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ABSTRACT

Every branched guperminimal surface of area 4ird in S* is
shown to arise from a pair of meromorphic functions ( / i , /?) of bidegree
(d, d) such that / i and fi have the same ramification divisor. Condition*
under which branched superminimal surfaces can be generated from such
pairs of functions are derived. For each d > 1 the space of harmonic
maps (i.e branched superminimal immersions) of S1 into S* of harmonic
degree d is shown to be a connected space of complex dimension 2d + 4.
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Introduction. In a study of minimal surfaces in euclidean spheres,
Calabi showed that every minimal immersion of S2 in S™ arises from
an isotropic map to projective space ([4], [5]). This work was used by
Bryant who showed that every compact Riemann surface can be super-
minimally immersed in 5 4 . There exist Calabi-type theorems represent-
ing harmonic maps of S2 into other locally symmetric spaces in essen-
tially algebro-geometric terms. These are of interest to people studying
©•-models in physics. In this paper, we study the space of branched
superminimal immersions of compact Riemann surfaces into S4.

In §1, we characterize branched superminimal surfaces in S4 by pairs
of meromorphic functions with the same ramification divisor. This is
done by constructing a contact map between P3 and PTfCP1 x CP1)
where P3 is the blow-up of CP3 along 2 skew lines. The bidegree of such
a pair is related to the degree of the canonical lift of the surface in CP3.
We then show that if in addition the surface is linearly full (i.e. not
contained in any strict subspace of Rs) then the pair of meromorphic
functions has bidegree (d, d) where d > 3 and where the 2 functions do
not differ by a Mobius transformation.

In §11, we analyze the space of harmonic maps of S2 into S4. By
examining the projective geometry of certain Grassmann varieties, we
show that the space f)d of harmonic maps of S2 into S4 of degree d
is a connected space of complex dimension Id + 4. We also construct
examples of unbranched superminimal surfaces of genus 0 in SA of area
4wd for d > 3.

In §111, we consider branched superminimal surfaces of genus g. We
discuss conditions under which a pair of meromorphic functions on a
Eiemann surface £ can give rise to a branched superminimal immersion
of E intoS4.



Preliminaries. Let E be a compact Riemann surface and ip : E 9-» S4

an immersion into the unit 4-sphere. Let B denote the second funda-
mental form of \j>. Then ^ is a minimal immersion if the mean curvature
H:= trace B vanishes identically. More generally, ^ is a branched min-
imal immersion if it is minimal away from the set of isolated singular
points. These are precisely the nonconstant conformal harmonic maps.
Observe that any harmonic map i> : S2 -* S4 is automatically con-
formal. Thus, branched minimal immersions of S2 in S4 are just the
nonconstant harmonic maps from S2 to S4 (Eells-Lemaire [7]).

Let ip : E 9-> S4 be a (branched) minimal immersion of a compact Rie-
mann surface in S4. Let x and y denote the local isothermal coordinates
on E. Consider the holomorphic quartic form * G H°(E; (Q1)4) defined

by •:= v -vdz4 where v = \{B (A £ ) - iB (A £ ) } , and
where "•" is the complex bilinear extension of the dot product to C5.
We say that ip is a (branched) superminimai immersion if $ vanishes
identically. This means that V has a holomorphic horizontal lift, $, to
CP3 (Bryant [3], Chern-Wolfson [6], Lawson [10]). Observe that since
S2 has no nontrivial holomorphic quartic differentials, every branched
minimal immersion (i.e. harmonic map) of 5 2 into S4 is automatically
branched superminimai.

Consider the Calabi-Penrose fibration IT : CP3 -> S* - HP1. This
fibration can be obtained via a quotient of 2 Hopf maps. Choose ho-
mogeneous coordinates (^0,^1,^2,^3) for CP3. Consider C4 ?£ H2 as a
quaternion vector space with left scalar multiplication, where the iden-
tification is given by (zo,zi, 23, z3) »-* (*o + *iii £2 + Z33). The Kahler
form of the Fubini-Study metric is given by u = 66 log ||z||2. The Calabi-
Penrose fibration is then given by the quotient

with fiber CP1. The horizontal 2-plane field H for IT is given by a 1-form
whose lifting to C4 - {0} is

- zx dz0 dz3 -

Superminimai surfaces in S4 are just the projections to S4 of nonsin-
gular holomorphic curves in CP3 which are integral curves of H. Unfor-
tunately, it is difficult to find integral curves of % directly. Our search for
superminima] surfaces would be vastly simplified if we can find a contact
manifold (M,F) birationally equivalent to CP3, where it is easy to find
integral curves of the contact plane field T. Robert Bryant has found
a birational correspondence between CP3 and the projectivized tangent
bundle of CP2 carrying H to the contact plane field of PT(CP2). Using
that, he was able to prove the following result:

THEOREM (BRYANT [3]). Every compact Riemann surface admits a
superminimai immersion into S4.

In this paper, I will be using another contact manifold—PT(PX x P1).
From now on, I will let P" denote CPn.

I. SOME PROJECTIVE GEOMETRY

1. Holomorphic contact structures. Let V be a complex (2n + 1)-
manifold. A holomorphic contact structure on V is a nondegenerate
holomorphic distribution T of hyperplanes on V (i.e. the orthogonal
spaces of some twisted holomorphic 1-form). (cf. Arnold [1], LeBrun
[12]).

Let M be a complex n-manifold. Then the projectivized cotangent
bundle of M has a canonical holomorphic contact structure. Now let
7r : PT* M —* M denote the projection map onto the base space. A
point if e PT*M defines a hyperplane Pv in T^M. The contact
hyperplane at <p is given by ( J C 1 ^ ^ ) . Thus the canonical contact
2-plane field K. at a point y e PT{Pl x Pl) ^ PT'fP1 x P1) is given by
{T7l)y(Ly) where Ly denotes the tangent line at ir(y) corresponding to
y-

The Calabi-Penrose fibration p : P3 -+ S4 has a contact 2-plane field
% orthogonal to the fibers of p with respect to the Fubini-Study metric.
The 2-plane field H for p is given by a 1-form whose lifting to C4 - {0}
i £1 = \\z\\~2(z0 dzx - z\ dz0 + z2 dz3 - z3 dz2). Let u> := dz0 A dzx +

hdzs denote the standard holomorphic symplectic form on C4. Let
o a a fl

is £1 =

!— + z2jr- + z3oz\ 0Z2
-. Then fi = ; JW.

2. Projection to P1 x P1. Consider the 2 distinguished skew lines
in P3 defined by Lx := p'^N) = {[0,0,^,^] | [z7,z3] e P1} and
L2 := p'^S) = { [za,zi,0,0] | [zo,z{\ € P1}, where Â  and 5 denote
the north and south poles of S4 respectively.



LEMMA 1.1. There is a well defined projection map pr : P3—(LiUL2) —<•
P1 x P1 with P1 as fiber.

