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THE NON-PERTURBATIVE QUARK-GLUON PLASMA

Janos Polony

ABSTRACT

After a brief and subjective evaluation of some talks of this School dealing

with the high temperature phase of QCD a mechanism for quark confinement
is presented.

. BRIEF SUMMARY

Several talks of this Workshop have addressed the properties of the high tem-
perature deconfined phase of QCD. | shall first briefly summarize the salient resuits
announced in these talks.

Most of our knowledge of the deconfined phase comes from the numerical studies
of lattice gauge theory. Though some reliable results have already been obtained for
SU(3) lattice Yang-Mills system, the numerical study of QCD with dynamical quarks
is in its infancy. This is due to the lack of sufficiently efficient simulation method to
handle non-local integrands in the path integral formalism. Kreutz's lectures' describe
the hybrid Monte Carlo algorithm which generates statistically independent giuon field
configurations for massive quarks on conventional size lattice with the least amount of

computational need. The problem | think comes up persistently in the attempts to fab-

ricate 2 general purpose fermionic algorithm is the loss of ergodicity when the fermions
are light and their zero modes become relevant. Lacking of the understanding of this
large dimensional integral it is not clear how to handle the surfaces in the configuration
space where the fermion determinant is zero. In fact, it may take unreasonably long
time for the usual stochastic algorithms to penetrate such surfaces since the integrand
vanishes there. The situation is made even worse when muiti-fermion correlation func-
tions are needed because these observables may be dominated by the configurations in
the vicinity of the zero modes, the region which is avoided by the stochasuc samphng
based on the fermion determinant. The dynamical symmetry breaking s indicated «n
the numerical simulations by identifying a “non-symmetrical” region in the configuration
space where the “simulation time” spent by the algorithm diverges with the physical
volume of the system. We may lose this ability to recognize dynamical symmetry break-
ing with massless fermions if the “simulation time" necessary for the algonthm to cross
the zero mode walls of the non-local integrand increases with the volume. The question
of fermionic algorithm is one of the most challenging problem in this area since the
intuitive understanding of the dynamics may lead to a breakthrough in the quantitative
investigations.

Engels’ talk® is a shart summary of some of the bulk properties of the gluon
plasma. There is clearly a feeling of accomphshment in announcing that the finite
size effects are under control in the computations. Together witia the rather satistving
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staius of the continuum limit we have a fairly complete numerical description of the
SU(2) gluon plasma. This state of affairs shouid set the standards for the studies of the
complete QCD. Another issue covered in this talk is the temperature dependence of the
internal energy ¢, pressure p and the trace of the energy momentum tensor ¢ — 3p. Itis
worth to bear in mind that these intensive quantities have no immediate relation with
the structure of the quasiparticles. These quantities may appear similar to their free
counterpart even when the quasiparticles are rather complicated and non-perturbative
in their origin. A simple example for this situation may be the ¢* self-interacting scalar
field theory in 3+1 dimersions. This model is supposed to have trivial renormalized
scattering matrix and describe non-interacting particles. This expectation is supported
by a vast amount of numerical works which show that the effective coupling strength
responsible for the interactions of the dressed particles is several order of magnitude
smaller than the bare coupling constant when the cutoff is high enough. But the
simplicity of the model reveals itself in the language of the dressed particles rather than

the bare ones. What the thermodynamical potentiais of the quark-gluon plasma teach

us is that there are light, weakly interacting quasiparticles with the same degeneracy
factors than the “free” quarks and gluons®.

An interesting and rather provocative suggestion was put forward in Zinovjev's
talk* who conjectured that the formation of the deconfined phase is characterized by
the dynamical breakdown of the charge conjugation invariance. The strong coupling
effective model for the Polyakov line derived in his lecture suggests that Aq(Z) develops
thermal expectation value in the deconfined phase. The dynamical symmetry breaking
occurs in this case since A changes sign under charge conjugation. Though the role
of Ao as a symmetry breaking field in the high temperature phase seems to be in
conformity with the numerical results®> one needs caution at this point. The reason
is that this symmetry breaking should systematically be investigated in the framework
of the effective three dimensional theory for the static modes which model is strongly
interacting for any choice of the effective coupling constants and the symmetry breaking
expectation values might be washed away by the quantum fluctuations®. Further works
are clearly needed to clarify this interesting question.

