

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

THE SPACE OF HARMONIC MAPS OF S² INTO S⁴

Bonaventure Loo

INTERNATIONAL ATOMIC ENERGY AGENCY

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

 \mathcal{L}_{max} and \mathcal{L}_{max}

 Λ $\frac{3}{3}$

医麦克

医鼻炎

 Λ $\frac{1}{3}$

 $\mathcal{A}_{\mathcal{A}}$, $\mathcal{A}_{\mathcal{A}}$, $\mathcal{A}_{\mathcal{A}}$ $\alpha_{\rm T} = 0.000$ and

IC/89/134

International Atomic Energy Agency

and

United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

The Space of Harmonic Maps of S^2 into S^{4*}

BONAVENTURE LOO

International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

Every branched superminimal surface of area $4 \pi d$ in S^4 is shown to arise from a pair of meromorphic functions (f_1, f_2) of bidegree (d, d) such that f_1 and f_2 have the same ramification divisor. Conditions **under which branched superminimal surfaces can be generated from such pairs of functions are derived. For each** *d* **> 1 the space of harmonic** m aps (i.e branched superminimal immersions) of S^2 into S^4 of harmonic **degree** *d* **is shown to be a connected space of complex dimension** *2d* **+ 4.**

MIRAMARE - TRIESTE

May 1989

Introduction. In a study of minimal surfaces in euclidean spheres, Calabi showed that every minimal immersion of S^2 in S^m arises from an isotropic map to projective space **([4],** [5]). This work was used by Bryant who showed that every compact Riemann surface can be superminimally immersed in $S⁴$. There exist Calabi-type theorems representing harmonic maps of S^2 into other locally symmetric spaces in essentially algebro-geometric terms. These are of interest to people studying σ -models in physics. In this paper, we study the space of branched superminimal immersions of compact Riemann surfaces into *S⁴ .*

In §I, we characterize branched superminimal surfaces in $S⁴$ by pairs of meromorphic functions with the same ramification divisor. This is done by constructing a contact map between \tilde{P}^3 and $PT(CP^1 \times CP^1)$ where \tilde{P}^3 is the blow-up of $\mathbb{C}P^3$ along 2 skew lines. The bidegree of such a pair is related to the degree of the canonical lift of the surface in $\mathbb{C}P^3$. We then show that if in addition the surface is linearly full (i.e. not contained in any strict subspace of \mathbb{R}^5) then the pair of meromorphic functions has bidegree (d, d) where $d > 3$ and where the 2 functions do not differ by a Mobius transformation.

In §II, we analyze the space of harmonic maps of S^2 into S^4 . By examining the projective geometry of certain Grassmann varieties, we show that the space \mathfrak{H}_d of harmonic maps of S^2 into S^4 of degree *d* is a *connected* space of complex dimension $2d + 4$. We also construct examples of *unbranched* superminimal surfaces of genus 0 in *S^A* of area $4\pi d$ for $d > 3$.

In §111, we consider branched superminimal surfaces of genus *g.* We discuss conditions under which a pair of meromorphic functions on a Riemann surface Σ can give rise to a branched superminimal immersion of Σ into S^4 .

Submitted for publication.

Preliminaries. Let Σ be a compact Riemann surface and $\psi : \Sigma \rightarrow S^4$ an immersion into the unit 4-sphere. Let *B* denote the second fundamental form of ψ . Then ψ is a minimal immersion if the mean curvature $H := \text{trace } B$ vanishes identically. More generally, ψ is a branched min*imal immersion* if it is minimal away from the set of isolated singular points. These are precisely the nonconstant conformal harmonic maps. Observe that any harmonic map $\psi : S^2 \to S^4$ is automatically conformal. Thus, branched minimal immersions of *S²* in *S⁴* are just the nonconstant harmonic maps from S^2 to S^4 (Eells-Lemaire [7]).

 $\frac{1}{1}$

أكدارك فالمعتقد فتستشرى المداريها للحيين

Let ψ : $\Sigma \looparrowright S^4$ be a (branched) minimal immersion of a compact Riemann surface in *S⁴ .* Let *x* and *y* denote the local isothermal coordinates on Σ . Consider the holomorphic quartic form $\Phi \in H^0(\Sigma; (\Omega^1)^4)$ defined by $\Phi := \varphi \cdot \varphi dz^4$ where $\varphi = \frac{1}{2} \left\{ B \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right) - iB \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right) \right\}$, and where "." is the complex bilinear extension of the dot product to \mathbb{C}^5 . We say that ψ is a *(branched) superminimal immersion* if Φ vanishes identically. This means that ψ has a holomorphic horizontal lift, $\tilde{\psi}$, to $CP³$ (Bryant [3], Chern-Wolfson [6], Lawson [10]). Observe that since $S²$ has no nontrivial holomorphic quartic differentials, every branched minimal immersion (i.e. harmonic map) of 5² into *S⁴* is automatically branched superminimai.

Consider the Calabi-Penrose fibration π : $\mathbb{CP}^3 \to S^4 = \mathbb{HP}^1$. This fibration can be obtained via a quotient of 2 Hopf maps. Choose homogeneous coordinates (z_0,z_1,z_2,z_3) for CP³. Consider C⁴ \cong H² as a quaternion vector space with left scalar multiplication, where the identification is given by $(z_0, z_1, z_2, z_3) \mapsto (z_0 + z_1 j, z_2 + z_3 j)$. The Kähler form of the Fubini-Study metric is given by $\omega = \partial \bar{\partial} \log ||z||^2$. The Calabi-Penrose fibration is then given by the quotient

$$
C4 - \{0\} \longrightarrow H2 - \{0\}
$$

Hopfc \downarrow \downarrow Hopf_H
CP³ $\xrightarrow{\pi}$ \downarrow HP¹

with fiber \mathbb{CP}^1 . The horizontal 2-plane field H for π is given by a 1-form whose lifting to $\mathbb{C}^4 - \{0\}$ is

$$
\Omega:=\frac{1}{\|z\|^2}(z_0\,dz_1-z_1\,dz_0+z_2\,dz_3-z_3\,dz_2).
$$

 $\overline{\mathbf{3}}$

Superminimal surfaces in S^4 are just the projections to S^4 of nonsingular holomorphic curves in CP³ which are integral curves of *H.* Unfortunately, it is difficult to find integral curves of *%* directly. Our search for superminimal surfaces would be vastly simplified if we can find a contact manifold (M, \mathcal{F}) birationally equivalent to \mathbb{CP}^3 , where it is easy to find integral curves of the contact plane field *T.* Robert Bryant has found a birational correspondence between $\mathbb{C} \mathsf{P}^3$ and the projectivized tangent bundle of CP² carrying H to the contact plane field of PT(CP²). Using that, he was able to prove the following result:

THEOREM (BRYANT [3]). *Every compact Riemann surface admits* a *superminimai immersion into S⁴ .*

In this paper, I will be using another contact manifold— $PT(P¹ \times P¹)$. From now on, I will let P^n denote $\mathbb{C}P^n$.

I. SOME PROJECTIVE GEOMETRY

1. Holomorphic contact structures. Let V be a complex $(2n + 1)$ manifold. A *holomorphic contact structure* on V is a nondegenerate holomorphic distribution F of hyperplanes on V (i.e. the orthogonal spaces of some twisted holomorphic 1-form). (cf. Arnold [1], LeBrun $[12]$.

Let *M* be a complex n-manifold. Then the projectivized cotangent bundle of *M* has a canonical holomorphic contact structure. Now let π : $PT^*M \rightarrow M$ denote the projection map onto the base space. A point $\varphi \in PT^*M$ defines a hyperplane P_φ in $T_{\pi(\varphi)}M$. The contact hyperplane at φ is given by $(\pi^{-1}_\bullet)_{\varphi}(P_\varphi)$. Thus the canonical contact 2-plane field *K* at a point $y \in PT(P^1 \times P^1) \cong PT^*(P^1 \times P^1)$ is given by $(\pi^{-1}_*)_y(L_y)$ where L_y denotes the tangent line at $\pi(y)$ corresponding to **y-**

The Calabi-Penrose fibration $p : \mathbf{P}^3 \to S^4$ has a contact 2-plane field *K* orthogonal to the fibers of p with respect to the Fubini-Study metric. The 2-plane field *H* for *p* is given by a 1-form whose lifting to $C^4 - \{0\}$ is $\Omega = ||z||^{-2}(z_0 dz_1 - z_1 dz_0 + z_2 dz_3 - z_3 dz_2)$. Let $\omega := dz_0 \wedge dz_1 +$ *hdzs* denote the standard holomorphic symplectic form on C⁴ . Let $\frac{\partial}{\partial z_0} + z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2} + z_3 \frac{\partial}{\partial z_3}$. Then $\Omega = ||z||^{-2} \xi \, d\omega$.

2. **Projection to P¹** x **P¹ .** Consider the 2 distinguished skew lines in \mathbf{P}^3 defined by $L_1 := p^{-1}(N) = \{ [0,0,z_2,z_3] \mid [z_2,z_3] \in \mathbf{P}^1 \}$ and $L_2 := p^{-1}(S) = \{ [z_0, z_1, 0, 0] \mid [z_0, z_1] \in \mathbf{P}^1 \}$, where N and S denote the north and south poles of *S⁴* respectively.

 $\overline{\mathbf{4}}$

LEMMA 1.1. There is a well defined projection map $pr : \mathbf{P}^3 - (L_1 \cup L_2) \rightarrow$ $P^1 \times P^1$ with P^1 as fiber.

PROOF: It suffices to show that there is a unique line L through each point $x \in P^3 - (L_1 \cup L_2)$ which intersects L_1 and L_2 . The intersection of L with L_1 and L_2 (identifying $L_1 \times L_2$ with $P^1 \times P^1$) gives us the desired projection map. For each $x \in \mathbf{P}^3 - (L_1 \cup L_2)$ consider the planes P_1 and P_2 in P^3 defined by $P_1 = span(x, L_1)$ and $P_2 = span(x, L_2)$. Since L_1 and L_2 are skew, P_1 and P_2 intersect in a line *L* which contains the point x and which intersects both L_1 and L_2 .

PROPOSITION 1.2. The fibers of $pr : P^3 - (L_1 \cup L_2) \rightarrow P^1 \times P^1$ are horizontal *with respect to p (i.e. the fibers of pr* are *integral curves of n.)*

PROOF: Let $(x, y) \in L_1 \times L_2$. Let *L* denote the line through x and y, i.e. $L = pr^{-1}(x, y)$. Denote the inverse images of L, L_1 , L_2 , x and y to $C^4 - \{0\}$ by P , P_1 , P_2 , ℓ_x and ℓ_y respectively.

NOTE: P_1 and P_2 are orthogonal with respect to ω , Let $A \in P_1$ and *B* \in *P*₂. Then *A* = {0, 0, *a*, *b*} and *B* = (*c*, *d*, 0, 0) for some *a*, *b*, *c*, *d* \in **C**. It is clear from the definition of ω that $\omega(A, B) = 0$. Since ω is skew, we also have $\omega(A, A) = \omega(B, B) = 0$.