PROOF: It suffices to show that there is a unique tine L through each
point x 6 P3 - {L\ UL3) which intersects L\ and Li. The intersection of
L with Li and La (identifying L\ x Li with P1 xP1) gives us the desired
projection map. For each x € P3 - (Li U L2) consider the planes Px

and P2 in P3 defined by Px = span(x,Li) and P2 = «pan(x,Z.2)- Since
L\ and Z2 are skew, Px and Pj intersect in a line L which contains the
point x and which intersects both L\ and £2- I

PROPOSITION 1.2. The fibers of pr : P3 - (Lt U L2) -+ P l x P1 are
horizontal with respect to p (i.e. the fibers of pr are integral curves of

n.)
PROOF: Let (x,y) 6 L\ x £2. Let L denote the line through x and y,
i.e. L = pr~1(x,y). Denote the inverse images of L, L\, L2, x and y to
C4 - {0} by P, Pi, P2, tx and /„ respectively.
NOTE: Pi and P2 are orthogonal with respect to w,. Let A e Pi and
B € P?. Then A = {0,0, a, b) and B = (c, d, 0,0) for some o, 6, c, rf e C.
It is dear from the definition of w that u>(A,B) = 0. Since w is skew,
we also have u(A,A) = u(B,B) = 0.

Now pick nonzero vectors X € tx C Pi and Y € £v C P2- Observe
that P is spanned by X and F. Now let Vx = aX+0Y and Va =
be 2 vectors in P. Then by the note, u(Vi,Vi) = 0. Thus u> vanishes
on P. Let p : C4 - {0} -+ P3. Since £ is tangent to the fibers of p and
Qj^ = |Jz||~3(^ JW) | P , we see that ft vanishes on L. Thus L is horizontal
with respect to p. |

3. The contact map. Let X denote the blow up of P3 along L\ and i j ,
{ ( ) J ^ol/i = ^ij/o, 22I/3 = Wi }•

1 1
i.e. Ar:=
Note that AT is a P'-bundle over P . ' x P

J1: * : X ~* P1 x P1 where

7f ([z0, zi, z-i, Z3], [yo,yi], [1/2, Jto]) = ([j/o, !/i], [j/2, I/a]) •
For ease of notation, let Y denote PT*(PJ X P1) 2 PTfP1 x P l) . Let
i(> : X —+Y he defined by

•fi ([*<>, 21, ̂ 2, ̂ 3], [(«), j / i ] , [s/2, to]) = ([yo,i/i], [j/z> to],

[zo rfj/i - z\ dpo, zi dyz - z3

We have the following diagram:

•I
P1 xP1 P1 xP1

Observe that H extends to all of X, and for x e X, xt(Hz) is a tangent
line in T ^ P 1 x P1), i.e. * . (« , ) € PTf^fP1 x P1). Furthermore,
ir = TTOV> where ir is the projection to P1 x P1. Now let t \- ir» {Tic). Then
K1^) is the contact plane at t G 7 . Now * = ir,(?^) = (sro^J.fW,) =
** o $.{HX). Thus, *;\t) = 1>.(H,). We thus have:

LEMMA 1.3. %l> k & contact map, i.e. i>* sends the horizontal plane field
H in X to the contact plane field K in Y.

The blow ups, ffi and <r2, of the 2 distinguished skew lines Lx, L2 € P3

are given by

and

J [^o.^i] € P1 and[y2)j/3]€P1}

0,0,^2,^3], bo,3/i], [*a,

and

^2 ~ {([*o,*i,0,0],[20,*i],Ilte

We observe that

iK^i) = { (bfe. tfil, [*2. ^3J, [1,0]) I bra. Vi] e P1 and [z2, z3] e P1}

and

^2) = {([^o.^.bft.wMO, 1]) [ [*o,*i] G P1 and [y2, y3] £ P1}

PROPOSITION 1.4. %p is a branched 2-/bic/ covering map. It is branched
precisely along o\ and <r2

This proposition will be proved in the next subsection.

4. The involutions on X and S*. We first define an involution
a : X — X by

<*([*<>, *1, *2, *3], [j/0, »l], [»,»3]) = (fa>. «1, -^2 , -^ 3 ] , [t/0,ffi], [»,»3])

(Actually, a is an involution on P3 which is extended to X in a trivial
manner.)
NOTE:

(1) a|ffi = Id, a\^ = Id and a*ft = Q.
(2) By Note 1, a. maps the horizontal plane Hx at x 6 X to the

horizontal plane WQ(r) at a(ar).
(3) Let u € £1 and w G 12. Denote by tuv the line in P3 uniquely

defined by u and v. Since a(u) = u and a(v) = r, we have



<*(*««) = 'u« Consequently, if o a = if. (This actually follows
immediately from the definition of a and ».)

(4) Since t*(Hx) = ir» o i>,{Hz) = ^(x), we have

<*(<*(*)) = * . ( = *•(<*•*«) by Note 2
= (TO <*).(«,)

= if,(W«) by Note 3

Thus i> oa = ip, i.e. V is a-invariant.
Notes 1-4 imply that rj> is at least 2 to 1 except along <7\ and ff2.

From the definition of ^, it is clear that ^ is 1 to 1 on <T\ and <r2. Let
us now examine the map ip explicitly in local coordinates. Assume that
i ^ i U <r2. We can then set z; = y, for t = 0,1,2,3. Without loss of
generality, we can suppose that ZQ — Jto — 1 and zi £ 0. Set s = j/i
and t = J/3/J/2. Then ds = dyi and dt = *~2(z2<ty3 - z3dy2). Thus,
z\dt - z-i dy3 - 23 dy2. Hence, ^{[\,zuz^,z^sti) = (s,t, [ds, z\ dt]).
We also have ^{[I,z1,-z7,-z3),s,t) = (»,*, [d«, z | dt)).

From the above local coordinate expression for ^, it is clear that q& is
2 to 1 away from <Ti and <r2- Now, ^ is a holomorphic map with finite
fibers between compact complex 3-folds. Thus, it is a branched covering
map of degree 2. This proves Proposition 1.4.

Let us now examine the inverse image of ip locally. Choose a point
y 6 Y — (S\ U S2) where Si and Si are the images under ip of crj
and <x2 respectively. Locally, y has coordinates (s,t,a). Recall that
i/1{[l,«i.«2,^3].«.O = (sj^ds^^dt]) where s = z\ and t = z3/z2.
Then

The involution a on X corresponds to a permutation of the roots. Thus,

PROPOSITION 1.5. The map $ :X -+Y is equivalent to the projection
map p : X ~* X/Z2 where the Z2-acfcion on X is given by the involution
a.

