Dijkgraal and Verlinde showed that IT viewed as a map,
maps { to a unigue 1 in the right sector. Then it is not hard o show that Ny = Ny If
the matrix Tt is nondiagonal, then this means there exists a nontrivial antomorphism of
the fusion algehra,

Our consideration in Lhis paper so far is restricled Lo the WZW maodels. We bheheve
that onr method used here can be extended 1o any rational CFT. 8o the results obtained
in the last section shonld be valid in the general ease. We apply our resalts Lo some
cunsideration on genas 2 similar Lo that by Dijkgraal and Verlinde.

On higher genus, one can nse the factorizalion argument to show thal the partition
function is the sum of prodnets of the generalized characiers in bolh seclors, each pair are
coupled according (o 7 — 7. For genns 2, we use xig, g3.m,) (0 denete the character corre-
sponding to [¥{g,, 42, 1)) we considered in the last section. Now we have a generalized

matrix 1(2) such ihal the partition funclion on the Riemann surface of genus 2 can be

12

| W'}



writlen as Z(2) = ¥-11(2) - y. Now any modular Lransformation must commuie with 11(2),
il vur theory is modular invariant.

Note that what were used in proving the astomorphism of the {usion algebra are
the following Tacts, first 1T is symmetric. Second, we have §;;/8n; = 5 ; /SUJ["‘], this is
cquivalenl to S;;/Sn; = S;;/Sa;. let 1l be an operaler such that |¥) = 11|$). Now
the above statement amonnts to 1T ()1l = T,(a). Similarly we have in the genus 2 case
H(2)1; (m 11(2) = Ty(a)). Consider the modular transformation § we discussed before.
We have To(0)) = ST,y{n)}5T, thus we have

{BIT7(h W) = (B2 T4 (b)) (|¥)

(4.3)
= (B(DN(D)ET5(a)SH M) = (¢

T, (b))

where the fact that § commuates with 11(2} is used. We note thal 11{2) is also symmetric,

sinee the partition function Z{2) mnst be real. This is also used in the above derivation.
Substilule whai we have oblained for 7,(b,) in the last seclion, and role that actually

we can negleet the exatbra factors besides the square of the braiding matrix. This is because

h; — by = inleger, and of what we stated in the last paragraph. We prove that the squared

terms are equad Lo cach other more coneretely. Tori = 0 we find 8z ;/50; = S0 /8o = I.

S0 Si;/Snp = Snz/8ua = So.j/Sno, this proves

Sn,u’SLIJ — S(l,u'Sn_j
Snj-‘;ﬂ,rﬁ Sn‘rSU,m '

Sa we fimd thal, there are alse nonlrivial antemorphisms of squares of braiding malrices.

I is simply the generalization of the result obtained in [3]. Similar consideration applies
Lo genus § case.

In conclusion, in this paper we showed that all modular iransformations can be ex-
pressed in terms of hraiding matrices and modular transformations of genus one characlers.
This is similar Lo whal Moore aud Seiberg snggested', fndecd, by the use of Witten’s
Chern-Simons theory, we find explicitly the relations. However, in contrast to Moore and

Seibery’s work, ear method shows that the $(j) modular transformations of the one point

13

functions on the torus are not independent dala in reconstrnciion of the projeclive [iat
holomorphic veelor bundles over modnli space of the Riemann surfaces. Rather, we ex-
peet that Lhey can also be expressed in terms of braiding matrices U™ Also what we find
shows that the theory is guaranieed io be modular invariant for every genns provided il is
modular invarianl for genus |, 2 and 3.

‘The polynomial equations are fundamental as the basic ingredienls o ensure the
modular tnvariance, One car in principle construet modular transformations by starting
from these eqnations, Bul things are noil so clear as much as in the case when we used
Chern-Sirmons theory. For example, in proving the second equation in (2.3), one has to
carty many operationst™ ' Our results oblained here provide many relalions among the
hraiding matrices. ‘These refalions are not easy Lo prove by using directly the polynomial
equalions. In addition, we would like to point out that the relation []; aifia; b7 ' = 1, will
provide a relation among braiding mairices. For example, the relation will be of quartic
polynomial equalion i the genus 2 case.

We believe Turther developments along the line in this paper are possible.
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Figure captions

A solid torus with a Wilson line inside i, represents a veclor in the lilbert space on

the genus one Riemann surface.
The baryon graph, with (wo vertices.
A staie gencrated by the graph inside the handlebody.

Two Wilson lines reside in 52 x §', paralle] to the nontrivial cycle, with an additional

Wilson line linking one of them.

Three parallel Wilson line, the partition function is nol zero only when N 7 # 0.
Three Wilsen lines, ainong them two are braided. .

A general graph in constrocting a basis of Hilbest space on the Riemann surface of
genus g.

The action of Ty{a;).

‘The partition function of this graph is an entry of the operator Ty () when g = 2.

A basis Tor Tonr punctures of two conjugale pairs.

By tse of the hasis of fig. 10, we separate the graph in fig.9 into two ones,

Fig. 11{a) can be cast into the baryon diagram.

This is the graph obtained from the ane in Tig. ) 1{h), by cuting g2 and §, and gluing
them in oiher way,

This graph is eqnivalest to fig. 13,

Separate the graph in fig. 11 into two hafves, then attach each one a verkex, we obtain

lwo tetrahedrons, which in turn can be writlen in terms of braiding matrices,
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