Now pick nonzero vectors $X \in \ell_x \subset P_1$ and $Y \in \ell_y \subset P_2$. Observe that P is spanned by X and Y. Now let $V_1 = \alpha X + \beta Y$ and $V_2 = \gamma X + \delta Y$ be 2 vectors in P. Then by the note, $\omega(V_1, V_2) = 0$. Thus ω vanishes on P. Let $\rho : \mathbb{C}^4 - \{0\} \to \mathbb{P}^3$. Since ξ is tangent to the fibers of ρ and $\Omega\big|_L = ||z||^{-2}(\xi \lrcorner \omega)|_P$, we see that Ω vanishes on *L*. Thus *L* is horizontal with respect to p.

3. The contact map. Let X denote the blow up of \mathbf{P}^3 along L_1 and L_2 , i.e. $X := \{ ([z_0, z_1, z_2, z_3], [y_0, y_1], [y_2, y_3]) \mid z_0y_1 = z_1y_0, z_2y_3 = z_3y_2 \}.$
Note that X is a **P**¹-bundle over $\mathbf{P}^1 \times \mathbf{P}^1$. $\tilde{\pi} \cdot X \to \mathbf{P}^1 \times \mathbf{P}^1$ where Note that X is a $\mathbf{P}^1\text{-bundle over }\mathbf{P}^1\rtimes\mathbf{P}^1$ $\begin{array}{ll} 1 & 20 \ y_1 = z_1 y_0, z_2 y_3 = z_3 y_2, \\ 1 & \tilde{\pi} : X \rightarrow \mathbf{P}^1 \times \mathbf{P}^1 \text{ where} \end{array}$

 $\tilde{\pi}$ ([z₀, z₁, z₂, z₃], [y₀, y₁], [y₂, y₃]) = ([y₀, y₁], [y₂, y₃]).

For ease of notation, let Y denote $PT^*(P^1 \times P^1) \cong PT(P^1 \times P^1)$. Let $\psi: X \to Y$ be defined by

 ψ ([z₀, z₁, z₂, z₃], [y₀, y₁], [y₂, y₃]) = ([y₀, y₁], [y₂, y₃], $[z_0 dy_1 - z_1 dy_0, z_2 dy_3 - z_3 dy_2]$

We have the following diagram:

$$
\begin{array}{ccc}\n\mathbf{P}^3 & \xrightarrow{\beta} & X & \xrightarrow{\psi} & Y \\
\downarrow^{p} & & \hat{\mathbf{x}} & & \downarrow^{\mathbf{x}} \\
S^4 & & \mathbf{P}^1 \times \mathbf{P}^1 \xrightarrow{\mathbf{P}^1} \mathbf{P}^1 \times \mathbf{P}^1 \\
& & 5\n\end{array}
$$

Observe that H extends to all of X, and for $x \in X$, $\tilde{\pi}_{*}(\mathcal{H}_{x})$ is a tangent line in $T_{\tilde{\pi}(x)}(\mathbf{P}^1 \times \mathbf{P}^1)$, i.e. $\tilde{\pi}_*(\mathcal{H}_x) \in \mathbf{P}T_{\tilde{\pi}(x)}(\mathbf{P}^1 \times \mathbf{P}^1)$. Furthermore, $\tilde{\pi} = \pi \circ \psi$ where π is the projection to $\mathsf{P}^1 \times \mathsf{P}^1$. Now let $\ell := \tilde{\pi}_*(\mathcal{H}_\pi)$. Then $\pi_*^{-1}(\ell)$ is the contact plane at $\ell \in Y$. Now $\ell = \tilde{\pi}_*(\mathcal{H}_x) = (\pi \circ \psi)_*(\mathcal{H}_x) =$ $\pi_* \circ \psi_*(\mathcal{H}_x)$. Thus, $\pi^{-1}(\ell) = \psi_*(\mathcal{H}_x)$. We thus have:

LEMMA 1.3. ψ is a contact map, i.e. ψ_* sends the horizontal plane field *H* in X to the contact plane field K in Y .

The blow ups, σ_1 and σ_2 , of the 2 distinguished skew lines $L_1, L_2 \in \mathbf{P}^3$ are given by

$$
\sigma_1 := \{([0, 0, z_2, z_3], [y_0, y_1], [z_2, z_3]) \mid [y_0, y_1] \in \mathbf{P}^1 \text{ and } [z_2, z_3] \in \mathbf{P}^1\}
$$

and

 $\sigma_2 := \{([z_0, z_1, 0, 0], [z_0, z_1], [y_2, y_3],)\mid [z_0, z_1] \in \mathsf{P}^1 \text{ and } [y_2, y_3] \in \mathsf{P}^1\}$

We observe that

$$
\psi(\sigma_1) = \{ ([y_0, y_1], [z_2, z_3], [1, 0]) \mid [y_0, y_1] \in \mathbf{P}^1 \text{ and } [z_2, z_3] \in \mathbf{P}^1 \}
$$

and

$$
\psi(\sigma_2) = \{ ([z_0, z_1], [y_2, y_3], [0, 1]) \mid [z_0, z_1] \in \mathbf{P}^1 \text{ and } [y_2, y_3] \in \mathbf{P}^1 \}
$$

PROPOSITION 1.4. ψ is a branched 2-fold covering map. It is branched *precisely along* σ_1 *and* σ_2

This proposition will be proved in the next subsection.

4. The involutions on X and $S⁴$. We first define an involution $\alpha: X \to X$ by

 $\alpha([z_0, z_1, z_2, z_3], [y_0, y_1], [y_2, y_3]) = ([z_0, z_1, -z_2, -z_3], [y_0, y_1], [y_2, y_3])$

(Actually, α is an involution on P^3 which is extended to X in a trivial manner.)

NOTE:

- (1) $\alpha|_{\sigma_1} = Id$, $\alpha|_{\sigma_2} = Id$ and $\alpha^*\Omega = \Omega$.
- (2) By Note 1, α , maps the horizontal plane \mathcal{H}_x at $x \in X$ to the horizontal plane $\mathcal{H}_{\alpha(x)}$ at $\alpha(x)$.
- (3) Let $u \in L_1$ and $v \in L_2$. Denote by ℓ_{uv} the line in \mathbf{P}^3 uniquely defined by *u* and *v*. Since $\alpha(u) = u$ and $\alpha(v) = v$, we have

 $\alpha(\ell_{uv}) = \ell_{uv}$. Consequently, $\tilde{\pi} \circ \alpha = \tilde{\pi}$. (This actually follows immediately from the definition of α and $\tilde{\pi}$.)

(4) Since $\tilde{\pi}_{*}(\mathcal{H}_{x}) = \pi_{*} \circ \psi_{*}(\mathcal{H}_{x}) = \psi(x)$, we have

 $\frac{1}{4}$

 $\ddot{\mathbf{r}}$

 \mathbf{t}

$$
\psi(\alpha(x)) = \tilde{\pi}_{*}(\mathcal{H}_{\alpha(x)}) = \tilde{\pi}_{*}(\alpha_{*}\mathcal{H}_{x}) \qquad \text{by Note 2}
$$

$$
= (\tilde{\pi} \circ \alpha)_{*}(\mathcal{H}_{x})
$$

$$
= \tilde{\pi}_{*}(\mathcal{H}_{x}) \qquad \text{by Note 3}
$$

$$
= \psi(x)
$$

Thus $\psi \circ \alpha = \psi$, i.e. ψ is α -invariant.

Notes 1-4 imply that ψ is at least 2 to 1 except along σ_1 and σ_2 . From the definition of ψ , it is clear that ψ is 1 to 1 on σ_1 and σ_2 . Let us now examine the map ψ explicitly in local coordinates. Assume that $x \notin \sigma_1 \cup \sigma_2$. We can then set $z_i = y_i$ for $i = 0,1,2,3$. Without loss of generality, we can suppose that $z_0 = y_0 = 1$ and $z_2 \neq 0$. Set $s = y_1$ and $t = y_3/y_2$. Then $ds = dy_1$ and $dt = z^{-2}(z_2 dy_3 - z_3 dy_2)$. Thus, $z_2^2 dt = z_2 dy_3 - z_3 dy_2$. Hence, $\psi([1, z_1, z_2, z_3], s, t) = (s, t, [ds, z_2^2 dt]).$ We also have $\psi([1, z_1, -z_2, -z_3], s, t) = (s, t, [ds, z_2^2 dt]).$

From the above local coordinate expression for ψ , it is clear that ψ is 2 to 1 away from σ_1 and σ_2 . Now, ψ is a holomorphic map with finite fibers between compact complex 3-folds. Thus, it is a branched covering map of degree 2. This proves Proposition 1.4.

Let us now examine the inverse image of ψ locally. Choose a point $y \in Y - (S_1 \cup S_2)$ where S_1 and S_2 are the images under ψ of σ_1 and σ_2 respectively. Locally, *y* has coordinates (s, t, a) . Recall that $\psi([1, z_1, z_2, z_3], s, t) = (s, t, [ds, z_2^2 dt])$ where $s = z_1$ and $t = z_3/z_2$. Then

 $\psi^{-1}(y) = \psi^{-1}(s, t, a) = (\{1, s, \sqrt{a}, \sqrt{a}t\}, s, t).$

The involution α on X corresponds to a permutation of the roots. Thus,

PROPOSITION 1.5. The map $\psi : X \to Y$ is equivalent to the projection map $p : X \to X/\mathbb{Z}_2$ where the \mathbb{Z}_2 -action on X is given by the involution **a.**

The involution on \mathbf{P}^3 descends to an involution on S^4 . Identifying S^4 with HP¹, the stereographic projections to $\mathbb{R}^4 = \mathbb{H}^1$ from the south and north poles are respectively given by $\varphi_1([q_1,q_2]) = q_1^{-1}q_2$ and $\varphi_2([q_1, q_2]) = q_2^{-1} q_1$, with transition functions $q \mapsto q^{-1} ||q||^{-2} \bar{q}$. Now $p([z_0, z_1, z_2, z_3]) = [z_0 + z_1 j, z_2 + z_3 j] \in \mathsf{HP}^1$, where $[z_0, z_1, z_2, z_3] \in \mathbb{CP}^3$. Thus, $p(\alpha[z_0, z_1, z_2, z_3]) = p([z_0, z_1, -z_2, -z_3]) = [z_0 + z_1 j, -(z_2 + z_3 j)].$

The involution α thus descends to an involution on $S^4 = \mathsf{HP}^1$ as follows: $\alpha([q_1, q_2]) = [q_1, -q_2]$ for all $[q_1, q_2] \in HP^1$. (We will let α denote the involution on both \overline{X} as well as $\overline{S^4}$.)