The involution on P3 descends to an involution on S4. Identify-
ing S4 with HP1, the stereographic projections to R4 = H1 from the
south and north poles are respectively given by ip\ ([31,92]) = 1i 92 and
V2([9i,92]) = ^ 9 1 , with transition functions q »-• 9~l||9||~29- Now
p([zo,zi,Z2,Z3]) = [zo + Zij,Z2 + ?3J] € HP1, where [20,^1,^2,^3] G CP3.
Thus, p(a[zo,zi,Z2,zs]) = p([zo, zi,-z?, —23]) = [*o + zij, —(z2 + ?aj)]-

The involution a thus descends to an involution on S4 = HP1 as follows:
<*([<?!, 92]) = foi,-«f3] for all [91, ft] e HP1. (We will let a denote the
involution on both X as well as S4.)

Now, tfiioa{[qi,to]) - yi([(ji,-ft]) = -q~lq2 and ^ o t t f e , ^ ) =
V2(E9i,-92]) = ~?2 ^ l - Hence the action of a on a point x e S4 is just
the antipodal map on the S3 C S4 obtained by the intersection of the
horizontal 4-plane through x with £"*. (This 5 3 is the "latitudinal S3".)
Thus, the geodesic 3-sphere in S* passing through the north and south
poles is invariant under a.

5. Some degree computations. We now compute the degree of the
total preimage in P3 of a holomorphic curve in Y. Recall the diagram:

p3

'1
s 4 P1 xP1

Y

I"
P1 x P1

Let ti and £1 (resp. l\ and t2) denote the preimages in X (resp. Y)
of the first and second factors of P1 x P1 respectively under the map

* : X "*. Rl * Rl freSP> ^ : Y "* Rl X P l ) " Let 5l and 5 2 d e n ° t e the 2

distinguished sections of Y corresponding to lines tangent to the second
and first factors of P1 x P1 respectively. Recall that V.(^i) = Si and
f.fa) = S2. Note that i&,(4) = 2^, i = 1,2. Let /f be a hyperplane
in P3. Then P'H = ^ *+ ^ = ff2 + *2. Thus ^ - (T2 = l2 - tu Also,
Si - S2 = .̂((Tx - <r2) = ^ . ( ^ - ^ ) = 2(£'2 - ^ ) . Hence, the Picard
group of X and Y are given by

and
Pic{Y) =

Let E be a compact Riemann surface of genus g. Let <j> : E -»• P l be
a holomorphic map of degree d. A point x e £ is a ramification point
of <£ if <ty(z) = 0, and its image 4>(x) e P1 is called a branch point of
4>- By the Riemann-Hurwitz Theorem the number of branch points of
<t> (counting multiplicities) is 2g + Id - 2. The ramification divisor of
0 is the formal sum £ atpi where p, is a ramification point of <f> with
multiplicity a,, and where the sum is taken over all ramification points
of <f>. We will let Ram(4>) denote the ramification divisor of <j>.

Let F = (/11/2) : E — P1 x P1 be a holomorphic map of bidegree
(n,m). Then the curve C = F(S) is of class (m,n). Let F denote the



canonical lift (i.e. Gauss lift) of F to Y and let C := F(E). (The lift
of a point x G C is the tangent line to C at x.) If we assume that C is
nonsinguhr, then

degF*(Si) = # branch points of fi = 2g-2 + 2n and

deg F"(S2) = # branch points of /2 = 2p - 2 + 2m

where 'deg' refers to the intersection number of F(E) with the relevant
generators. Let 6 := ip~l(C) C X and 7 :- 0t(C) C P3. Then for a
generic hyperplane H in P3, we have

deg 7 = H • 0.(C) = fCH • C= (<n +tt) • ( i T ' C )

= V-.(<ri + li) • C = (5! + 24) • F.(E)

= deg /"(Si + 2*i) = 2<7 - 2 + 2n 4- 2m.

Supose deg /j = deg /2 = d and ifam(/i) = /tam(/2). Then the curve
C = F(£) has singular points with the property that degF*(5'1) =
degF*(S2) = 0. Consequently, degy = Id.

6, Conjugate branched superminimal surfaces. Let us suppose
that / : E <*+ S4 is a branched superminimal immersion of a com-
pact Riemann surface in S4. Generically, / (£) misses a pair of an-
tipodal points in S4 (say the north and south poles). Also, generically,
a(/(£)) £ /(E), i.e. /(E) is not a-invariant. Let / : E -+ P3 be the
holomorphic horizontal lift of / to P3.

PROPOSITION 1.6. A generic branched superminimal surface /(E) in
S4 has the property that its lift / (£) in P3 is not a-in variant.

PROOF: The proposition follows immediately from the definition of the
involution a and the fact that a-invariance in P 3 descends to a-invari-
ance in 5 4 . |

NOTE: The converse is not necessarily true. For example, the totally
geodesic S2 of area 4w contained in the equator of S* is obviously a-
invariant. However, its lift in P3 is a curve j of degree 1 (and hence
T ^ P 1 ) which avoids L\ and L2, and thus is not cr-invariant. Observe
that a(j) projects down to the same geodesic S2 (but with the opposite
orientation).

COROLLARY 1.7. Given a generic branched superminima/ surface /(E)
in S4, we obtain a conjugate branched superminimal surface, a o /(E),
in S*.

PROOF: Since /(S) is generic, it avoids the poles and hence its lift /(E)
avoids Li and i 2 . Thus, /(E) is diffeomorphic to its image /'(E) in X
under the blow up of P3 along L\ and L2- Now by notes 1-4 in §1.4, we
have Jr o / '(E) = T o (o o /'(E)) and that a o /(E) is holomorphic and
horizontal in P3 and thus projects to a branched superminimal surface in
S4, i.e. we obtain conjugate branched superminimal surfaces for free! |

7. Bidegrees and ramification divisors. Let /(E) be a generic
branched superminimal surface in 54 . Its lift / (£) is a holomorphic
horizontal curve j in P3. The homology degree of 7 C P3 is the funda-
mental class [7) G #2(P3;Z) — Z. This degree is also the intersection
number of 7 with a generic P2 in P3 (i.e. homology degree = algebraic
degree). Let T = (^1,^2) denote the projection map of P3 — (Li U L2)
to P1 x P1. Define / 1 , / 2 : E -• P1 by h •= *i ° / and / 2 := *2 o / ,

PROPOSITION 1.8. Suppose that deg(7) = d. Then the holomorphk
curve C = *o/(E) in P l xP1 has bidegree (d, d), i.e. deg / t = deg /2 = d.
Furthermore, Ram(fi) = Ram(f2)-

PROOF: Let n € L\. The fiber irf^iei) C P3 is the plane Px =
span(ii,£2). Since deg7 = d, Pi has d intersection points with 7.
Similarly, for x? € £2, the plane Pi - TJ 1 (X 2 ) has d intersection points
with 7. Thus C = n(y) has bidegree (d, d).

