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ABSTRACT

We construct exact localized osctllatingjinlte energy solutions of the massless wave equa-

tion which move like massive relativistlc panicles with energy E « TW and momentum p = 7k

where u is the frequency of the oscillating lump and fc its wave vector. It is a construction of a

single massive "quantum particle" from "light".
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The relations E ~ Au and p - n£ between the particle properties and wave properties of

the electron, or photon, can be considered to be the foremost principle of quantum theory'. For

then the wave equation, and everything else, follows. As new hypotheses these relations cannot be

"derived" - they are the new properties of quantum particles. But we can try to make models of

quantum particles incorporating this panicle-wave duality. The earliest of such attempts go back

to the originators of these relations. Einstein thought of light quantum as a localized lump of

energy *. L. de Broglie envisaged the electron to be a singular localized solution of the wave

equation quided by a wave with the same phase *.

After the advent of the probability interpretation of quantum theory 4 , one generally

stopped making models of a single panicle or single event. For, according to Born, a single event

either did not have any meaning, or it was impossible to describe it. A free particle in this prob-

ability interpretation is a plane wave solution of the Schrbdinger (or Dirac) equation which is not

localized. It is important to emphasize the difference between the description of a single event and

the regularities in repeated experiments, the tatter calculated using plane waves 3 . Experimentally

we can now observe single dots on a screen in a double slit experiment corresponding to single

events, and when enough of these dots are collected in a memory device, the regularities of in-

terference pattern slowly emerge *. One may in fact use, to avoid confusion, two different wave

functions, a localized individual single event wave function ^ ( x ) . and a nonlocalized plane wave

function *K (1 ) , the latter to describe the typical probabilistic behaviour, again of single events, but

in repeated experimentsT.

In this paper we construct explicitly new localized solutions of the massless wave equa-

tion which behave like a single particle with mass m, thereby providing also a model for the concept

of mass. These solutions do not spread and have finite field energy. They incorporate the basic re-

lations "E proportional to unproportional to it" and the relativistic relations E2 = j? + m2 .

Moreover, it is a construction of a three-dimensional soliton-like oscillating lump. This may come

as a surprise because finite-energy, soliton-like nonspreading solutions are ususally associated with

nonlinear wave equation. We are talking here about the usual linear massless wave equation.
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The wave equation D 4> • 0 . has well-known solutions of the form <t> - / ( x - ct) +

g(x + cl), localized wave moving with group velocity c (but only in one-dimension), and plane

wave solutions or wave packets of the form

with phase velocity c = uio /Jto, or dispersion relations wo/c = Jfco.

Our solutions are of a novel type: A lump moving with group velocity v < e and phase

velocity u > c such that tin - c1. Because of the wave equation O ^ • 0 is covariant, we can

solve it first in the rest frame of the lump and transform it to the laboratory frame. In the comovitig

frame we write the solution as

There arc two essential features here: (I s),the rest frame solution is not static but oscillating with

a frequency Cl, Cl > 0 , (2°) we allow a frequency spread f{ti)d£l sharply peaked around some

frequency £lo to which we shall make a limit later. The frequency O in the rest frame is significant

as it determines the mass - the kinetic energy of oscillations of the lump - and it is the cause that

the lump moves with v < c.

The function F(r') in (1) satisfies clearly the equation A F + ( t l / c ) 2 F = 0 , hence is of

the form

•" (2)F(r') = £ Clm - ^
£1* •

In the laboratory frame with *' - f(t - *-p- £) . /3 - v/c,i - l / \ / l ~ 0* we get

wilh

c

Hence, the new dispersion relation

and (3)

(4)

is the dispersion realtion for a massive panicle, although it comes from a solution of the massless

equation.

Historically, when dispersion relations for electron (4) were discovered, one added phe-

nomenologically a mass term to the wave equation, Klein-Gordon equation,(Q + s g ^ ) $ « 0

which have plane wave solutions, * - AeK*'*"**' widi dispersion relations (4), We see now that

massless wave equation has solutions satisfying (4) but necessarily with localized envelope F{r).

In the moving laboratory frame, the solution (1) becomes

where p is the Lorentz transformed distance

f-f-S.