Now, $\varphi_1 \circ \alpha([q_1, q_2]) = \varphi_1([q_1, -q_2]) = -q_1^{-1}q_2$ and $\varphi_2 \circ \alpha([q_1, q_2]) =$ $\varphi_2([q_1,-q_2]) = -q_2^{-1}q_1$. Hence the action of α on a point $x \in S^4$ is just the antipodal map on the $S^3 \subset S^4$ obtained by the intersection of the horizontal 4-plane through x with $S⁴$. (This $S³$ is the "latitudinal $S³$ ".) Thus, the geodesic 3-sphere in *S** passing through the north and south poles is invariant under α .

5. Some degree computations. We now compute the degree of the total preimage in $P³$ of a holomorphic curve in Y . Recall the diagram:

$$
\begin{array}{ccc}\n\mathbf{P}^3 & \xrightarrow{\beta} & X & \xrightarrow{\psi} & Y \\
\downarrow^{p} & & \downarrow^{p} & & \downarrow^{p} \\
S^4 & & \mathbf{P}^1 \times \mathbf{P}^1 \xrightarrow{\bullet} & \mathbf{P}^1 \times \mathbf{P}^1\n\end{array}
$$

Let ℓ_1 and ℓ_2 (resp. ℓ'_1 and ℓ'_2) denote the preimages in X (resp. Y) of the first and second factors of $P^1 \times P^1$ respectively under the map $\tilde{\pi}: X \to \mathbf{P}^1 \times \mathbf{P}^1$ (resp. $\pi: Y \to \mathbf{P}^1 \times \mathbf{P}^1$). Let S_1 and S_2 denote the 2
distinguished sections of Y consequently in the line distinguished sections of *Y* corresponding to lines tangent to the second and first factors of $P^T \times P^T$ respectively. Recall that $\psi_*(\sigma_1) = S_1$ and $f(x_1, y_2) = 5$ ². Note that $f(x_i) = 2f_i$, $i = 1,2$. Let *H* be a hyperplane in P^3 . Then $\beta^* H = \sigma_1 + \ell_1 = \sigma_2 + \ell_2$. Thus $\sigma_1 - \sigma_2 = \ell_2 - \ell_1$. Also, $S_1 - S_2 = \psi_*(\sigma_1 - \sigma_2) = \psi_*(\ell_2 - \ell_1) = 2(\ell'_2 - \ell'_1)$. Hence, the Picard group of *X* and *Y* are given by

$$
Pic(X) = \mathbb{Z}\{\ell_1, \ell_2, \sigma_1, \sigma_2\} / \langle \sigma_1 - \sigma_2 = \ell_2 - \ell_1 \rangle
$$

and

$$
Pic(Y) = \mathbf{Z} \{ \ell'_1, \ell'_2, S_1, S_2 \} / \langle S_1 - S_2 = 2(\ell'_2 - \ell'_1) \rangle.
$$

Let Σ be a compact Riemann surface of genus g. Let $\phi : \Sigma \to \mathbf{P}^1$ be a holomorphic map of degree *d.* A point $x \in \Sigma$ is a *ramification point* of ϕ if $d\phi(x) = 0$, and its image $\phi(x) \in \mathbf{P}^1$ is called a *branch point* of *4>-* By the Riemann-Hurwitz Theorem the number of branch points of ϕ (counting multiplicities) is $2g + 2d - 2$. The *ramification divisor* of ϕ is the formal sum $\sum a_i p_i$ where p_i is a ramification point of ϕ with multiplicity a_i , and where the sum is taken over all ramification points of ϕ . We will let $Ram(\phi)$ denote the ramification divisor of ϕ .

Let $F = (f_1, f_2) : \Sigma \to \mathbf{P}^1 \times \mathbf{P}^1$ be a holomorphic map of bidegree (n, m) . Then the curve $C = F(\Sigma)$ is of class (m, n) . Let \tilde{F} denote the canonical lift (i.e. Gauss lift) of *F* to *Y* and let $C' := \tilde{F}(\Sigma)$. (The lift of a point $x \in C$ is the tangent line to C at x .) If we assume that C is *nonsinguhr,* then

$$
\deg \tilde{F}^*(\ell'_1) = m, \qquad \deg \tilde{F}^*(\ell'_2) = n,
$$

deg $\tilde{F}^*(S_1) = \#$ branch points of $f_1 = 2g - 2 + 2n$ and
deg $\tilde{F}^*(S_2) = \#$ branch points of $f_2 = 2g - 2 + 2m$

where 'deg' refers to the intersection number of $\tilde{F}(\Sigma)$ with the relevant generators. Let $\tilde{C} := \psi^{-1}(C') \subset X$ and $\gamma := \beta_*(\tilde{C}) \subset \mathsf{P}^3$. Then for a generic hyperplane H in \mathbf{P}^3 , we have

$$
\deg \gamma = H \cdot \beta_* (\tilde{C}) = \beta^* H \cdot \tilde{C} = (\sigma_1 + \ell_1) \cdot (\psi^{-1} C')
$$

= $\psi_* (\sigma_1 + \ell_1) \cdot C' = (S_1 + 2\ell'_1) \cdot \tilde{F}_* (\Sigma)$
= $\deg \tilde{F}^* (S_1 + 2\ell'_1) = 2g - 2 + 2n + 2m$.

Supose deg $f_1 = \text{deg } f_2 = d$ and $Ram(f_1) = Ram(f_2)$. Then the curve $C = F(\Sigma)$ has singular points with the property that deg $\tilde{F}^*(S_1) =$ deg $\tilde{F}^*(S_2) = 0$. Consequently, deg $\gamma = 2d$.

6, Conjugate branched superminimal surfaces. Let us suppose that $f : \Sigma \dashrightarrow S^4$ is a branched superminimal immersion of a compact Riemann surface in S^4 . Generically, $f(\Sigma)$ misses a pair of antipodal points in $S⁴$ (say the north and south poles). Also, generically, $\alpha(f(\Sigma)) \neq f(\Sigma)$, i.e. $f(\Sigma)$ is not a-invariant. Let $\tilde{f} : \Sigma \to \mathbf{P}^3$ be the holomorphic horizontal lift of f to \mathbf{P}^3 .

PROPOSITION 1.6. A generic branched superminimal surface $f(\Sigma)$ in $S⁴$ has the property that its lift $\tilde{f}(\Sigma)$ in P^3 is not α -invariant.

PROOF: The proposition follows immediately from the definition of the involution α and the fact that α -invariance in \mathbf{P}^3 descends to α -invariance in S^4 .

NOTE: The converse is not necessarily true. For example, the totally geodesic S² of area *4w* contained in the equator of *S** is obviously ainvariant. However, its lift in \mathbf{P}^3 is a curve γ of degree 1 (and hence $\gamma \cong \mathbf{P}^1$) which avoids L_1 and L_2 , and thus is not α -invariant. Observe that $\alpha(\gamma)$ projects down to the same geodesic S^2 (but with the opposite orientation).

COROLLARY 1.7. Given a generic branched superminimal surface $f(\Sigma)$ in S^4 , we obtain a conjugate branched superminimal surface, $\alpha \circ f(\Sigma)$, *in S*.*

PROOF: Since $f(\Sigma)$ is generic, it avoids the poles and hence its lift $\tilde{f}(\Sigma)$ avoids L_1 and L_2 . Thus, $\tilde{f}(\Sigma)$ is diffeomorphic to its image $\tilde{f}'(\Sigma)$ in X under the blow up of P^3 along L_1 and L_2 . Now by notes 1-4 in §1.4, we have $\tilde{\pi} \circ \tilde{f}'(\Sigma) = \tilde{\pi} \circ (\alpha \circ \tilde{f}'(\Sigma))$ and that $\alpha \circ \tilde{f}(\Sigma)$ is holomorphic and horizontal in \mathbf{P}^3 and thus projects to a branched superminimal surface in $S⁴$, i.e. we obtain conjugate branched superminimal surfaces for free!

7. Bidegrees and ramification divisors. Let $f(\Sigma)$ be a generic branched superminimal surface in S^4 . Its lift $\tilde{f}(\Sigma)$ is a holomorphic horizontal curve γ in \mathbf{P}^3 . The homology degree of $\gamma \subset \mathbf{P}^3$ is the fundamental class $[\gamma] \in H_2(\mathbf{P}^3; \mathbf{Z}) \cong \mathbf{Z}$. This degree is also the intersection number of γ with a generic P^2 in P^3 (i.e. homology degree = algebraic degree). Let $\tilde{\pi} = (\tilde{\pi}_1,\tilde{\pi}_2)$ denote the projection map of $\mathbf{P}^3 - (L_1 \cup L_2)$ to $\mathsf{P}^1 \times \mathsf{P}^1$. Define $f_1, f_2 : \Sigma \to \mathsf{P}^1$ by $f_1 := \tilde{\pi}_1 \circ \tilde{f}$ and $f_2 := \tilde{\pi}_2 \circ \tilde{f}$.

PROPOSITION 1.8. Suppose that $deg(\gamma) = d$. Then the holomorphic $curve C = \tilde{\pi} \circ \tilde{f}(\Sigma)$ in $\mathbf{P}^1 \times \mathbf{P}^1$ has bidegree (d, d) , i.e. deg $f_1 = \deg f_2 = d$. *Furthermore, Ram* $(f_1) = Ram(f_2)$.

PROOF: Let $x_1 \in L_1$. The fiber $\tilde{\pi}_1^{-1}(x_1) \subset \mathbf{P}^3$ is the plane $P_1 =$ $span(x_1, L_2)$. Since deg $\gamma = d$, P_1 has *d* intersection points with γ . Similarly, for $x_2 \in L_2$, the plane $P_2 = \tilde{\pi}_2^{-1}(x_2)$ has d intersection points with γ . Thus $C = \tilde{\pi}(\gamma)$ has bidegree (d, d) .

Let z_0 be a ramification point of f_1 . Let $p \in \gamma$ denote the point $\tilde{f}(z_0)$. Then the point $x := \tilde{\pi}_1(p)$ is a branch point of f_1 . Let $y := \tilde{\pi}_2(p)$ and let L_{xy} denote the line in \mathbf{P}^3 through x and y. Finally, let H_x denote the plane $\{v \in T_p \mathbf{P}^3 \mid \tilde{\pi}_{1*}(v) = 0\}$. Now x is a branch point of f_1 and γ is an integral curve of \mathcal{H}_p , so the tangent line to the curve γ at p must be L_{xy} the intersection of \mathcal{H}_p and H_x . We thus have $\tilde{\pi}_{1*}(L_{xy}) = \tilde{\pi}_{2*}(L_{xy}) = 0$. Hence, *y* is a branch point of f_2 and so z_0 is in the ramification locus of both f_1 and f_2 . By genericity, $Ram(f_1) = Ram(f_2)$.