Let ZQ be a ramification point of fx. Let p £ 7 denote the point f(zQ).
Then the point x := 5ri(p) is a branch point of J\. Let y := f2(p) and
let Lxy denote the line in P3 through x and y. Finally, let Hx denote the
plane {v £ TpP3 | Sfi*(«) = 0}. Now x is a branch point of/1 and 7 is an
integral curve oiHp, so the tangent line to the curve 7 at p must be Lxy—
the intersection of Hp and Hx. We thus have *u{Lxy) = *>(£,,,) - 0.
Hence, y is a branch point of /2 and so 20 is in the ramification locus of
both /1 and /2 . By genericity, Ram(fi) = /tam(/2). |

LEMMA 1.9. A hoiomorphic map F = (/i,/2) : S -» P1 x P1 Aas a
canonicaj Gauss lift F toY = PT{Pl x P1).

PROOF: First suppose (dfi(z),dh(z)) ^ (0,0). Then the lift is given
by F(z) = Ui{z),h(z), [/{(*). fii*)))- W e a r e t h u s lef t w i t h a finite s e t

of singular points. Without loss of generality, suppose 0 is a singular
point. Then }[{z) - zp9i(z) and f'2(z) — zqg2{

z) f°r 8°™ P< 1 an<l
where ^i(0) # 0 and g2(0) ^ 0. We may assume that 1 < p < q. So
F(z) = (/i(^),/2^),[«7i(2),^"pff2(j)]) for z in a neighborhood of 0. |

PROPOSITION 1.10. Suppose f : E ^* 5 4 is a generic superminimal
immersion. Let / : E —• P 3 be the holomorphic horizontal lift of f, and

to



let / ! := *! o / and f2 := h o / . Suppose that deg ft ~ deg /2 = d > 2.
Then h£ Aofx for any A € P5L(2,C).

PROOF: Suppose / 2 = A o fo for some J4 € PS£>(2,C). Then F =
Uuh) = (/i. ^ ° / i ) : S -• P1 x P1 factors through P1 as follows:

/ , G=(Id,A)

Since G has bidegree (1,1), it ia nonsingular and its canonical lift G to
Y avoids the 2 sections Si and 52 . The map /j is necessarily branched
since deg/i > 2. Hence, the canonical lift F of F is a branched covering
map of E into GfP1) 2 P1, i.e. F(£) is branched. Consequently, its lift

to P3, F(E), is branched and hence projects to a branched supermini-
mal surface in S4. This contradicts the assumption that / (£) C S* is
unbranched. |

Note that for d = 1, £ must have genus zero and so /(E) is totally
geodesic in S4.

We thus have

THEOREM A. Every superminima.1 immersion f : E <V» S4 arises from a
pair of meromorphic functions f\,Si on E such that

(1) deg/i = deg/2 = d for some integer d > 1.
(2) Ram(fi) = Eam(f2)
(3) For d > 2, / i ^ ,4 o /2 for any /I G P5L(2, C).

We would like to generate superminimal surfaces in S4 by considering
pairs of meromorphic functions on E which satisfy the 3 conditions in
Theorem A. Suppose F = (fi,f2) is such a pair. Let C - F(E) C Y.
Our degree computations in §1.5 show that the total preimage curve
7 = /3oip~1(C) in P3 has degree 2d. Suppose 7 consists of 2 connected (or
irreducible) components yj and 72. Then a(7i) = 72 and consequently
deg7i = deg72 = d. Under suitable conditions (to be discussed later),
71 and 72 will project to a conjugate pair of superminimal surfaces in
S4.

II. GENUS ZERO

1. Meromorphic functions, Grassmannians and resultants. Let
/ : P1 -+ P1 be a holomorphic map of degree d (i.e. / is a meromorphic
function of degree d). Then / can be expressed as a rational function

P(z)
of the form ~-^- where P(z) - adz

d + ad-tz1*-1 -\ (- axz + a0 and

Q{z) = bdzd + bd-xzd-1 + h6i« + 6o, Oj,6,-6C. Note that the

11

map / is of degree rf if min{deg P(z),degQ(z)} = d and if the resultant
of the 2 polynomials does not vanish. Let P = (0^ ,0^) , . . . ,ai,a0)
and Q = (6<j,td_i,.. ,61,60) denote the coefficient vectors of P(z) and
Q(z) respectively. Then the resultant H{P, Q) of P(z) and Q(z) is the
determinant of the matrix

M = A2

B2

0 0 .. . adl

where

a0

/id
0 b, h

\ 0 0

0
(to

0
bo 0

60

The resultant is a homogeneous polynomial of bidegree (d, d) in the a,
and the bj. Furthermore, H(P,Q) is irreducible over any arbitrary field
(cf. [18]). We thus require that (P,Q) 6 C ^ 1 x C*+1 - It, where U
is the irreducible resultant divisor. Observe that {XP, XQ) describes the
same function as (P, Q) for any A 6 C*. Thus the space of meromorphic
functions of degree d is

Md := - U) C

We next define an action of GI(2,C) on Cd+1 x Cd+1 as follows:

€ G L ( 2 , C ) . Let

:= C + 1 x C + 1 - A where A = {(P,Q) \ P A Q = 0}. Observe
that for (P ,Q) e JVrfl <, (P,Q) = {aP + 0Q,7P + 6Q) = ( A . Q , ) , and
Pi A Qi = (aP + 0Q) A ( 7 P + SQ) = (aS - 0y)P A Q ^ 0. Thus,
GL(2,C) acts on N&- In fact, we have a free action on Nd'. g • (P,Q) —
(aP + /?Q, 7P + <5Q) = (P, Q) implies that g - I since P A Q / 0. Note
that we can identify Nd with the Stiefel manifold of 2-frames in Cd+l.
For (P,Q) € ATd, let [P A Q] denote the 2-plane in Cd+l spanned by P
and Q. Let P i , ^ ! e [PAQ]. Then Px = aP + PQ and <?i = yP+6Qfoi
someaj,j,6 G C. If P ^ Q i 7* 0, then 0 ̂  PjAQi = (aS-^PAQ, i.e.
(ori - ^7) ^ 0. Thus, G£(2, C) acts transitively on pairs of noncollinear
vectors in [PAQ]. It follows that Nd/GL(2,C) = G(2,d + 1) and
ir : Nd — G(2,rf+ 1) is a principal GZ.(2,C)-bundle (where x(P,Q) =
[PAQ]).

12



LEMMA 2.1. K{g (P,Q)) = (det $

PROOF: Let (P, Q) denote g - (P, Q). The resultant of (P,Q) is given

by the determinant of the matrix M = { 4 1 I 2 ] . Since (PtQ) =

{aP + PQ, yP + 6Q), we observe that

A2\ _

verify that det

(dets)d detM, i.e.