Alvarez-Estrada pointed out an important simplification in the infrared properties of
the quark-gluon ptasma”™: The dominant contribution to the Ao(Z) correlation function
in the infrared are coming from the Debye screening rather than the higher order effective
vertices of the effective three dimensional model. The results like this are very important
to select the subset of Feynman graphs which are relevant in a given physical problem.

All of these results refer to the static, bulk properties of the plasma at zero baryon
density. The implementation of chemical potential for the baryon density or real time
processes are pure numerical problems whose solution would immediately widen our
knowledge about strong interaction enormously. These issues will not be pursued here
and we have to be contended by some remark about the local quasiparticle structure of
the high temperature phase presented in Section V below.

Another common feature of most of these results is that they address some non-
perturbative aspects of the high temperature phase. One wonders why non-perturbative
phenomena can be so important at high temperature where the effective coupling con-
stant g*(T) is small. It is the subject of Section |l to show by inspecting the finite
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temperature Feynman graphs that perturbation expansion does not apply for the in-
frared modes at arbitrary high temperature. Section Ill gives a more detailed account
of these non-perturbative modes in terms of an effective three dimensional model. We
shall see that the gluon correlation functions are not “less non-pertutbative” in the
deconfined phase as in the vacuum. A simple mechanism for quark confinement based
on the numerical experiences is described in Section IV. The application of this mecha-
nism predicts some unusual features for the deconfined quarks in the high temperature
phase which is the subject of the Section V. The last two sections may be considered as
another demonstration that the high temperature phase of QCD is different and in fact
much richer than a collection of weakly interacting “deconfined” quarks and gluons.

. THE NON-PERTURBATIVE INFRARED MODES

The question we investigate in this section is the true expansion parameter of
the perturbation expansion in QCD at finite temperature® T = 1. Consider the one-
loop contribution V to the gluon four point function which is depicted in Fig. 1. It is
proportional to

1
Z / (27) (P +wl + M?2)? M

where M is some mass gap to be determined later and the Matsubara frequency is
given by w, = 2xnT. One would naively think by comparing (1) with the tree level
result which is O(g?) that the true expansion coefficient is g2>T at finite temperature.
Though this is incorrect it is alarming to see loop integrals with higher and higher
dimension z: multiplicative factors in the perturbation expansion which must arise to
preserve iiie dimension of the whole expression. This phenomenon characteristic to
super-renormalizable models makes the higher order of the perturbation expansion in-
frared divergent and forces us to resum infinite number of diagrams. The mass gap M
is generated by such a resum:nation method, it turns out to be Mpenye = O(gT) in the
electric propagator and the magnetic sector remaing massless when the conventional re-
summation methods are applied. \We shall have some hand-waving argument in Section
JIi that the mass gap is Minag = O(g?T) for the magnetic propagator. The infrared
contribution in (1) comes form the region p < M with n = 0 and is proportional to
g“—— = g%) where ) = -'—-— it is easy to see that other higher-loop diagrams fotlow
this pattern and the true exp.a.nsmn parameter is in fact A which is not calculable in the
perturbation expansion. The contributions of higher order Feynman graphs collapse into
the same order in g and are separated according to A. The increase of the temperature
helps to send g*(T') to zero and to decrease the effects of the interactions since there
is usually an overall factor (g2(T))* in front of these contributions with k being inde-
pendent of the order of the graph. But the actual shape of these contributions and the
(asymptotic) convergence of the expansion remain unclear whatever high temperature
is chosen. The high temperature plasma appears as the collection of weakly interacting
plane wave quarks and gluons at short distances only where asymptotic freedom protects
the perturbation expansion,
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Fig. 1: One-loop contribution to the gluon four point function.