LEMMA 1.9. A holomorphic map $F = (f_1, f_2) : \Sigma \to \mathsf{P}^1 \times \mathsf{P}^1$ has a canonical Gauss lift \tilde{F} to $Y = PT(P^1 \times P^1)$.

PROOF: First suppose $(df_1(z), df_2(z)) \neq (0,0)$. Then the lift is given by $\tilde{F}(z) = (f_1(z), f_2(z), [f'_1(z), f'_2(z)])$. We are thus left with a finite set of singular points. Without loss of generality, suppose 0 is a singular point. Then $f'_{1}(z) = z^{p}g_{1}(z)$ and $f'_{2}(z) = z^{q}g_{2}(z)$ for some p, q and where $g_1(0) \neq 0$ and $g_2(0) \neq 0$. We may assume that $1 \leq p \leq q$. So $\tilde{F}(z) = (f_1(z),f_2(z),[g_1(z),z^{q-p}g_2(z)])$ for *z* in a neighborhood of 0. ||

PROPOSITION 1.10. Suppose $f : \Sigma \rightarrow S^4$ is a generic superminimal *immersion.* Let $\tilde{f} : \Sigma \to \mathbf{P}^3$ be the holomorphic horizontal lift of f, and

let $f_1 := \tilde{\pi}_1 \circ \tilde{f}$ and $f_2 := \tilde{\pi}_2 \circ \tilde{f}$. Suppose that $\deg f_1 = \deg f_2 = d \geq 2$. Then $f_2 \neq A \circ f_1$ for any $A \in PSL(2, \mathbb{C})$.

PROOF: Suppose $f_2 = A \circ f_1$ for some $A \in PSL(2,\mathbb{C})$. Then $F =$ $(f_1, f_2) = (f_1, A \circ f_1) : \Sigma \to \mathsf{P}^1 \times \mathsf{P}^1$ factors through P^1 as follows:

$$
\Sigma \xrightarrow{f_1} \mathbf{P}^1 \xrightarrow{G \varpi (Id, A)} \mathbf{P}^1 \times \mathbf{P}^1.
$$

Since G has bidegree $(1,1)$, it is nonsingular and its canonical lift \tilde{G} to *Y* avoids the 2 sections S_1 and S_2 . The map f_1 is necessarily branched since deg $f_1 \geq 2$. Hence, the canonical lift \tilde{F} of F is a branched covering map of Σ into $\widetilde{G}(\mathbf{P}^1) \cong \mathbf{P}^1$, i.e. $\widetilde{F}(\Sigma)$ is branched. Consequently, its lift to \mathbf{P}^3 , $\tilde{F}(\Sigma)$, is branched and hence projects to a branched superminimal surface in S^4 . This contradicts the assumption that $f(\Sigma) \subset S^4$ is unbranched. \blacksquare

Note that for $d = 1$, Σ must have genus zero and so $f(\Sigma)$ is totally geodesic in *S⁴ .*

We thus have

À.

THEOREM A. *Every superminimal immersion* $f : \Sigma \looparrowright S^4$ *arises from* a pair of meromorphic functions f_1, f_2 on Σ such that

(1) deg $f_1 = \deg f_2 = d$ for some integer $d \geq 1$. (2) $Ram(f_1) = Ram(f_2)$ (3) For $d > 2$, $f_1 \neq A \circ f_2$ for any $A \in PSL(2, \mathbb{C})$.

We would like to generate superminimal surfaces in $S⁴$ by considering pairs of meromorphic functions on Σ which satisfy the 3 conditions in Theorem A. Suppose $F = (f_1, f_2)$ is such a pair. Let $\tilde{C} = \tilde{F}(\Sigma) \subset Y$. Our degree computations in §1.5 show that the total preimage curve $\gamma = \beta o \psi^{-1}(\tilde{C})$ in \mathbf{P}^3 has degree 2d. Suppose γ consists of 2 connected (or irreducible) components γ_1 and γ_2 . Then $\alpha(\gamma_1) = \gamma_2$ and consequently $\deg \gamma_1 = \deg \gamma_2 = d$. Under suitable conditions (to be discussed later), γ_1 and γ_2 will project to a conjugate pair of superminimal surfaces in *S 4 .*

II. GENUS ZERO

1. Meromorphic functions, Grassmannians and resultants. Let $f: \mathbf{P}^1 \to \mathbf{P}^1$ be a holomorphic map of degree d (i.e. f is a meromorphic function of degree d). Then f can be expressed as a rational function of the form $\frac{P(z)}{P(z)}$ where $P(z) = a_d z^d + a_{d-1} z^{d-1} + \cdots + a_1 z + a_0$ and $Q(z) = b_d z^d + b_{d-1} z^{d-1} + \cdots + b_1 z + b_0, \quad a_i, b_i \in \mathbb{C}.$ Note that the

map f is of degree d if min{deg $P(z)$, deg $Q(z)$ } = d and if the resultant of the 2 polynomials does not vanish. Let $P = (a_d, a_{d-1},...,a_1, a_0)$ and $Q = (b_d, b_{d-1}, \ldots, b_1, b_0)$ denote the coefficient vectors of $P(z)$ and $Q(z)$ respectively. Then the resultant $R(P,Q)$ of $P(z)$ and $Q(z)$ is the determinant of the matrix

$$
M = \begin{pmatrix} A_1 & A_2 \\ B_1 & B_2 \end{pmatrix} \text{ where}
$$

\n
$$
A_1 = \begin{pmatrix} a_d & a_{d-1} & \dots & a_1 \\ 0 & a_d & \dots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_d \end{pmatrix}, \qquad A_2 = \begin{pmatrix} a_0 & 0 & \dots & 0 \\ a_1 & a_0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{d-1} & a_{d-2} & \dots & a_0 \end{pmatrix},
$$

\n
$$
B_1 = \begin{pmatrix} b_d & b_{d-1} & \dots & b_1 \\ 0 & b_d & \dots & b_2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & b_d \end{pmatrix}, \qquad B_2 = \begin{pmatrix} b_0 & 0 & \dots & 0 \\ b_1 & b_0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{d-1} & b_{d-2} & \dots & b_0 \end{pmatrix}.
$$

The resultant is a homogeneous polynomial of bidegree (d, d) in the a_i and the b_i . Furthermore, $\mathcal{R}(P,Q)$ is irreducible over any arbitrary field (cf. [18]). We thus require that $(P,Q) \in \mathbb{C}^{d+1} \times \mathbb{C}^{d+1} - \mathcal{R}$, where \mathcal{R} is the irreducible resultant divisor. Observe that $(\lambda P, \lambda Q)$ describes the same function as (P,Q) for any $\lambda \in \mathbb{C}^*$. Thus the space of meromorphic functions of degree *d* is

$$
M_d := \mathbf{P}(\mathbf{C}^{d+1} \times \mathbf{C}^{d+1} - \mathcal{R}) \subset \mathbf{P}^{2d+1}
$$

We next define an action of $GL(2, \mathbb{C})$ on $\mathbb{C}^{d+1} \times \mathbb{C}^{d+1}$ as follows: $g \cdot (P,Q) := (\alpha P + \beta Q, \gamma P + \delta Q)$ for $g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in GL(2, \mathbb{C})$. Let $x = \mathbb{C}^{d+1} \times \mathbb{C}^{d+1} - \Delta$ where $\Delta = \{ (P, Q) \mid P \wedge Q = 0 \}.$ Observe that for $(P,Q) \in N_d$, $g \cdot (P,Q) = (\alpha P + \beta Q, \gamma P + \delta Q) = (P_1,Q_1)$, and $P_1 \wedge Q_1 = (\alpha P + \beta Q) \wedge (\gamma P + \delta Q) = (\alpha \delta - \beta \gamma) P \wedge Q \neq 0$. Thus, $GL(2,\mathbb{C})$ acts on N_d . In fact, we have a free action on N_d : $g \cdot (P,Q)$ = $(aP + \beta Q, \gamma P + \delta Q) = (P, Q)$ implies that $g = I$ since $P \wedge Q \neq 0$. Note that we can identify N_d with the Stiefel manifold of 2-frames in C^{d+1} . For $(P,Q) \in N_d$, let $[P \wedge Q]$ denote the 2-plane in C^{d+1} spanned by P and *Q.* Let $P_1, Q_1 \in [P \wedge Q]$. Then $P_1 = \alpha P + \beta Q$ and $Q_1 = \gamma P + \delta Q$ for some $\alpha, \beta, \gamma, \delta \in \mathbb{C}$. If $P_1 \wedge Q_1 \neq 0$, then $0 \neq P_1 \wedge Q_1 = (\alpha \delta - \beta \gamma)P \wedge Q$, i.e. $(\alpha \delta - \beta \gamma) \neq 0$. Thus, $GL(2, \mathbb{C})$ acts transitively on pairs of noncollinear vectors in $[P \wedge Q]$. It follows that $N_d/GL(2, \mathbb{C}) = G(2, d + 1)$ and π : $N_d \rightarrow G(2,d+1)$ is a principal $GL(2,\mathbb{C})$ -bundle (where $\pi(P,Q)$ = *[PAQ]).*

LEMMA 2.1. $\mathcal{R}(g \cdot (P,Q)) = (\det g)^d \mathcal{R}(P,Q)$.

PROOF: Let (\tilde{P}, \tilde{Q}) denote $g \cdot (P, Q)$. The resultant of (\tilde{P}, \tilde{Q}) is given by the determinant of the matrix $\tilde{M} = \begin{pmatrix} A_1 & A_2 \\ \tilde{B} & \tilde{B} \end{pmatrix}$. Since $(\tilde{P}, \tilde{Q}) =$ $(aP + \beta Q, \gamma P + \delta Q)$, we observe that

$$
\tilde{A}_1 = \alpha A_1 + \beta B_1 \qquad \tilde{A}_2 = \alpha A_2 + \beta B_2
$$

$$
\tilde{B}_1 = \gamma A_1 + \delta B_1 \qquad \tilde{B}_2 = \gamma A_2 + \delta B_2
$$

i.e. "

 $\begin{pmatrix} A_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} \alpha I & \beta I \\ I & \alpha I \end{pmatrix} \cdot \begin{pmatrix} A_1 & A_2 \\ I & \alpha I \end{pmatrix}$ *B\ B%)*

verify that det $\begin{pmatrix} \alpha_I & \beta_I \\ \alpha_I & \delta_I \end{pmatrix} = (\alpha \delta - \beta \gamma)^d = (\det g)^d$. Thus, det $\tilde{M} =$ $(\det g)^d \cdot \det M$, i.e. $\mathcal{R}(g \cdot (P,Q)) = (\det g)^d \cdot \mathcal{R}(P,Q)$. \blacksquare where $I \in GL(d, \mathbb{C})$ is the identity matrix. It is straightforward to /

It follows that $\mathcal{R} \subset \mathbb{C}^{d+1} \times \mathbb{C}^{d+1}$ is fixed under the action of $GL(2,\mathbb{C})$. Let $Reg(\mathcal{R})$ denote the regular part of \mathcal{R} . Since \mathcal{R} is irreducible, $Reg(\mathcal{R})$ is connected. Note that $\Delta = \{(P,Q) \mid P \wedge Q = 0\} \subset \mathcal{R}$ and that Δ has codimension *d* in $C^{d+1} \times C^{d+1}$. So Δ cannot disconnect $Reg(\mathcal{R})$ (which has dimension $2d+1$). Consequently, $(Reg(\mathcal{R})) \cap N_d$ is connected, i.e. $R \cap N_d$ is irreducible. For ease of notation, we shall let R to denote $R \cap N_d$ also. By Lemma 2.1, $\dim(R/GL(2,\mathbb{C})) = \dim(\pi(\mathcal{R})) = 2d - 3$. Furthermore, since $Reg(R)$ is connected and $\pi : N_d \rightarrow G(2,d+1)$ is a principal $GL(2,\mathbb{C})$ -bundle, $\pi(Reg(\mathcal{R})) = Reg(\pi(\mathcal{R}))$ is connected. Thus, $\pi(\mathcal{R})$ is an irreducible divisor in $G(2, d+1)$.