A2 = <*A2

i.e. „
M A2\
B\ B%)

where / € GL(d,C) is the identity matrix. It is straightforward to

iT) = (a6 - 0y)d = (detg)d. Thus, detM =
/
(P,Q)) = (det g)d -tt(P,Q). I

It follows that 71 C C + 1 x Cd+1 is fixed under the action of GI(2,C).
Let Reg(7Z) denote the regular part of 71. Since 7t is irreducible, Reg(7l)
is connected. Note that A = {(P,Q) \ P A Q = 0} C 71 and that A has
codimension d in Cd+1 x Cd+1. So A cannot disconnect Reg(7t) (which
has dimension 2d+ 1). Consequently, (Reg(H)) PI Nd is connected, i.e.
7t n Nd is irreducible. For ease of notation, we shall let 7t to denote
n n Nd also. By Lemma 2.1, dim(7l/GL(2, C)) = dim(ir(ft)) = 2d - 3-
Furthermore, since Reg(7t) is connected and TT : V̂j —»• C?(2,d+ 1)
is a principal GL(2, C)-bundle, v(Reg(Tl)) - Reg(w(7Z)) is connected.
Thus, T(7£) is an irreducible divisor in G(2,d+ 1).

Observe that the space of meromorphic functions of degree d is Md =
P(Nd - 71). We thus have a free action of PSL(2, C) on Md. Further-
more, Md/PS1L(2, C) C G(2,d+ 1), the Grassmannian of 2-planes in

2. The ramification divisor. Let / : P1 —• P1 be a holomorphic map
of degree d. Recall that z0 6 P1 is a ramification point of / if /*(v) = 0

()
for all v P(z)P(z)

^P*. Expressing / as a rational function n)-r, we have:

f'(z) = (Q{z)P'{z)~P{z)Q'{z))/(Q{z))2. Then the ramification points
of / are given by the zero locus of Q(z)P'{z)-P{z)Q'(z), a polynomial of
degree 2 d - 2 . Observe that if deg(Q(z)P'(z)~ P(z)Q'(z)) ~k< 2<f-2,
then oo is a ramification point of order Id — 2 — k.

Define a map * d : Md = P(Nd -71)-+ P 2 d~ 2 by

\{P,Qj\ H* [c
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where coeff{#(2)} denotes the coefficient vector of the polynomial R(z).
The ramification map * d is well defined since

(XP, XQ) w [A2 • cot${Q(z)P'(z) - P(z)Q'(z)}]

and if Q{z)P'{z) - P{z)Q'{z) ~ 0, we have

P'(z) Q'lz)

Thus P(z) = CQ(z) and so [(P, Q)] £ Md.

LEMMA 2.2. PSL(2,C) preserves the fibers of

PROOF: Let g e PSL(2,C)- LetT" ^ J be a representative of g.

Then

6Q{z)])

= [coeff{ (7P(z) + SQ(z)) {aP'(z) + 0Q'(z

-(aP(z)+0Q(z))(7P'(z)+6Q'(z))}

*(z)-P{z)Q>{z)}]
= [coeff{Q(z)P'(z) - P(z)Q\z)}\

COROLLARY 2.3. PSL(2,C) acts freely on the fibers of * d .

PROOF: PSL(2,C) acts freely on Md = P(Cd+1 x C ^ 1 - n), and by
Lemma 2.2, it preserves fibers. |

We thus have an induced map ¥<,: G(2, d+ 1) -> p2 r f-2 where

[P Afl] ^ [c

This map is well defined.
Note that for d = 2, £(2,3) S G(l,3) = P2.

14
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PROPOSITION 2.4. * 2 : G(2,3) 3 P ! -» P2 is a. bihohmorphism.

PROOF: Let [PAQ] € G(2,3). Then [P AQ] can be represented by one
of the following matrices:

(l 0
\o i

l 0 (0 1 0

where P and Q correspond to the rows of the matrices. For the first
matrix, P(z) = z2 + a, and Q{z) = 2 + 6. Then

= [coeff{<2 + b){2z) - (z2 + a)}} = [1,2b, -a]

( 1 0
o i

[1,26,—a]. Similarly, we have

A a 0
V° 0 l

[0,2, a] and (0 1 0\
\0 0 l) [0,0,1].

Note that in the second case, oo is a ramification point and that the
third case is a degenerate case since (P,Q) G R- From the explicit
computations, it is clear that ^2 1S one-to-one, nonsingular and is hence
a biholomorphism. I

A consequence of the proposition is that ^ 2 : Mi —• P2 has connected
fibers. Thus,

COROLLARY 2.5. Let f be a meromorphic function of degree 2. Let g
be any other meromorphic function of degree 2 with the property that
Ram(f) = Ram(g). Then g = Aof for some A 6 PSL(2, C).

COROLLARY 2.6. There is no superminimal surface in S4 whose lifting
to P3 is a curve of degree 2.

PROOF: The genus 0 case follows immediately from Proposition 1.10
and Corollary 2.5. The following argument proves the general case. Let
7 be a holomorphic horizontal curve in P3 of degree 2. Suppose y is
not a projective line. Pick any 3 noncollinear points A, B, C on 7. Let
LAB and LAC denote the lines through ALB and Ak.C respectively.
Let P denote the plane spanned by these 2 lines. Since deg(?) = 2 and
P contains the points A, B and C, necessarily, 7 C P, i-e. 7 is planar.
Since there are no horizontal planes in P3 (otherwise, that horizontal P2

would be diffeomorphic to S4!), P (and hence 7) is in fact a projective
line. Since deg(7) = 2, 7 is necessarily branched. (Nevertheless, 7
projects to a totally geodesic surface in S4.) |
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3. The orbits in the fibers of *d . Let N = i(d + 2)(<f - 1) =
C+1) - 1 = dim(P(A2 . Let P = (ad,...,a0) and Q = (bd,..., 60)
be 2 vectors in Cd+1 which span a plane, (£), in Cd+1. Then the Pliicker
embedding G(2,d+ 1)«-» PN = P(/\2C+1) is given by (J) *[PAQ].

Choose Pliicker coordinates ztJ- on PN where i > j , i = 1,... ,d, j —
0,,..,d-l, Let P(z) = a4z

d+-- + aiz + ao and Q(z) = bdz
d+-- + b0.

Then

Q(z)P'(z)-P(z)Q'(z) =

where

,2(J-2 anz
n

n = 0,...,2d-2.