IIl. THE EFFECTIVE MODEL

\ A more systematic method to isolate the non-perturbative effects in the high tem-
pe}t re phase is to eliminate all perturbative modes and try somehow to solve the
effect?%%d‘el for the remaining degrees of freedom. Though this procedure is not
completed yet one hopes to be able to solve the non-perturbative effective model be-
cause it contains\k{degveu of freedom and is much simpler than the complete QCD.
We shall consider Yangsylills theories without matter fields for simplicity.
The 3+1 dimensionalYang-Mills theory can be thought at finite temperature as
a three dimensional Yang-Mills-Higgs system containing infinitely many fields. To see
this use static temporal gauge Sy Ap(x) = 0 and decompose the space components of
the gluon field into Fourier-modes according to the Euclidean time dependence

i@ = /o ’ dre-io Az, 7) @

The time integral can easily be carried out in the 3+1 dimensional Euclidean action
written in terms of the fields A™(Z), Ap(F) and generates a three dimensional model
with many fields. The use of this corstruction stems from the fact that the free three
dimensional propagator for A™ has the mass w,,. It seems then reasonable to eliminate
the heavy modes and look into the effective model for the light, static fields. The loop-
integrals arising from the elimination of the non-static modes are infrared finite and
the effective model for the static modes can in principle be computed in perturbation
expansion. The tree level effective model is obtained by setting the non-static modes
to zero leading to the three dimensional Yang-Mills-Higgs model

= g [ o= PR + 35" 40P) ®)

with 1% and 4o as the Yang-Mills and the Higgs field, respectively. The corrections
to S;f° due to the massive non-static modas can be handled in the framework of
the decoupling theorem? which suggests to separate the renormalizable and the non-
renormalizable corrections AS{E", AS;" "™, respectively. The renormalizable contri-
butions generate only a local potential for the Higgs field ASIS® = [d*zV(4o). It
turns out!® that the one-loop approximation to the renormalizable part of the effec-
tive model ST" = Sipf* + ASIE® reproduces the static sector of the complete 3+1
dimensional Yang-Mills theory with accuracy O(g*(T)).

An important consequence of the formalism outlined above results from the fact
that the three dimensional Yang-Mills-Higgs system SI3f is highly non-perturbative and
confining either in the symmetric!! or the Higgs® phase and the Wilson loops of the
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effective model follow the area law at arbitrary high temperature. Th= space-like Wilsc
loops of the 3+1 dimensional Yang-Mills theory differ only perturbatively from the cor-
responding Wilson loops computed in the effective model. Thus the space-like Wilson
loops follow area behavior even in the high temperature phase. The permanent confine-
ment in the effective model should not be mixed with the deconfining features of the
high temperature 3+1 dimensional Yang-Mills system. The former is described by the
space-like Wilson loops, the latter refer to the behavior of the space and time-like Wilson
loops only. What is relevant in this discussion is that the equal-time thermal coi;slation
functions for the gluon field experience strong “confinement-like” non-perturbative ef-
fects. Since asymptotic freedom protects the perturbation expansion at short distances
these non-perturbative effects show up only in the infrared. The length scale p where
perturbation expansion becomes unreliable was found to be the same p ~ 0.23fiz at
T ~ 2Tyec as in the vacuum®?. The deconfined phase appears as “non-perturhative”
as the vacuum beyond the confinement radius. Observe that the gauge coupling con-
stant of the three dimensional model ¢27 is dimensional suggesting that the mass scale
generated for A in this model is Mmag = O(g?T).

The coupling constants are temperature dependent in V( Ay ) so the effective model
may have a phase transition at some temperature. The numerical results® are compatible
with the conjecture that the effective model is in the symmetric and the Higgs phase
for T < Tgec and T > Tyec, respectively. The formation of the Higgs phase at high
temperature might be understood by the close examination of the differences of the
renormalization in three and four dimensions!3. The semiclassical analysis of the Higgs
phase of the three dimensional Yang-Mills-Higgs system® uses the magnetic monopole
configurations as saddle points. This suggests that chromomagnetic monopoles may be
long-living resonances of the deconfined phase. The chromomagnetic monopole density
which can be computed numerically without using the semiclassical approximation was
found to be finite in the continuum limit of the lattice QCD? indicating that these
monopoles are indeed present in QCD. This circumstance has some relevance in the
description of confinement as dual MeiBner effect!! and the prediction of some unusual
quantum numbers in the deconfined phase!S.