Observe that the space of meromorphic functions of degree d is $M_d =$ $P(N_d - R)$. We thus have a free action of $PSL(2, C)$ on M_d . Furthermore, $M_d/PSL(2, \mathbb{C}) \subset G(2, d+1)$, the Grassmannian of 2-planes in Γ^{d+1}

2. The ramification divisor. Let $f: \mathsf{P}^1 \to \mathsf{P}^1$ be a holomorphic map of degree d. Recall that $z_0 \in \mathbb{P}^1$ is a ramification point of f if $f_*(v) = 0$ for all $v \in T_{z_0} \mathbf{P}^1$. Expressing f as a rational function $\frac{P(z)}{Q(z_0)}$, we have: $f'(z) = (Q(z)P'(z)-P(z)Q'(z))/(Q(z))^2$. Then the ramification points of f are given by the zero locus of $Q(z)P'(z)-P(z)Q'(z)$, a polynomial of degree $2d-2$. Observe that if $deg(Q(z)P'(z)-P(z)Q'(z)) = k < 2d-2$, then ∞ is a ramification point of order $2d - 2 - k$.

Define a map $\Psi^d : M_d = \mathbf{P}(N_d - \mathcal{R}) \rightarrow \mathbf{P}^{2d+2}$ by

$$
[(P,Q)] \mapsto [\text{coeff}\{Q(z)P'(z)-P(z)Q'(z)\}]
$$

where coeff ${R(z)}$ denotes the coefficient vector of the polynomial $R(z)$. The ramification map Ψ^d is well defined since

$$
(\lambda P, \lambda Q) \mapsto [\lambda^2 \cdot \text{coeff}\{Q(z)P'(z) - P(z)Q'(z)\}]
$$

= [coeff{Q(z)P'(z) - P(z)Q'(z)}],

and if $Q(z)P'(z) - P(z)Q'(z) \equiv 0$, we have

$$
\frac{P'(z)}{P(z)}=\frac{Q'(z)}{Q(z)}, \qquad \text{i.e. } \log P(z)=\log Q(z)+C=\log(\tilde{C}Q(z)).
$$

Thus $P(z) = \tilde{C}Q(z)$ and so $[(P,Q)] \notin M_d$.

LEMMA 2.2. $PSL(2, \mathbb{C})$ preserves the fibers of Ψ^d

PROOF: Let $g \in PSL(2, \mathbb{C})$. Let $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ be a representative of g. Then

$$
\Psi^{d}(g \cdot [(P,Q)]) = \Psi^{d}([\alpha P(z) + \beta Q(z), \gamma P(z) + \delta Q(z)])
$$

$$
= \left[\operatorname{coeff}\left\{(\gamma P(z) + \delta Q(z))(\alpha P'(z) + \beta Q'(z))\right\}\right]
$$

$$
- (\alpha P(z) + \beta Q(z))(\gamma P'(z) + \delta Q'(z))\right\}]
$$

$$
= \left[\operatorname{coeff}\left\{(\alpha \delta - \beta \gamma)(Q(z)P'(z) - P(z)Q'(z))\right\}\right]
$$

$$
= \left[\operatorname{coeff}\left\{Q(z)P'(z) - P(z)Q'(z)\right\}\right]
$$

$$
= \Psi^{d}([P,Q)]).
$$

COROLLARY 2.3. $PSL(2, \mathbb{C})$ acts freely on the fibers of Ψ^d

PROOF: $PSL(2, \mathbb{C})$ acts freely on $M_d = \mathbf{P}(\mathbb{C}^{d+1} \times \mathbb{C}^{d+1} - \mathcal{R})$, and by Lemma 2.2, it preserves fibers.

we thus have an induced map Ψ_d : $G(2, a+1) \rightarrow P^{2a}$ * where

 $[P \wedge Q] \mapsto [\text{coeff}\{Q(z)P'(z) - P(z)Q'(z)\}\}.$

This map is well defined. Note that for $d = 2$, $G(2,3) \cong G(1,3) = P^2$.

. _

PROPOSITION 2.4. Ψ_2 : $G(2,3) \cong \mathbf{P}^2 \to \mathbf{P}^2$ is a biholomorphism.

 $\pmb{\mathfrak{t}}$

PROOF: Let $[P \wedge Q] \in G(2,3)$. Then $[P \wedge Q]$ can be represented by one of the following matrices:

where P and Q correspond to the rows of the matrices. For the first matrix, $P(z) = z^2 + a$, and $Q(z) = z + b$. Then

$$
\Psi_2([P \wedge Q]) = [\text{coeff}\{Q(z)P'(z) - P(z)Q'(z)\}]
$$

= [\text{coeff}\{(z+b)(2z) - (z^2 + a)\}] = [1, 2b, -a]

i.e.
$$
\begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix} \mapsto [1, 2b, -a].
$$
 Similarly, we have

$$
\begin{pmatrix} 1 & a & 0 \\ 0 & 0 & 1 \end{pmatrix} \mapsto [0, 2, a] \text{ and } \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mapsto [0, 0, 1].
$$

Note that in the second case, ∞ is a ramification point and that the third case is a degenerate case since $(P,Q) \in \mathcal{R}$. From the explicit computations, it is clear that Ψ_2 is one-to-one, nonsingular and is hence a biholomorphism. \blacksquare

A consequence of the proposition is that $\Psi^2 : M_2 \to \mathsf{P}^2$ has connected fibers. Thus,

COROLLARY 2.5. *Let f be* a *meromorphic function of degree 2. Let g be any other meromorphic function of degree 2 with the property that* $Ram(f) = Ram(g)$. Then $g = A \circ f$ for some $A \in PSL(2, \mathbb{C})$.

COROLLARY 2.6. *There is no superminimal surface in S⁴ whose lifting to* P³ *is* a *curve of degree 2.*

PROOF: The genus 0 case follows immediately from Proposition 1.10 and Corollary 2.5. The following argument proves the general case. Let γ be a holomorphic horizontal curve in P^3 of degree 2. Suppose γ is not a projective line. Pick any 3 noncollinear points *A, B, C* on 7. Let *LAB* and *LAC* denote the lines through *ALB* and *Ak.C* respectively. Let P denote the plane spanned by these 2 lines. Since $\deg(\gamma) = 2$ and *P* contains the points A, B and C, necessarily, $\gamma \subset P$, i.e. γ is planar. Since there are no horizontal planes in P^3 (otherwise, that horizontal P^2 would be diffeomorphic to S^4 !), P (and hence γ) is in fact a projective line. Since deg(γ) = 2, γ is necessarily branched. (Nevertheless, γ projects to a totally geodesic surface in $S⁴$.)

3. The orbits in the fibers of Ψ^d . Let $N = \frac{1}{2}(d+2)(d-1) =$ $\binom{d+1}{2} - 1 = \dim(\mathbf{P}(\bigwedge^2 \mathbf{C}^{d+1}))$. Let $P = (a_{d_1}, \ldots, a_0)$ and $Q = (b_d, \ldots, b_0)$ be 2 vectors in \mathbf{C}^{d+1} which span a plane, $\binom{P}{Q}$, in \mathbf{C}^{d+1} . Then the Plücker embedding $G(2, d+1) \hookrightarrow P^N = P(\bigwedge^2 C^{d+1})$ is given by $\binom{P}{Q} \mapsto [P \wedge Q]$. Choose Plücker coordinates x_{ij} on P^N where $i > j$, $i = 1, ..., d$, $j =$ $0, \ldots, d-1$. Let $P(z) = a_d z^d + \cdots + a_1 z + a_0$ and $Q(z) = b_d z^d + \cdots + b_d$. Then

$$
Q(z)P'(z)-P(z)Q'(z)=\alpha_{2d-2}z^{2d-2}+\cdots+\alpha_nz^n+\cdots+\alpha_1z+\alpha_0
$$

where

$$
\alpha_n = \sum_{\substack{i+j=n+1\\i>j}} (i-j)x_{ij}, \qquad n=0,\ldots, 2d-2.
$$

Consider the linear map $L: \mathbb{C}^{N+1} \to \mathbb{C}^{2d-1}$ given by

$$
(x_{ij})\mapsto (\alpha_{2d-2},\ldots,\alpha_n,\ldots,\alpha_0).
$$

Observe that since α_n contains only the x_{ij} 's which satisfy the condition $i + j = n + 1$, *L* has maximal rank. Let *K* denote the kernel of *L*. Then dim $K = \frac{1}{2}(d^2 + d) - 2d + 1 = \frac{1}{2}(d-2)(d-1)$. Let $\kappa := P K$, a projective $\frac{1}{2}d(d-3)$ -plane in \mathbf{P}^N . Note that the image of $G(2,d+1)$ in \mathbf{P}^N , G^{2d-2} , *,* does not intersect κ by construction. Thus the map Ψ_d can be given in Pliicker coordinates by

$$
\Psi_d([P \wedge Q]) = [\alpha_{2d-2}, \ldots, \alpha_n, \ldots, \alpha_0].
$$

So Ψ_d can be thought of as the restriction to G^{2d-2} of a "map" from P^N to P^{2d-2} . We can extend Ψ_d to a map from $P^N - \kappa$ to P^{2d-2} . Let \tilde{P}^N denote the blow-up of P^N along κ . Let $q \in \mathsf{P}^{2d-2}$. Let $\tilde{\Psi}_d$ denote the map induced on $\tilde{\mathbf{P}}^N$. Then $\Lambda_q = (\tilde{\Psi}_d^{-1})(q)$ is a projective $\frac{1}{2}(d-2)(d-1)$ plane in \mathbf{P}^{N} , i.e. a plane of dimension complementary to that of G^{2d-2} . Therefore the number of points of intersection of Λ_q with G^{2d-2} is the degree of G^{2d-2} in P^N , which is $\frac{(2d-2)!}{(d-1)!d!}$. As a consequence, there are generically $\frac{(2d-2)!}{(d-1)!d!}$ distinct $PSL(2, \mathbb{C})$ -orbits of holomorphic maps of degree *d* from P^1 to P^1 which have the same ramification divisor. We thus have

THEOREM B. Let f be a generic meromorphic function of degree $d \geq 2$. Then, under the action of $PSL(2, \mathbb{C})$, there are $\frac{(2d-2)!}{(d-1)!d!}$ distinct orbits (u — L):u;
Gantion d of meromorphic functions of degree *d with* ramification divisor Ram(/).