Consider the linear map L : C "̂*"1 -+ C2*'1 given by

Observe that since an contains only the HJ 's which satisfy the condition
i + j = n + 1, L has maximal rank. Let K denote the kernel of L. Then
dimK = ±(d2 + d)-2d+l = \(d-2){d~\). Let K := PK, a projective
^d(<i-3)-plane in PN. Note that the image ofG{2,d+l) in P^ , G2d~3,
does not intersect K by construction. Thus the map ip<j can be given in
Pliicker coordinates by

So tfd can be thought of as the restriction to G7d~2 of a "map" from PN

to P2 d-2 . We can extend ^ d to a map from PN - K to P2d~2. Let P "
denote the blow-up of PN along K. Let q 6 P2rf-2. Let * d denote the
map induced on PN. Then A, = ( ^ K ? ) is a projective %(d-2)(d~l)-
plane in PN, i.e. a plane of dimension complementary to that of G2d~2.
Therefore the number of points of intersection of A? with G2d~2 is the

(Oft *^f

degree of G2d~2 in PN, which is ~—jr.
(a — l)lo!

r. As a consequence, there are
!

try 1
~ distinct P5£(2,C)-orbits of holomorphic maps of
d\

generically 7 ~
(a — ly.d\

degree d from P1 to P1 which have the same ramification divisor. We
thus have



THEOREM B. Let f be & generic meromorphic function of degree d>2.
/nj _ n\|

Then, under the action ofPSL(2,C), there are jr—rrrj: distinct orbits
(a— l)!d!

of meromorphic functions of degree d with ramification divisor Ram(/).
Note that when d = 2 we have only 1 orbit. This is consistent with

our previous result (Corollary 2.5).

4. The space f>d. Let F = (flt f7) ; P l - . P 1 xP 1 bea holomorphic
map of bidegree {d,d) such that Ram^fo) = iJam(/j). By our previous
results, the curve F(P') c Y = PT(Pl x P1) avoids the 2 distinguished
sections, Si and S2 of Y. Since if>: P3 - {ay U <r2) - • Y - (5i U S2) is a
covering map of degree 2 and since irifP1) = 0, the map F lifts to a map
F : pi _• pa _ (ffl u ff2), L e t T l : = p0F(pi) a nd T 2 : = ^ a o F ( P l ) =
a(7i). Then 71 and 72 project to a conjugate pair of branched super-
minimal surfaces, Ei and £2 , in S4. If F is an immersion, then the pair
of surfaces are unbranched. We also showed that for d > 2, a neces-
sary condition for Ei and E2

 t o be unbranched is that /1 and /2 belong
to different orbits of PSL(2,C). Our search for unbranched supermin-
imal surfaces is thus aided by the following immediate consequence of
Theorem B:

THEOREM C. For each d > 3, there is a branched superminimal surface
of genus 0 in S4 which arises from a pair of merojnorphic functions
(f\,f2), each of degree d such that Ram(f{) = ifam(/2) and that /j,
and f2 belong to distinct PSL{2, C)-orbits.

PROOF: By Theorem B, there are 7-r—
( a —

distinct orbits for each

generic ramification divisor. |
Recall that a branched superminimal immersion of S2 into S4 is just

a harmonic map. Also, a (branched) superminimal surface of degree
d in S4 is a surface of area 4wd whose lifting to P3 is a holomorphic,
horizontal curve of degree d. We say that a harmonic map f : S2 —* S4

has harmonic degree d if f(S2) has area 4xd. Let ijj denote the space
of harmonic maps of S2 into S4 of harmonic degree d.

THEOREM D. For each d > 1, Sid is parametrized by a space of complex
dimension Id + 4.

PROOF: A meromorphic function of degree d is determined by 2d + 1
complex parameters. The theorem follows immediately from the fact
that the fibers of ^ d are 3-dimensional. |
NOTE: Theorem D is in agreement with the results of Verdier [17].
Verdier in fact shows that iij is naturally equipped with the structure
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of a complex algebraic variety of pure dimension 2d+4, and for d > 3, fid
possesses 3 irreducible components. We will show that i5j is connected.
5. Connectivity of iid. Recall that a meromorphic function of degree
d can be considered as an element of Mi = P(Nd) ~H where JVd =

divisor. We have a ramification map ¥ d : Mi —• P2d~2. The action
of PSL(2,C) on Md induces a map * j : G{2,d + 1) - *(«) - P2d~2,
where ir(H) = Tl/PSL(2,C) is an irreducible variety of codimension 1.
For ease of notation, we will let % and TV denote x(7J) and ¥d(jr(£))
respectively for the rest of this section. Now, * d : G(2,d+ 1) -+ P2d~2

is a branched covering map. Let VI and !B denote the ramification locus
of "id and the branch locus of Wd respectively. Then

* d : G(2,d+ 1) - m - H - P2d~2 -VB-Tl'

is a covering map. Now consider the diagonal map
2 _^ p2d-2

Let Md •= G(2, d+l)-7t. From the diagram

6'{Md x Md) Md x

y p2d-2
t

we see that modulo the action of PSL(2,C), an element of S*(Md xMd)
is a pair of meromorphic functions of degree d with the same ramification
divisor. We will show that the space 6*(Md x Md) is connected and as
a consequence JJj, the space of pairs of meromorphic functions of degree
d with the same ramification divisor, is connected.
LEMMA 2.7. U is not a component ofM. Thus, dim(SRn#) <2d~4.
PROOF: In §11.1, we showed that Tt is irreducible. Thus, it suffices to
show that there exists an x € H such that ar ^ 91. Now in ambient
coordinates,

*d(P, Q) = * d ( a r f , ...,aOlbd,...,bo) = ( c 2 r f _ 2 , . . . , c0)
where

m+l
Cm ~ 12 (2j ~ m ~ 1)aJ6"

m = 0 , . . ,,2d- 2.

m+l

]T(

18
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Thus,

dcm _ f (2> - m - l)6m-j+i, for j = 0,.. . , m + 1; m - j + 1 < d
5aj ~ 1 0, for j > m + 1,

and

(m-2ife+l)am_i+ i , for* = 0 , . . . , n * + l ; m - * + l <

0, for*>m + l.

Let P(z) = zd + z\ Q{z) = z. Certainly [P A Q] G ft C G(2,d+ 1).
Then

Also,
dcm

dh
0,

i.e. this derivative does not vanish for k — 0,m = 1; k = 0, m = d - 1;
jt = l,m = d; . . . ; /b = d - l , m = 2 d - 2 . Consequently, <Md|(P,Q) has
maximal rank. Thus, [P A Q] £ JR. |

Recall that an element of 6*(Md x A^) is (up to a Mobius transfor-
mation) a pair of meromorphic functions of degree d with the same ram-
ification divisor. Thus, if q G Md, the diagonal pair (q,q) is obviously
in 6*(Md x Mj). Since Md is connected, it is clear that a diagonal
point (q,q) £ 6*(Md x Md) is path connected to any other diagonal
point (q1, q') G 8*{Md x Md). Thus, to show that ^ ( M j x .Mi) is path
connected, it suffices to show that any point (x,y) € 6*(Md x X j ) is
path connected to the point (y,y).