IV. PERMANENT CONFINEMENT OF TRIALITY

The notion of triality has been introduced in the quark model to give a simple
characterization of the observed muiti-quark siates. It is defined as & = .V - V{mcd3)
for the state |N, N > consisting of N quarks and V antiquarks and only states with
zero triality can be observed. Note that gluons give no contribution to the tnality
A kinematical construction supported by the manner the confinement-deconfinement
phase transition shows up in the numerical studies will be presented below to eliminate
states with nonzero triality!®. | believe that the understanding of the dynamical origin
of this mechanism will ultimately exclude gluons from the asymptotic states as well
But there are some lessons to learn from this mechanism even without the proper
understanding its dynamical source

The first step is to give a more formal definition for triality. The center of the
group G is the subgroup C formed by the elements commuting with all elements of G.
[C.G) = 0. The center of the group SU'(3) s Z; which consists of 3 x 3 matrices which
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are the product of the 3 x 3 identity matrix and a cubic root of one :,"I- = éi,e"‘zi",k =
0.1.2. The gluon and the quark fields transform as

A2 = A9 (F)N = g(2)(d + A%(2)A")g'(2) 4

and :
q(z) — ¢*(x) = g(z)g(x) (5)

respectively under gauge transformations. It is easy to see that the triality is the charge
with respect of the center of the global gauge group,

KN N = EN-MN T > (6)

The special feature of the center of the gauge group is that while it leaves the gluon field
invariant A7(%) = :A(F)z" = A(F) and appears as an “invisible” discrete symmetry
group of the gluon dynamics the multi-quark states with non-zero triality do feel it.
The conventional way to describe confinement is to try to generate linear potential
between the confined constituents. | shall use a less detailed kinematical character-
1ization of the confined states: they should have vanishing propagator since it szems
impossible to prepare an isolated states made of a particle with vanishing propagator.
This condition can navurally be used only after eliminating the local gauge invariance.
The linearly rising quark potential is expected when the quark-antiquark vacuum polar-
izations are neglected. The quark propagator should vanish as long as states with zero
triality appear as intermediate states. This latter condition seems more appropriate to
impose on our approximation since it can be expressed in terms of a conserved quantum
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Fig. 2: (a) The two slit experiment illustrating the vanishing of the elec-

tron propagator at certain points. (b) The explanation of the absence of the
electron becomes difficult if the slits are hidden.

The mechanism responsible for the vanishing of the propagator in the usual two
slit thought experiment is illustrated in Fig. 2. Suppose that the detector is placed at
the point where the length of the paths througi the slits differ by half of the Cortpton
wavelength. The amplitude finding the electron at that point is given by ) = ¢;e~'Er¢ 4
ere=F10 30d is zero since ¢y = ~c3. Ey = E,. If the slits are hidden from us then the
amplitude 15 expected of the form 1 = ce~'E! with no obvious reason to have ¢ = 0.
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The only way the absence of the electron can be understood is to have E — oo since
the Planck constant has an infinitesimal imaginary part for the causal propagators. This
simple thought experiment shows that the absence of the particles can be understood
in some circumstances as the completely destructive interference in their propagator
rather than by assigning infinite energy to some states.