Note that when $d = 2$ we have only 1 orbit. This is consistent with our previous result (Corollary 2.5).

4. The space \mathfrak{H}_d . Let $F = (f_1, f_2) : \mathbf{P}^1 \to \mathbf{P}^1 \times \mathbf{P}^1$ be a holomorphic map of bidegree (d, d) such that $Ram(f_1) = Ram(f_2)$. By our previous results, the curve $\tilde{F}(\mathsf{P}^1) \subset Y = \mathsf{PT}(\mathsf{P}^1 \times \mathsf{P}^1)$ avoids the 2 distinguished sections, S_1 and S_2 of *Y*. Since ψ : $\tilde{P}^3 - (\sigma_1 \cup \sigma_2) \rightarrow Y - (S_1 \cup S_2)$ is a covering map of degree 2 and since $\pi_1(P^1) = 0$, the map \tilde{F} lifts to a map $\tilde{F}: P^1 \to \tilde{P}^3 - (\sigma_1 \cup \sigma_2)$, Let $\gamma_1 := \beta \circ \tilde{F}(P^1)$ and $\gamma_2 := \beta \circ \alpha \circ \tilde{F}(P^1)$ $\alpha(\gamma_1)$. Then γ_1 and γ_2 project to a conjugate pair of branched superminimal surfaces. Σ_1 and Σ_2 , in S^4 . If \tilde{F} is an immersion, then the pair of surfaces are unbranched. We also showed that for $d \geq 2$, a necessary condition for Σ_1 and Σ_2 to be unbranched is that f_1 and f_2 belong to different orbits of *PSL(2,C).* Our search for unbranched superminimal surfaces is thus aided by the following immediate consequence of Theorem B:

THEOREM C. For each $d \geq 3$, there is a branched superminimal surface *of genus 0 in S⁴ which arises from* a pair *of merojnorphic functions* (f_1, f_2) , each of degree d such that $Ram(f_1) = Ram(f_2)$ and that f_1 *and f2 belong to distinct PSL{2, C)-orbits.*

PROOF: By Theorem B, there are $\frac{\sqrt{2}}{d}$ $\sum_{i=1}^{n}$ distinct orbits for each generic ramification divisor. \blacksquare

Recall that a branched superminimal immersion of S^2 into S^4 is just a harmonic map. Also, a (branched) superminimal surface of degree *d* in S^4 is a surface of area $4\pi d$ whose lifting to P^3 is a holomorphic, horizontal curve of degree d. We say that a harmonic map $f : S^2 \to S^4$ has harmonic degree d if $f(S^2)$ has area $4\pi d$. Let \mathfrak{H}_d denote the space of harmonic maps of S^2 into S^4 of harmonic degree d.

THEOREM D. For each $d \geq 1$, \mathfrak{H}_d is parametrized by a space of complex *dimension Id + 4.*

PROOF: A meromorphic function of degree d is determined by $2d + 1$ complex parameters. The theorem follows immediately from the fact that the fibers of Ψ^d are 3-dimensional.

NOTE: Theorem D is in agreement with the results of Verdier [17]. Verdier in fact shows that \mathfrak{H}_d is naturally equipped with the structure of a complex algebraic variety of pure dimension $2d+4$, and for $d \geq 3$, \mathfrak{H}_d possesses 3 irreducible components. We will show that \mathfrak{H}_d is connected.

5. Connectivity of \mathfrak{H}_d . Recall that a meromorphic function of degree d can be considered as an element of $M_d = P(N_d) - R$ where $N_d =$ divisor. We have a ramification map Ψ^d : $M_d \rightarrow P^{2d-2}$ The action $C^{d+1} \times C^{d+1} - \{(P,Q) | P \wedge Q = 0\}$ and where R is the resultant of $PSL(2, \mathbb{C})$ on M_d induces a map $\Psi_d : G(2, d+1) - \pi(\mathbb{R}) \rightarrow \mathbb{P}^{2d-2}$ where $\pi(\mathcal{R}) = \mathcal{R}/PSL(2, \mathbb{C})$ is an irreducible variety of codimension 1. For ease of notation, we will let $\mathcal R$ and $\mathcal R'$ denote $\pi(\mathcal R)$ and $\Psi_d(\pi(\mathcal R))$ respectively for the rest of this section. Now, Ψ_d : $G(2, d+1) \rightarrow P^{2d-1}$ is a branched covering map. Let *VI* and !B denote the ramification locus of Ψ_d and the branch locus of Ψ_d respectively. Then

$$
\Psi_d: G(2,d+1) \to \mathfrak{R} \to \mathbf{P}^{2d-2} = \mathfrak{B} = \mathcal{R}'
$$

is a covering map. Now consider the diagonal map

 $\delta : \mathbf{P}^{2d-2} \to \mathbf{P}^{2d-2} \times \mathbf{P}^{2d-2}$

Let $\mathcal{M}_d := G(2, d+1) - \mathcal{R}$. From the diagram

$$
\delta^*(\mathcal{M}_d \times \mathcal{M}_d) \qquad \mathcal{M}_d \times \mathcal{M}_d
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad
$$

we see that modulo the action of $PSL(2, \mathbb{C})$, an element of $\delta^*(\mathcal{M}, \mathbf{X}, \mathcal{M}, \mathbf{X})$ is a pair of meromorphic functions of degree *d* with the same ramification divisor. We will show that the space $\delta^*(\mathcal{M}_d \times \mathcal{M}_d)$ is connected and as a consequence \mathfrak{H}_d , the space of pairs of meromorphic functions of degree d with the same ramification divisor, is connected.

LEMMA 2.7. $\mathcal R$ is not a component of $\mathfrak R$. Thus, dim($\mathfrak R \cap \mathcal R$) $\leq 2d-4$. PROOF: In §II.1, we showed that R is irreducible. Thus, it suffices to show that there exists an $x \in \mathcal{R}$ such that $x \notin \mathcal{R}$. Now in ambient coordinates,

where

المتعابد

$$
\Psi^a(P,Q) = \Psi^a(a_d, \ldots, a_0, b_d, \ldots, b_0) = (c_{2d-2}, \ldots, c_0)
$$

$$
c_m = \sum_{j=0}^{m+1} (2j - m - 1)a_j b_{m-j+1}
$$

=
$$
\sum_{k=0}^{m+1} (m - 2k + 1)a_{m-k+1}b_k, \qquad m = 0, ..., 2d - 2.
$$

"T

Thus,

$$
\frac{\partial c_m}{\partial a_j} = \begin{cases} (2j - m - 1)b_{m-j+1}, & \text{for } j = 0, ..., m+1; m-j+1 \le d \\ 0, & \text{for } j > m+1, \end{cases}
$$

and

 \mathbf{A}

$$
\frac{\partial c_m}{\partial b_k} = \left\{ \begin{array}{ll} (m-2k+1)a_{m-k+1}, & \text{for } k = 0, \dots, m+1; \, m-k+1 \le d \\ 0, & \text{for } k > m+1. \end{array} \right.
$$

Let $P(z) = z^d + z^2$, $Q(z) = z$. Certainly $[P \wedge Q] \in \mathcal{R} \subset G(2, d+1)$. Then

$$
\left.\frac{\partial c_m}{\partial a_j}\right|_{(P,Q)}\neq 0, \quad \text{if } j=m=0,2,3,\ldots,d.
$$

Also,

$$
\left. \frac{\partial c_m}{\partial b_k} \right|_{(P,Q)} \neq 0, \qquad \text{if } m = d + k - 1, \text{ or } m = k + 1
$$

i.e. this derivative does not vanish for $k = 0, m = 1$; $k = 0, m = d - 1$; $k=1, m=d; \ldots; \, k=d-1, m=2d-2.$ Consequently, $d\Psi^d|_{(P,Q)}$ has maximal rank. Thus, $[P \wedge Q] \notin \mathfrak{R}$.

Recall that an element of $\delta^*(\mathcal{M}_d \times \mathcal{M}_d)$ is (up to a Möbius transformation) a pair of meromorphic functions of degree *d* with the same ramification divisor. Thus, if $q \in \mathcal{M}_d$, the diagonal pair (q, q) is obviously in $\delta^*(\mathcal{M}_d \times \mathcal{M}_d)$. Since \mathcal{M}_d is connected, it is clear that a diagonal point $(q,q) \in \delta^*(\mathcal{M}_d \times \mathcal{M}_d)$ is path connected to any other diagonal point $(q', q') \in \delta^*(\mathcal{M}_d \times \mathcal{M}_d)$. Thus, to show that $\delta^*(\mathcal{M}_d \times \mathcal{M}_d)$ is path connected, it suffices to show that any point $(x, y) \in \delta^*(\mathcal{M}_d \times \mathcal{M}_d)$ is path connected to the point (y, y) .

