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ABSTRACT. We have developed a hybrid particle-fluid computer model for quasi-
neutral microinstabilities in magnetically confined plasmas. The ions are treated in the
fluid approximation. The electrons are taken as guiding-center macropartides. The model
has been extensively tested for frequency and fluctuation spectra. Linear and nonlinear
studies of drift waves, rji modes, interchange modes, and trapped electron modes have also
been carried out.

I. INTRODUCTION. The hybrid plasma model that we present here treats the
electrons as particles and the ions as a fluid [1]. It is based on the successful theoretical
treatments of a number of important modes in magnetically confined plasmas, such as
the rji (ion pressure-gradient-driven) modes and the resistive interchange mcdes. In these
cases, the ions are treated in the fluid approximation, while the electrons are handled either
with the Boltzmann response ne = noexp(e^/Te), where <f> is the electrostatic potential,
or with Ohm's law. For the relevant modes, quasi-neutrality over scales longer than the
Debye length Ape is assumed. The typical frequency u; is taken to be much smaller than
the ion gyrofrequency t*;ei = eB/Mc, and the wavelength A is long compared to the ion
gyroradius p± = vti/u>ci- Our model is electrostatic so far and retains the electron particle
equation of motion, with electric acceleration and mirror force, in the direction parallel to
the magnetic field. Therefore, the effects of parallel electron resonances with electrostatic
waves are retained. We assume a vanishingly small electron gyroradius so that perpendic-
ular electron guiding center motion in two-dimensional sheared slab geometry is handled
by E x B, VB, and curvature drifts. Electron-ion collisions are incorporated using the
Lorentz gas model. Equilibrium spatial gradients are easily maintained with the fluid ion
description, combined with the multiple space scale method for the electrons [2]. The elec-
trostatic model equations and the numc.ical algorithm are described next. Applications
to collisionless drift waves and trapped electron modes are presented in Section III, and a
brief discussion is given in Section IV.
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II. MODEL EQUATIONS AND ALGORITHM. The ion fluid equations are
obtained from Braginskii's plasma transport equations. The relevant ones f<»r ion parallel
velocity r.^ and ion temperature Tx are

^ [dt + (wB T vnib) • V] Ti = -TiVni , (2)

with v£ = (c/B)6 - V<j and P, = nJi. Quasi-neutrality yields the equation for the
electrostatic potential <p:

( a . + H D i - r ) Y J . ^ = V , , [ n (n , , -«„ . ) ] • (3)

with pa the sound gyroradius and vDi = uB -r (c/e5n)6 x VP,.
The guiding center orbit equations for the electrons are

n , (4)
m rn

dx

The density and average parallel electron velocity are calculated on a spatial grid as

n(x ) = Y S{x -x ) , (7)
969

g - 5 , ) • ( 8 )
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The Eulerian fluid equations are advanced explicitly in time using the two-step scheme
of the reduced MHD code RSF [3] on the two-dimensional spatial grid. Spatial derivatives
are handled by finite differences and the Laplace operator is inverted by using fast Fourier
transforms. The Lagrangian electron orbit equations are advanced in time using a two-
step predictor-corrector algorithm [4]. Operations between particle space and grid space
are handled using the dipole scheme. The most stringent constraint on the time step is
imposed by the so-called electron trapping condition fc||V(eAi < 1, followed by the need
to resolve the fastest frequency in the system {(Mce^d)1 /2k\\/k\At < 1 (for a homogeneous
plasma) and the usual CLF condition on the fastest (fluid) velocity on the mesh.

The theoretical fluctuation spectrum, JV(fc), supported by our model in the case of a
thermal, homogeneous plasma, is \V(k)/(Tr/2) = {vA/c)2/(l + k2

Lp2
3). It predicts a sig-

nificant reduction in the background fluctuation (noise) level with smaller ratios of Alfven
to light speed. v,\/c. which is verified in the computer calculations. We have also derived
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the linear dispersion relation that our model obeys and have obtained excellent agreement
between it and the calculations in the case of sound waves in a thermal, homogeneous
plasma, as well as density-gradient-driven drift waves and 77̂  modes in an inhomogeneous
plasma [1].

III. APPLICATION TO COLLISIONLESS DRIFT AND T R A P P E D ELEC-
TRON INSTABILITIES. Computer calculations of the collisionless drift wave insta-
bility in a 2|-D shearless slab using the hybrid code (periodic, frozen density profile) have
been compared with those from a conventional particle code (bounded, evolving profile).
Figure 1 shows that the growth rate of the electrostatic energy is higher by 50% and its
saturation level higher by a factor of 2 for the hybrid code. The density fluctuation levels
in both codes are within the mixing length estimate of fi/no = l/k±Ln ~ 0.35.

Computer calculations of trapped electron modes have also been performed with a
bounded version of the hybrid code. The magneiic field is chosen such that B
-fcs^osin(fc,05)sin(fc,,y), Bv = fcTVo cos(fcra;)cos(A!yy), Bz = const, with kT = 2n/L
ky = 2ir/Ly, and Lx - 2Ly. This is a simplified model for a straight stellarator. We vary
the depth of the magnetic well through V'o to control the fraction of trapped electrons.
Typical orbits for such electrons (in the absence of electric field) are shown in Fig. 2.
Exploratory results with self-consistent electric fields included are shown in Fig. 3. The
time evolution of the electrostatic energy is displayed without and with trapped electrons.
Note the significant increase of the field energy, with 72% of the electrons executing at
least one bounce.

Other successful applications in slab geometry include the study of the nonlinear de-
velopment of ideal and resistive interchange modes and of 77; modes.

IV. DISCUSSION. The hybrid particle-fluid approach is proving to be a powerful
tool in the study of low-frequency turbulence in magnetically confined plasmas. It provides
a direct assessment of electron transport in the presence of fluid-like modes.
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Fig. 1. Collisionless drift wave instability: time evolution of the electrostatic energy with
the particle code and with the hybrid code. J
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Fig. 2. Trapped electron mode instability: typical trapped electron orbits.
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Fig. 3. Trapped electron mode instability: evolution of the electrostatic energy without
and with trapped electrons.