Another example of such a cancellation in the propagator which is closer to what
happens in gauge theories is the vanishing overlap between states with integer and half
integer spin in three dimensions. Consider a quantum rotator in a state with spin %

13 >= [ 6D PIR()% > ™

The invariant integration is over the group SU(2), D!1) denotes a linear combination of
the matrix elements of the spin -.} ‘D-matrix and R(g) is the three dimensional rotation
corresponding to the SU(2) eleraent ¢, R(g)Z = *

95 = g35¢' (8)

where & are the Pauli matrices. The overlap
1, —ieHys = | —itH =
< gl 0 >= [ dgDHg) < Rea)zole™ 5o > ©)

vanishes for arbitrary ¢ because the state |G, > has integer angular momentum com-
ponents only. The vanishing of (9) can be understood by pairing the contribu-
tions corresponding to g and —g. The sum of these two contributions is zero since
Did)(~g) = —'D(i)(g) and R(—g) = R(g). This cancellation is demonstrated in
Fig. 3 where the amplitude of propagating from the left arrow to the right one is the
sum of two contributions which differ that the arrow has an additional rotation by 2x
around some axis along the lower path. The two contributions differ in sign only when
the state of the left and the right arrow has half-integer and integer spin, respectively.
This cancellation is made possible because the two paths can not be transformed into
each other smoothly!%, they are homotopically different.
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Fig. 3: The vanishing of the overlap between half-integer and in-
teger spin states of the quantum rotator.



The previous argument seems suspicious since the wave function of the state |1 >
has two different values at the same point. To make things better defined it is advised
to separate those two, physically equivalent positions where the wave function has
different values. This amounts to distinguishing the rotation by 2x from the identity.
Fig. 3 suggests that the physical amplitude is the sum of the amplitudes corresponding
to mathematically different but physically equivalent paints. The notions introduced
here are well known in mathematics!®. A space Q is called muitiply connected if a
point moving in it can have trajectories which can not be transformed into each other,
i.e. are homotopically different. The space Q' obtained from Q by splitting the points
of Q according to the homotopy classes of the paths reaching it is called the covering
space. The paiits on the covering space which belong to the same physical location q
are called the image point of q. Functions Jdefined on multiply connected spaces may
assign different values to the same points as long as only local operators are applied
on them and the values satisfy some compatibility conditions. The well known muiti-
valued functions are y = \/T or y = log(z) with the additional rule that local aperators
e.g. derivation act on the same Riemann sheets only. The different values of the wave
function may differ in a constant phase only in order to have well defined observables.
Note that the multi-valued functions become single-valued on the covering space.

It is not difficuit to imagine the cancellation in the quark propagator by comparing
(8) with (4) when g is constant. The propagation of the quark is thought in the color
space as in the previous case and three different contributions to the quark propaga-
tor can be grouped together in a manner that they cancel each other. The difference
between these contributions is thas at some time between the creation and the annihi-
lation of the quark the system undergoes a global gauge transformation by a different
center zlement. The gluon dynamics is insensitive to such transformations but the quark
propagator picks up the appropriate phase which sums up to zero. It is worth while
noting that glueballs may carry triality charge despite the invariance of the gluon field
under global gauge transformations from the center. Such states can be constructed
analogously to (7) where the wave function changes under the application of the center
of the group SU(2) though the coordinate remains invariant. The sum of in finitely
many integer may be fractional.

The cancellation mechanism above is purely kinematical. The dynamical part of
this picture is whethet the summation over homotopically different paths should be
included in the path integral or not. The remarkable fact is that gauge theories are
consistent in either case! To understand how this happens we have to go back to the
proof of the path integral expression for a simple quantum systam

WQT) = / Dig(tife"Sle (10)

where the integration is over paths with end points ¢(0) = 0,¢(T) = Q. The variation
of the paths at the end poirt and the Taylor expansion of the integrand gives quickly
that w(Q,T) satisfies the appropriate Scirddinger equation'”. The point is that this
proof can be repeated when the integral is restricted to homotopically equivalent paths.
One may multiply the contribution of different homotopy classes by different coefficients
since the Schrodinger equation is linear. This ambiguity is fixed by requiring that the
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observables should remain, the same when the mathematically different but physica
equivalent points are exchanged on the covering space. This amounts 1o requiting that
observables should be invariant under rotation by 27 in the case of the rotator. There
is no compelling reason to require that global gauge transformations from the center
should leave the observables invariant. The choice of keeping only one homotopy class
in the path integral corresponds to the dynamical breakdown of the center symmetry.
Thus quark confinement is equivalent with the presence of the center symmetry in the
vacuum,