Now let (x, y) G £*(Md x Ma). Let *d(x) = 9d(y) = * G
Without Joss of generality, * G P2d~2 — 58 — 7£', and so, x,y $ 9t. (If
* £ 53, we can find a path C in Pu~2 - TV so that C(0) = * and
C{\) = *' <£ 5S). Since G(2,d+ 2) -% - 9S is connected, there is a path
7 C G(2,d+ 1) -H - JR so that f(0) = *, 7(1) = !/. Then 7 := *d(7) is
a based loop in Pid~2 - » - « ' , i.e. [7] G Tr^P""2 - «8 - ^ ' , * ) . Thus
7 : S

l -* P2d~2 - t8 - W C P2*-2. Since P2d"2 is simply connected,
we can extend 7 to a map 7' : D2 ~* P2d~2. By Thom transversality
and Lemma 2.7, we can make 7' transversal to Reg^B), Reg(H') and

, i.e.

H USing(1l') U{i8nK'}} =
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Then 7'(/}2) intersects i?e^(?8) and Reg(H,') in a finite number of points,
say Y(D3)nReg(1B) = {zlt..., zn} and Y(D')nReg(K') = {<,,... ,U]
where z,- ^ ^j for any i,j. Let <r, and r, be tiny based loops around Zi and
C> respectively. Then 7 is homotopic to a composition of the o-j's and the
Tj's. Observe that the TJ'B act trivially on F = M^1^). Let a?! := x and
i r n + i : = y . S i n c e [ 7 ] ( i ) = y , w e h a v e [<ri](xi) = x 2 l [<T2](X2) = x 3 t •••,
Wn](%n) — %n+i = V for some X2,..., xn & F. Let at be the lifting of <7,
so that ^.(O) = Xi and ffi(l) = ^i+i- As cr,- traces along the boundary of
a tiny disc £>, around the branch point zit <r, traces a path around some
ramification point j/,- e ytd~

1(zi). Let Di denote the contractible disc in
G(2,d+ 1) - H around y, which projects to £),-. Suppose (Ti(<) traces
3Z?,' for i € [*Oi,<ft]. Let u,- = 0-,(<Oi) and Vj = cri(tp,). Let a,- be a
path from u; to y,- and let ,̂- be a path from y, to u,. Say a,((Qi) = u;,
Pi(t()t) ~ Vi and d((«e.) = &(*,,) = y,- for some <£. e (ta,,t0l). Consider
the modified path a\ defined as follows:

i(t), toit€[0,tai]
i{t), (or te[tai,tti)

Let <7,' := $(j(5-j). Observe that ff't is a homotopically trivial loop in
p2J-2 _ ft'. Let o-f denote the lifting of a\ so that aJ'(0) = ?J'(l) = y.
Let 7,- denote the path (v'i,*??) in <5*(.MdX Afj) from (x,-,y) to (z i+i,y).
We have thus constructed a path 7n o 7n_! o • • • o fj in 5*(A^j x .Md)
from (a.y) to (y,y). Thus,

THEOREM E. For each d > 1, fld is connected.

6. Examples. Consider the map Fd - (h,fi) • P1 -*• P1 x P1 (d > 2)
where

/*(*) =
?d - dz + 1

and

We will show that for d > 2, Fj gives rise to a conjugate pair of un-
branched superminimal surfaces in S4.

Observe that f\ and /a belong to different P5I(2,C)-orbits.

LEMMA 2.8. Ford > 2, Fd has bidegree(d,d). Furthermore, flam(/i) =
Ram(f2).

PROOF: We must first show that Pi(z) and Qi(z) have no common
zeroes (i = 1,2).
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Suppose £ is a common zero of P\{z) and Q\{z). Certainly C must be
a zero of P(z) = zQ^-Piiz) - z2~2z-l. But P(z) has roots l±\/2
which are certainly not roots of P\{z) or Qi(z). Thus, deg(/i) = d. A
similar argument shows that deg(/2) = d. Now

- (<* - l)zd~2 +d(d - 2) -
and

d(d - 2) -

Thus, Ram(fi) = Ram(f2). |

PROPOSITION 2.9. T/je map F& is genetically one-to-one onto its image.
Hence, it is not a branched covering map.

PROOF: Fd(0) = (~—-,-r—r )• Note that 0 is not a ramification
\d — I d — I}

point of either / i or fa. We shall compute FJr [ -—-, - — - 1. This

amounts to solving the simultaneous equations:

zd + dz + 1 1
and zd - dz + 1 - 1

*~i + z - (d - 2) d-2'

and

zd-i + z + (d-2) rf-2

We obtain

(d - 2){zd + dz + 1) -

(d - 2)(zd - dz + 1) - (z '" 1 + « - (J - 2)) = 0.

Thus, we have to solve the simultaneous equations

gi(z) = (d- 2)zd - zd~l + (d(d - 2) ~ \)z = 0 and

9i(z) = (d- 2)zd + zd~1- {d(d - 2) - 1)* = 0.

Observe that if £ is a common zero of gi and #2, then certainly it is a
zero of (g: + 92){z) - 2{d-2)zd, (d > 2). But ^i + g2 has 0 as its only

zero. Thus FJ"1 I - — - , - — - 1 = {0}, i.e. Fd is generically one to one

onto its image. |
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PROPOSITION 2.10. The map Fd: P1 -> P r ( P J x P1) is nonsingul&r.

PROOF: It suffices to show that F^ does not vanish at the ramification
points. We will consider 3 cases.
CASE 1. Assume that the zeroes of Qi(z) and Qi(z) are not ramification
points. Then F4 can be described locally by

h(z) = (fi(z),f2(z),G^)) where

It suffices to show that G' does not vanish at the ramification points.
Now

where h(z) = (d- l)zd~2 + 1. Observe that h{z) vanishes when zd~2 =

- ^ i - . Let C be a (d - 2)th root of -r^—r. Then
d — 1 d — 1

- 2) -
_ 2) -

Thus, the zeroes of G' do not coincide with the ramification points, i.e.
Fi is nonsingular.
CASE 2. Suppose C is a common zero of R(z) and Q\(z). Let /i(^) =

z). Then locally,

= (/!(*), where

Then G'(z) = -2[Qa(*)/*?(*)] • A ( 2 ) w h e r e

d(2d - A)zd~l + (d- l)z d~2

Let S{z) = R(z) + &{z) = d(2d - 4)zd~1 + 2d(d - 2). First observe
that Q\(z) and Q-i{z) have no common zeroes since Q\(z) + Q2{z) -
2(d-2) ^ 0 for d > 2. Thus G'{0 = 0 if and only if A(C) = 0. Suppose
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that £ is a common zero of A and R. Then £ must be a zero of 5. But
S(z) vanishes when z*'1 = -2d(d-2)/d(2d-4) = - 1 . Then C must be
a (d - l ) t h root of - 1 . But Qi(C) = - l + C + (rf-2) = C + d-3 ?fc 0 for
d > 2, contradicting our assumption that £ was a zero of Qi(z)- Thus,
G'«) ^ 0.
CASE 3. Suppose ( is a common zero of R(z) and Q2(z)- Let f2{z) =

*)- Then locally,

= (/i(*),/2(*).G(z)) where G(z) =

Then G'(z) = -2[P2(z)/Q3(2)] • A(z) where

- \)zd + d{2d - A)zd~l -{d- l)zd~2

Let S{z) = #(*)-A(*) = - ^ d - ^ - 1 + 2d(d-2). If C is a common
zero of A and R, certainly it is a zero of S. But S(z) vanishes when
zd~l = 2d{d - 2)/d(2d - 4) = 1, i.e. C is a (d - l)th root of 1. But
Q2(Q = ( - d + 3) ^ 0 for d > 2, a contradiction. Thus, G'«) ^ 0. |

Thus the total preimage ^o^~1(F(j(P
1)) is a conjugate pair of nonsin-

gular holomorphic, horizontal curves in P3 which project to a conjugate
pair of superminimal surfaces, each of area 4itd, in S4 (d > 3).