Now let $(x, y) \in \delta^*(\mathcal{M}_d \times \mathcal{M}_d)$. Let $\Psi_d(x) = \Psi_d(y) = \star \in \mathbf{P}^{2d-2} - \mathcal{R}'$. Without loss of generality, $\star \in \mathbb{P}^{2d-2} - \mathfrak{B} - \mathcal{R}'$, and so, $x, y \notin \mathfrak{R}$. (If $\star \in \mathfrak{B}$, we can find a path *C* in $P^{2d-2} - \mathcal{R}'$ so that $C(0) = \star$ and $C(1) = \star' \notin \mathfrak{B}$). Since $G(2, d+2) - \mathcal{R} - \mathfrak{R}$ is connected, there is a path $\tilde{\gamma} \subset G(2,d+1) - \mathcal{R} - \mathfrak{R}$ so that $\tilde{\gamma}(0) = x$, $\tilde{\gamma}(1) = y$. Then $\gamma := \Psi_d(\tilde{\gamma})$ is a based loop in $\mathbf{P}^{2d-2} = \mathfrak{B} - \mathcal{R}'$, i.e. $[\gamma] \in \pi_1(\mathbf{P}^{2d-2} - \mathfrak{B} - \mathcal{R}',\star)$. Thus $\gamma : S^1 \to \mathbf{P}^{2d-2} - \mathfrak{B} - \mathcal{R}' \subset \mathbf{P}^{2d-2}$. Since \mathbf{P}^{2d-2} is simply connected, we can extend γ to a map $\gamma' : D^2 \to \mathbf{P}^{2d-2}$. By Thom transversality and Lemma 2.7, we can make γ' transversal to $Reg(\mathfrak{B}), Reg(\mathcal{R}')$ and $\Psi_d(\mathfrak{R} \cap \mathcal{R}) = \mathfrak{B} \cap \mathcal{R}'$, i.e.

$$
\gamma'(D^2) \cap \{Sing(\mathfrak{B}) \cup Sing(\mathcal{R}') \cup \{ \mathfrak{B} \cap \mathcal{R}' \} \} = \emptyset.
$$

Then $\gamma'(D^2)$ intersects $Reg({\mathfrak{B}})$ and $Reg({\mathcal{R}}')$ in a finite number of points, $\text{coker} \ \gamma'(D^2) \cap Reg(\mathfrak{B}) = \{z_1, \ldots, z_n\} \text{ and } \gamma'(D^2) \cap Reg(\mathcal{R}') = \{\zeta_1, \ldots, \zeta_m\}$ where $z_i \neq \zeta_i$ for any i, j . Let σ_i and τ_j be tiny based loops around z_i and ζ_j respectively. Then γ is homotopic to a composition of the σ_i 's and the T_j [']s. Observe that the T_j 's act trivially on $F = \Psi_d^{-1}(\star)$. Let $x_1 := x$ and $x_{n+1} := y$. Since $[\gamma](x) = y$, we have $[\sigma_1](x_1) = x_2$, $[\sigma_2](x_2) = x_3$, ..., $[\sigma_n](x_n) = x_{n+1} = y$ for some $x_2, \ldots, x_n \in F$. Let $\tilde{\sigma}_i$ be the lifting of σ_i so that $\tilde{\sigma}_i(0) = x_i$ and $\tilde{\sigma}_i(1) = x_{i+1}$. As σ_i traces along the boundary of a tiny disc D_i around the branch point z_i , $\tilde{\sigma}_i$ traces a path around some ramification point $y_i \in \Psi_d^{-1}(z_i)$. Let \tilde{D}_i denote the contractible disc in $G(2, d+1) - \mathcal{R}$ around y_i which projects to D_i . Suppose $\sigma_i(t)$ traces ∂D_i for $i \in [t_{\alpha_i}, t_{\beta_i}]$. Let $u_i = \tilde{\sigma}_i(t_{\alpha_i})$ and $v_i = \tilde{\sigma}_i(t_{\beta_i})$. Let $\tilde{\alpha}_i$ be a path from u_i to y_i and let $\tilde{\beta}_i$ be a path from y_i to v_i . Say $\tilde{\alpha}_i(t_{\alpha_i}) = u_i$, $\hat{\beta}_i(t_{\beta_i}) = v_i$ and $\tilde{\alpha}_i(t_{\epsilon_i}) = \tilde{\beta}_i(t_{\epsilon_i}) = y_i$ for some $t_{\epsilon_i} \in (t_{\alpha_i}, t_{\beta_i})$. Consider the modified path $\tilde{\sigma}'_i$ defined as follows:

$$
\tilde{\sigma}'_i(t) = \begin{cases}\n\tilde{\sigma}_i(t), & \text{for } t \in [0, t_{\alpha_i}] \\
\tilde{\alpha}_i(t), & \text{for } t \in [t_{\alpha_i}, t_{\epsilon_i}] \\
\tilde{\beta}_i(t), & \text{for } t \in [t_{\epsilon_i}, t_{\beta_i}] \\
\tilde{\sigma}_i(t), & \text{for } t \in [t_{\beta_i}, 1].\n\end{cases}
$$

Let $\sigma'_i := \Psi_d(\tilde{\sigma}'_i)$. Observe that σ'_i is a homotopically trivial loop in $\mathbf{P}^{2d-2} - \mathcal{R}'$. Let $\tilde{\sigma}''_i$ denote the lifting of σ'_i so that $\tilde{\sigma}''_i(0) = \tilde{\sigma}''_i(1) = y$. Let γ_i denote the path $(\tilde{\sigma}'_i, \tilde{\sigma}''_i)$ in $\delta^*(\mathcal{M}_d \times \mathcal{M}_d)$ from (x_i,y) to (x_{i+1},y) . We have thus constructed a path $\gamma_n \circ \gamma_{n-1} \circ \cdots \circ \gamma_1$ in $\delta^*(\mathcal{M}_d \times \mathcal{M}_d)$ from (x, y) to (y, y) . Thus,

THEOREM E. For each $d \geq 1$, \mathfrak{H}_d is connected.

6. Examples. Consider the map $F_d = (f_1, f_2) : \mathbf{P}^1 \to \mathbf{P}^1 \times \mathbf{P}^1$ $(d > 2)$ where

$$
f_1(z) = \frac{P_1(z)}{Q_1(z)} = \frac{z^d + dz + 1}{z^{d-1} + z + (d-2)}
$$
 and

$$
f_2(z) = \frac{P_2(z)}{Q_2(z)} = \frac{z^d - dz + 1}{z^{d-1} + z - (d-2)}.
$$

We will show that for $d > 2$, F_d gives rise to a conjugate pair of unbranched superminimal surfaces in *S⁴ .*

Observe that f_1 and f_2 belong to different $PSL(2,\mathbb{C})$ -orbits.

LEMMA 2.8. For $d > 2$, F_d has bidegree (d, d) . Furthermore, $Ram(f_1) =$ $Ram(f_2)$.

PROOF: We must first show that $P_i(z)$ and $Q_i(z)$ have no common zeroes $(i = 1, 2)$.

Suppose ζ is a common zero of $P_1(z)$ and $Q_1(z)$. Certainly ζ must be a zero of $P(z) = zQ_1(z) - P_1(z) = z^2 - 2z - 1$. But $P(z)$ has roots $1 \pm \sqrt{2}$ which are certainly not roots of $P_1(z)$ or $Q_1(z)$. Thus, deg(f_1) = d. A similar argument shows that $\deg(f_2) = d$. Now

$$
f'_1(z) = \frac{R(z)}{Q_1^2(z)}
$$

=
$$
\frac{z^{2d-2} + (d-1)z^d - (d-1)z^{d-2} + d(d-2) - 1}{[z^{d-1} + z + (d-2)]^2}
$$
 and

$$
f'_2(z) = \frac{R(z)}{Q_2^2(z)}
$$

=
$$
\frac{z^{2d-2} + (d-1)z^d - (d-1)z^{d-2} + d(d-2) - 1}{[z^{d-1} + z - (d-2)]^2}.
$$

Thus, $Ram(f_1) = Ram(f_2)$.

PROPOSITION 2.9. The map F_d is generically one-to-one onto its image. *Hence, it is not* a *branched covering map.*

PROOF: $F_d(0) = \left(\frac{1}{d-2}, \frac{1}{d-2}\right)$. Note that 0 is not a ramification point of either f_1 or f_2 . We shall compute F_4^{-1} $\left(\frac{1}{f_1^2 - 1}, \frac{-1}{f_2^2 - 1}\right)$. This amounts to solving the simultaneous equations:

$$
\frac{z^d + dz + 1}{z^{d-1} + z + (d-2)} = \frac{1}{d-2} \quad \text{and} \quad \frac{z^d - dz + 1}{z^{d-1} + z - (d-2)} = \frac{-1}{d-2}.
$$

We obtain

$$
(d-2)(zd + dz + 1) - (zd-1 + z + (d-2)) = 0 \quad \text{and}
$$

$$
(d-2)(zd - dz + 1) - (zd-1 + z - (d-2)) = 0.
$$

Thus, we have to solve the simultaneous equations

$$
g_1(z) = (d-2)z^d - z^{d-1} + (d(d-2) - 1)z = 0
$$
 and

$$
g_2(z) = (d-2)z^d + z^{d-1} - (d(d-2) - 1)z = 0.
$$

Observe that if ζ is a common zero of g_1 and g_2 , then certainly it is a zero of $(g_1 + g_2)(z) = 2(d-2)z^d$, $(d > 2)$. But $g_1 + g_2$ has 0 as its only zero. Thus F_d^{-1} $\left(\frac{1}{d-2}, \frac{-1}{d-2}\right) = \{0\}$, i.e. F_d is generically one to one onto its image. \blacksquare

PROPOSITION 2.10. The map $\tilde{F}_d : \mathbf{P}^1 \to \mathbf{P} T(\mathbf{P}^1 \times \mathbf{P}^1)$ is nonsingular.

PROOF: It suffices to show that \tilde{F}_{d+} does not vanish at the ramification points. We will consider 3 cases.

CASE 1. Assume that the zeroes of $Q_1(z)$ and $Q_2(z)$ are not ramification points. Then \tilde{F}_d can be described locally by

$$
\tilde{F}_d(z) = (f_1(z), f_2(z), G(z)) \quad \text{where}
$$
\n
$$
G(z) = \frac{f'_1(z)}{f'_2(z)} = \left(\frac{z^{d-1} + z - (d-2)}{z^{d-1} + z + (d-2)}\right)^2
$$

It suffices to show that *G'* does not vanish at the ramification points. Now

$$
G'(z) = 2\left(\frac{z^{d-1}+z-(d-2)}{(z^{d-1}+z+(d-2))^3}\right)\cdot 2(d-2)h(z)
$$

where $h(z) = (d-1)z^{d-2} + 1$. Observe that $h(z)$ vanishes when $z^{d-2} =$ $\frac{1}{d-1}$. Let ζ be a $(d-2)$ th root of $\frac{1}{d-1}$. Then

$$
R(\zeta) = \zeta^{2d-2} + (d-1)\zeta^d - (d-1)\zeta^{d-2} + d(d-2) - 1
$$

= $\zeta^2(\zeta^{2(d-2)} + (d-1)\zeta^{d-2}) - (d-1)\zeta^{d-2} + d(d-2) - 1$
= $\zeta^2\left(\left(\frac{1}{d-1}\right)^2 - 1\right) + d(d-2) \neq 0$.

Thus, the zeroes of *G'* do not coincide with the ramification points, i.e. *Fi* is nonsingular.

CASE 2. Suppose ζ is a common zero of $R(z)$ and $Q_1(z)$. Let $\tilde{f}_1(z) =$ $Q_1(z)/P_1(z)$. Then locally,

$$
\tilde{F}_d(z)=(\tilde{f}_1(z),f_2(z),G(z)) \text{ where } G(z)=\frac{\tilde{f}'_1(z)}{f'_2(z)}=-\left(\frac{Q_2(z)}{\tilde{P}_1(z)}\right)^2.
$$

Then $G'(z) = -2[Q_2(z)/P_1^3(z)] \cdot \Delta(z)$ where

$$
\Delta(z) = P_1(z)Q'_2(z) - Q_2(z)P'_1(z)
$$

= $-z^{2d-2} + (1-d)z^d + d(2d-4)z^{d-1} + (d-1)z^{d-2} + d(d-2) + 1.$

Let $S(z) = R(z) + \Delta(z) = d(2d-4)z^{d-1} + 2d(d-2)$. First observe that $Q_1(z)$ and $Q_2(z)$ have no common zeroes since $Q_1(z) + Q_2(z) =$ $2(d-2) \neq 0$ for $d > 2$. Thus $G'(\zeta) = 0$ if and only if $\Delta(\zeta) = 0$. Suppose that ζ is a common zero of Δ and R . Then ζ must be a zero of S . But *S(z)* vanishes when $z^{d-1} = -2d(d-2)/d(2d-4) = -1$. Then ζ must be a $(d-1)$ th root of -1. But $Q_1(\zeta) = -1 + \zeta + (d-2) = \zeta + d - 3 \neq 0$ for $d > 2$, contradicting our assumption that ζ was a zero of $Q_1(z)$. Thus, $G'(\zeta) \neq 0$.