(5)

(6)

The phase velocity is given by u - u/k •> c2/^. where v ii the group velocity. This is a single

event whose maximum is located at o at < • 0 . In fact, the position of the lump at t <• 0 and the

shape parameters Ctm in Eq.(2) play the role of hidden variables.

Wt note here, en passant, that we can also construct a tachionic solution of the wave

equation with group velocity v > c but then the phase velocity u < c. The original wave equation

has a single parameter c. The solution (5) has the new parameters, fi and tT.

A special case of this solution (1-6) for I = 0 , m » 0 moving in x-direction is

/
I /w

- j j ^i/2 \-f-

with

This solution, but without the factor / ( * ) and the integral over t b , was already given by L de

Broglie 3 and further discussed by Machinnon •. But without the factor / ( * ) the solution has

infinite energy.
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Now we come to the crucial question of the finiteness and the form of the energy. Again

we calculate the field energy in the rest frame and we can then transform it. It is given by

'x (8)

where NB is a nonnalization constant which cannot be determined because the wave equation is

linear and hence has no scale yel. Using (1), we have - omitting now the primes on rand t -

(9)/*(a)/(n')e«a-Qt>' dado' I d3x.' I
We use the explicit form of F given in (2) and perform the angular integrations with

r* dr sin BdBdjp, in the radial integration we use the crucial relation

Then, Eq.{9) give*

(10)

(II)

In a similar way, we evaluate the "charge" Q for the scalar field ^ using the current )„ - <k'dp<l>.

(12)

(13)

For our solution (1), this turns out to be

Hence

where fl" is the expectation value of O in the distribution | / ( ft) |2 . WE can choose now | / ( ii)\2 lo

be the distribution 5*(Q - Qo), so that / ( Q ) = e'a\/4+(fl - f l o ) is another distribution. Nore
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that \/{>{t) — Ho) does not exist, but V*+(" - Ifc) does exist. Our lump has physically only

positive frequencies in the rest frame and the integral in (1) extend over positive frequencies. With

this choice we finally have

£*-~QOo (15)

We have here a nonspreading packet of fixed energy whereas the usual "wave packet" is a super-

position of different energies and therefore spreads. But it may be advantageous to allow a certain

spread in ilo and test for this spread in "mass".

If we now go back to the laboratory frame, i.e. to the boosted state (5), we clearly get

£ = & Q u and the (ield momentum

(16)

gives

with

Thus

(17)

can be identified with the rest mass energy me1 .

We have extended this idea to the more physical electromagnetic case. We found local-

ized finite energy configuration of the S- and B— fields satisfying free Maxwell's equations and

moving like massive particles, and determined their mutual interaction ' .

The solution (1) or (5) to the wave equation - up to changing some constants - persist!

in ihc presence of certain special nonlinearities. For the special case (7), again without the crucial

freque ncy integral, such nonlinear equations have been considered recently by Gufiet and Vigierl0

and some related singular solutions of nonlinear equations by Vigier ". But the frequency integral

changes the situation completely.

The nonrclativistic limit of the dispersion relation (4) is
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and the solution (S) goes over to

(18)

Our original wave equation • 4> m 0 has of coune no nonrelativistk limit. But after separating

the rapid rest mass oscillations emt In the above equation, the remaining phase, ei(* *~ — e \ is a

solution of the Schrodinger equation ih$£ - - £ VV>. But the full localized nonrelativistic lump

(18) is a solution of the Schrodinger equation with the dispersion relation w - ^ = Q, with F

being a solution of A F + ^ F * 0 .

We summarize the main points. Massless ordinary wave equation have localized, non-

spreading, finite energy solutions with the de Broglie phase moving like a rclaiivistic particle, if

the lump in the rest frame oscillates with a frequency Q and has a singular distribution in Cl. The

case Q > 0 , i.e. static solution in the rest frame, cannot lead to finite energy solutions with the de

Broglie phase. This is of course connected with the fact mat massless particles have no rest frames.

We find also that field energy is proportional to frequency u and field momentum proportional to

the wave vector fc, but the proportionality constant (K) cannot be detennined in the linear theory

because of lack of a scale. It should be determined later by interactions.
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