III. HIGHER GENUS
We now consider branched superminimal immersions of a compact

Riemann surface E of genus g > 0 into S4.
Let / : £ 9-* S4 be a branched superminimal immersion such that /(E)

has area 4wd. Recall that generically, /(E) misses a pair of antipodal
points on S4, say the north and south poles. We have shown that /
arises from a pair of meromorphic functions (/i,/2) of bidegree (d,d)
such that Ram(fi) — Ram(f2). Moreover, / is linearly full (i.e. /(E)
is not contained in any strict linear subspace of R5) provided d > 3
and /2 ^ A o fx for any A G P5L(2,C). For each d > 3, we wish
to construct linearly full branched superminimal immersions from such
pairs of functions. Let F = ( / i . / i) be such a pair of functions. Let C
denote the curve F(E). We require that xp~1(C) consist of 2 connected
components, -^ and 72, such that 0(71) = 72 and V'(TI) = ^(72) = C.
If this is the case, then the curves ji and 72 project to a conjugate pair
of (branched) superminimal surfaces in S4.
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Let X := P3 - (a1 U ^2) 3£ P3 - {Lx U I2) and Y := PTfP1 x P1) -
(Si U 52)- Note that itiX = 0 and ip : X ~* Y is a, covering map of
degree 2. The maps that we are considering, F = (/1, /2) : E —* P1 x P1,

are such that F(E) C V. Observe that F lifts to a map F : E-+ X if
and only if F»(TIE) = 0. If F^TTIE) = 0, then we have 2 maps, F and
Q O F , from E to X. Thus

THEOREM F. Suppose F = (/1, /2) : E -+ P1 x P1 is a holomorphic map
ofbidegree (d, d) of a compact Riemann surface of genus g to P l x P1 such
tAat Ramifi) = Ram(f2) and f2 ^ A o / t for any ^ G PSL(2, C). Let
F : E — PTfP1 xP 1 ) - (S iU5 2 ) be the canonicai Gauss lift ofF. Then
F gives rise to a conjugate pair of linearly full branched superminimal
surfaces of genus g in S4 provided F»(TIE) = 0.

NOTE. The condition F*(JTI£) = 0 is automatically satisfied if E has
genus 0. However, if F»(JTIE) / 0, then we do not have a lift of £ to X.
Nevertheless, there is a two-fold cover £ of £ which lifts to X (where
genus(E) = 2g — 1). We then obtain a branched superminimal surface
in S4 of genus 2g — 1.

An easy way to satisfy the lifting criterion is by factoring through P1:

F = : £ P1 x P1

where ip is a holomorphic map of degree d^ and (/i,/a) is a holomorphic
map of bidegree {d2, d2) which gives rise to a linearly full branched super*
minimal immersion of P1 into S4. Note that F has bidegree (dit^i^i^)-
Certainly, Ratn(Fi) - Ram(F2) and F2 £ AoFx for any A e PSL(2,C)
(since {fi,f2) is linearly full). Let F : £ —* Y be the canonical Gauss
lift of F. Then F . ^ E ) = 0 and by Theorem F, F lifts to a holomor-
phic horizontal map, F, to P3. Note however that F(£) is necessarily
branched. Nevertheless, it projects to a branched superminimal sur-
face in S4 of area 4jr</1cf2. We thus have lots of branched superminimal
immersions of E into S4,

The construction in the previous paragraph gives us superminimal
surfaces of genus g > 0 in S4 which were necessarily branched. It would
be interesting if the map F can be deformed (in the space of branched
superminimal immersions of £ into S4 of degree did?) to a map F' so
that F' gives rise to an unbranched superminimal surface in S4.

Acknowledgements. The author would like to thank Professor Ab-
dus Salam, the International Atomic Energy Agency and UNESCO for
hospitality at the International Centre for Theoretical Physics, Trieste.

24



REFERENCES

1. V. I. Arnold, "Mathematical Methods of Classical Mechanics," Springer-Wring,
New York, 1978.

2. L. Barbosa, On minimal immersion! of S1 into S3fn, Trans. Amer. Math. Soc.
210 (1975), 75-106.

3. R. Bryant, Conformal and minimal immersions of compact surface* into the
4-sphtres, J. Diff. Geom. 17 (1982), 455-173.

4. E. Calabi, Qutlqves application* dt I'analyse complete a*x turf aces d'aire min-
ima, in "Topics in Complex Manifolds (Ed. H. Rossi)," Le« Presses de 1'Univ.
de Montreal, 1967, pp. 59-81,

5. E. Calabi, Minimal immersion) of turf aces in cMclidean spheres, J. Diff, Geom.
1 (1967), 111-125.

6. S. S. Chern and J. G. Wolfson, Minima! surfaces by moving frames, Amer. J.
Math. 105 (1983), 59-83.

7. J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc.
10 (1978), 1-68.

8. P. Griffiths and J. Harris, "Principles of Algebraic Geometry," Wiley-Intersci-
ence, New York, 1978.

9. P. Gauduchon and H. B. Lawson, Topologically nonsingular minimal cones,
Indiana Univ. Math. Jour. 34 (1985), 915-927.

10. H. B. Lawson, Surfaces minimales el la construction dt Calabi-Penrose, Semin-
aire Bourbaki 624 (1984).

11. H. B. Lawson, Complete minimal surfaces in S3, Ann. of Math. 92 (1970),
335-374.

12. C. LeBrun, Spaces of complex null geodesies in complei-riemannian geometry,
Trans. Amer. Math. Soc. 278 (1983), 209-231.

13. B. Loo, "Branched Superminimal Surfaces in 5*," Ph.D Thesis, State Univ. of
New York at Stony Brook, 1987.

14. M. L. MicheUohn, Surfaces minimales dans les spheres, Seminaire de l'Ecole
Polytechnique (1984).

15. G. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979),
39-72.

16. J. L. Verdier, Two dimensional a-models and karmonic maps from 5 2 to Sin,
Led. Notes in Physics 180 (1982), 136-141.

17. J. L. Verdier, Applications harmoniques de 5 s dans S*, (preprint),
18. B. L. Van Der Waerden, "Algebra," Ungar, New York, 1970.

25