CASE 3. Suppose ζ is a common zero of $R(z)$ and $Q_2(z)$. Let $\tilde{f}_2(z) =$ $Q_2(z)/P_2(z)$. Then locally,

$$
\tilde{F}_d(z)=(f_1(z),\tilde{f}_2(z),G(z)) \text{ where } G(z)=\frac{f'_1(z)}{\tilde{f}'_2(z)}=-\left(\frac{P_2(z)}{Q_1(z)}\right)^2.
$$

Then $G'(z) = -2[P_2(z)/Q_1^3(z)] \cdot \Delta(z)$ where

$$
\Delta(z) = Q_1(z)P'_2(z) - P_2(z)Q'_1(z)
$$

= $z^{2d-2} + (d-1)z^d + d(2d-4)z^{d-1} - (d-1)z^{d-2}$
- $d(d-2) - 1$.

Let $S(z) = R(z) - \Delta(z) = -d(2d-4)z^{d-1} + 2d(d-2)$. If ζ is a common zero of Δ and R , certainly it is a zero of S . But $S(z)$ vanishes when $z^{d-1} = 2d(d-2)/d(2d-4) = 1$, i.e. ζ is a $(d-1)$ th root of 1. But $Q_2(\zeta) = \zeta - d + 3$ $\neq 0$ for $d > 2$, a contradiction. Thus, $G'(\zeta) \neq 0$.

Thus the total preimage $\beta \circ \psi^{-1}(\tilde{F}_d(\mathbf{P}^1))$ is a conjugate pair of nonsingular holomorphic, horizontal curves in P^3 which project to a conjugate pair of superminimal surfaces, each of area $4\pi d$, in S^4 $(d \geq 3)$.

III. HIGHER GENUS

We now consider branched superminimal immersions of a compact Riemann surface Σ of genus $g > 0$ into S^4 .

Let $f : \Sigma \looparrowright S^4$ be a branched superminimal immersion such that $f(\Sigma)$ has area $4\pi d$. Recall that generically, $f(\Sigma)$ misses a pair of antipodal points on S^4 , say the north and south poles. We have shown that f arises from a pair of meromorphic functions (f_1, f_2) of bidegree (d, d) such that $Ram(f_1) = Ram(f_2)$. Moreover, f is linearly full (i.e. $f(\Sigma)$) is not contained in any strict linear subspace of \mathbb{R}^5) provided $d \geq 3$ and $f_2 \neq A \circ f_1$ for any $A \in PSL(2,\mathbb{C})$. For each $d \geq 3$, we wish to construct linearly full branched superminimal immersions from such pairs of functions. Let $F = (f_1, f_2)$ be such a pair of functions. Let C denote the curve $\tilde{F}(\Sigma)$. We require that $\psi^{-1}(\tilde{C})$ consist of 2 connected components, γ_1 and γ_2 , such that $\alpha(\gamma_1) = \gamma_2$ and $\psi(\gamma_1) = \psi(\gamma_2) = \tilde{C}$. If this is the case, then the curves γ_1 and γ_2 project to a conjugate pair of (branched) superminimal surfaces in *S⁴ .*

Let $X := \tilde{P}^3 - (\sigma_1 \cup \sigma_2) \cong P^3 - (L_1 \cup L_2)$ and $Y := PT(P^1 \times P^1) (S_1 \cup S_2)$. Note that $\pi_1 X = 0$ and $\psi : X \to Y$ is a covering map of degree 2. The maps that we are considering, $F = (f_1, f_2) : \Sigma \to \mathsf{P}^1 \times \mathsf{P}^1$, are such that $\tilde{F}(\Sigma) \subset Y$. Observe that \tilde{F} lifts to a map $\tilde{F} : \Sigma \to X$ if and only if $\tilde{F}_*(\pi_1\Sigma) = 0$. If $\tilde{F}_*(\pi_1\Sigma) = 0$, then we have 2 maps, \tilde{F} and $\alpha \circ \tilde{F}$, from Σ to X. Thus

THEOREM F. Suppose $F = (f_1, f_2) : \Sigma \to \mathbf{P}^1 \times \mathbf{P}^1$ is a holomorphic map of bidegree (d, d) of a compact Riemann surface of genus g to $P^1 \times P^1$ such that $Ram(f_1) = Ram(f_2)$ and $f_2 \neq A \circ f_1$ for any $A \in PSL(2, \mathbb{C})$. Let $\tilde{F}: \Sigma \to PT(P^1 \times P^1) - (S_1 \cup S_2)$ be the canonical Gauss lift of F. Then *F gives rise to a conjugate pair of linearly full branched superminimal* surfaces of genus g in \widetilde{S}^4 provided $\widetilde{F}_*(\pi_1 \Sigma) = 0$.

NOTE. The condition $\tilde{F}_*(\pi_1 \Sigma) = 0$ is automatically satisfied if Σ has genus 0. However, if $\tilde{F}_*(\pi_1 \Sigma) \neq 0$, then we do not have a lift of Σ to X. Nevertheless, there is a two-fold cover $\tilde{\Sigma}$ of Σ which lifts to X (where **genus**($\tilde{\Sigma}$) = 2g – 1). We then obtain a branched superminimal surface in S^4 of genus $2g - 1$.

An easy way to satisfy the lifting criterion is by factoring through \mathbf{P}^1 :

$$
F = (F_1, F_2) : \Sigma \xrightarrow{\varphi} \mathbf{P}^1 \xrightarrow{(f_1, f_2)} \mathbf{P}^1 \times \mathbf{P}^1
$$

where φ is a holomorphic map of degree d_1 and (f_1, f_2) is a holomorphic map of bidegree (d_2, d_2) which gives rise to a linearly full branched superminimal immersion of P^{1} into $S^{4}.$ Note that F has bidegree $(d_{1}d_{2},d_{1}d_{2}).$ Certainly, $Ram(F_1) = Ram(F_2)$ and $F_2 \neq A \circ F_1$ for any $A \in PSL(2, \mathbb{C})$ (since (f_1, f_2) is linearly full). Let $\tilde{F}: \Sigma \to Y$ be the canonical Gauss lift of F. Then $\tilde{F}_*(\pi_1\Sigma) = 0$ and by Theorem F, \tilde{F} lifts to a holomorphic horizontal map, $\tilde{\tilde{F}}$, to \mathbf{P}^3 . Note however that $\tilde{\tilde{F}}(\Sigma)$ is necessarily branched. Nevertheless, it projects to a branched superminimal surface in S^4 of area $4\pi d_1 d_2$. We thus have lots of branched superminimal $\frac{1}{2}$ immersions of Σ into S^4 .

The construction in the previous paragraph gives us superminimal surfaces of genus $g > 0$ in $S⁴$ which were necessarily branched. It would be interesting if the map F can be deformed (in the space of branched superminimal immersions of Σ into S^4 of degree d_1d_2) to a map F' so that F' gives rise to an *unbranched* superminimal surface in $S⁴$.

Acknowledgements. The author would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste.

REFERENCES

- 1. V. I. Arnold, "Mathematical Methods of Classical Mechanics," Springer-Verlag, New York, 1978.
- 2. L. Barbosa, On *minimal immersion! of S¹ into S3fn ,* Trans. Amer. Math. Soc. 210 (1975), 75-106.
- 3. R. Bryant, *Conformal and minimal immersions of compact surfaces into the 4-sphtres,* J. Diff. Geom. 17 (1982), 455-173.
- 4. E. Calabi, Quelques applications de l'analyse complexe aux surfaces d'aire min*ima,* in "Topics in Complex Manifolds (Ed. H. Rossi)," Les Presses de l'Univ. de Montreal, 1967, pp. 59-81,
- 5. E. Calabi, *Minimal immersions of surfaces* in exclidean spheres, J. Diff. Geom. 1 (1967), 111-125.
- 6. S. S. Chern and J. G. Wolfson, *Minima! surfaces by moving frames,* Amer. J. Math. 105 (1983), 59-83.
- 7. J. Eells and L. Lemaire, *A report on harmonic maps,* Bull. London Math. Soc. 10 (1978), 1-68.
- 8. P. Griffiths and J. Harris, "Principles of Algebraic Geometry," Wiley-Interscience, New York, 1978.
- 9. P. Gauduchon and H. B. Lawson, *Topologically nonsingular minimal cones,* Indiana Univ. Math. Jour. **34** (1985), 915-927.
- 10. H. B. Lawson, *Surfaces minimales el la construction dt Calabi-Penrose,* Seminaire Bourbaki **624** (1984).
- 11. H. B. Lawson, *Complete minimal surfaces in S³ ,* Ann. of Math. 92 (1970), 335-374.
- 12. C. LeBrun, *Spaces of complex null geodesies in complei-riemannian geometry,* Trans. Amer. Math. Soc. **278** (1983), 209-231.
- 13. B. Loo, "Branched Superminimal Surfaces in 5*," Ph.D Thesis, State Univ. of New York at Stony Brook, 1987.
- 14. M. L. MicheUohn, *Surfaces minimales dans les spheres,* Seminaire de l'Ecole Polytechnique (1984).
- 15. G. Segal, *The topology of spaces of rational functions,* Acta Math. **143** (1979), 39-72.
- 16. J. L. Verdier, Two dimensional σ -models and harmonic maps from S^2 to S^{2n} , *Led.* Notes in Physics 180 (1982), 136-141.
- 17. J. L. Verdier, Applications harmoniques de S² dans S⁴, (preprint).
- 18. B. L. Van Der Waerden, "Algebra," Ungar, New York, 1970.

فعارف والسوائد للبيل

 \blacktriangle $\mathcal{L}^{\text{max}}_{\text{max}}$ $\sigma_{\rm{max}}$

 \mathbf{A}_c

A.

 \mathbf{I}_c

A. $\frac{1}{2}$

A. $\frac{1}{4}$

 $\pmb{\cdot}$

 \bullet

.
Linda el construction de l'altre l'altre de l'altre de l'altre de l'altre de l'altre de l'altre de l'altre de
L'altre de l'altre de l'altre

 \mathbf{r} :=