One expects that the center symmetry breaks dynamically in short time processes.
The rotator travel through more distance along the lower path in Fig. 3 which corre-
sponds to the extra rotation by 27. Its kinetic energy will suppress this path in the path
integral for short time. The “long" paths may be missing completely for ime t < t4..
when the system has infinite degrees of freedom and the "rotation” is a collective co-
ordinate like global gauge transformations. The deconfined phase is where the quarks
propagate in one homotopy sector only. Observe that the center symmetry is broken at
high temperature or high energy rather than at long time or in the vacuum.

The covering space for gluons consists of the field confi;uvations A(F),e=0,1.2,
where the index ¢ distinguishes the image points and the “invisible” global gauge
transformations from the center change its value Azt = Je+1tmodd The piyon
states with triality £ have the wave functional W[A!] on the covering space satistying
P{AGmodd)] . (it % Y[ AL} The suppression of some homotopy classes observed in
the decoafined phase can equivalently be described by allowing certain linear combina-
tion of the triclity classes, e.g. one can verify easily that the sum over triality classes with
equal weight suppresses the homotopically nontrivial “long” paths in the path integral.
Consider now a deconfined quark with non-vanishing propagator when the initial and
the final gluon fields are A() and A/, respectively. What is the triality of the gluon
state corresponding to _this deconfined quark ? The amplitude of propagating ftom the
image point A to AN is 1e¢~)13F where the phase factor is generated by the
quark propagating with the gluons. The only way the sum over the image points can be
non-zero is that the oscillating phase of the quark propagator ¢'® becomes cancelled by
the phase factor coming from the wave functional ' (c. f. Fig. 4). Thus the gluon state
has triality which screens the triality charge of the deconfined quark. Tnality charges are
either confined (confined phase) or completely screened (deconfined phase), no state
with triality can be observed in QCD'3. The deconfined phase is where a new kind of
screening is available for the quarks, the localized excitations of the high vemperature
phase continue to have zero triality charge.

V. THE DECONFINED-SCREENED QUARKS

We have seen in the previous section that the deconfined-screened quark s a
composite particle. This can be illustrated by an imaginary world where only the
charmed yuarks participate in the electro-weak currents. The charmed mesons ap-
pear as deconfined-screened quarks for the experimentalists of this wortd The role of
the non-charmed quarks is played in our world by the gluon states which carry similar
color charge than a quark but these states are not available in our fanmliar environment
at T < Tyec. The separation of the screeming gluon cloud from the quatk in the high
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Fig. 4: Contributions to the quark propagator on the covering space.
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Fig. 5: The deconfined-screened quark.

temperature phase would generate a string of gluonic “mesons” in compiete analogy
with the situation in the vacuum in the presence of dynamical quarks.

The analogy with the imaginary world is even more complete, the screening
gluon cloud may appear as a fermion. To see this we return to the chromomagnetic
monopoles. Their characteristic property is that they are gauge hedgehogs, three-space
rotations can be compensated by global gauge transformations. Consider SU(2) gauge
theory for simplicity where the wave functional of these states changes sign under global
gauge rotation by 2r (center element!) in color space. The hedgehog property guar-
antees that the rotation by 2x in three-space gives the same change of sign. Thus
these particles have half-integer spin and negative exchange parity according to the
spin-statistics theorem for kinks'8. This mechanism which is identical to the way how
skyrmions can be quantized as fermions applies in the case of SU(3) as well.

Perform a phase shift analysis with a deconfined-screened quark to determine its
spin. We separate the gluon state corresponding to a deconfined-screened quark into
two components, one which contains chromomagnetic monopoles and the other which
does not. The former component of the quark-gluon composite particle behaves as a
boson in this experiment. The states contributing to the partition function in the high
temperature phase have no well defined triality. Since the chromomagnetic monopoles

relate the tnality charge to the spin-statistics the deconfined-screened quarks have bose
and fermi components.
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