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A 13-point Thomson scattering system mounted on the JFT-2M tokamak 
routinely provides reproducible electron temperature and density data. 
Good performance has been achieved with the help of a large collecting 
lens (capable of gathering data over a vertical 60-cm long plasma volume), 
the automatic transfer of data from a 180-channel attenuator into the CPU, 
the use of high-pass optical filters and a large polarizer plate to re­
duce stray light, and a better matching of LED calibration signal inten­
sities to those of the scattered signals. 

Peaked density profiles are measured in improved L-mode (1L) 
plasmas, in contrast to those observed during the H-mode phase. IL-mode 
is caused by the broad and high electron temperature. With pellet 
injection, peaked density profiles are again observed. 
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J. In troduc tj'on 
Several tokamak experiments have been equipped with 

multi-point Thomson scattering systems [1-8]. A TV Thomson 
scattering system(TVTS) has been developed at the Princeton 
Plasma Physics Laboratory(PPPL) and installed on PLT, PBX and 
TFTR [1-3], as well as on Dili and DIII-D [4,5]. A light 
detection and ranging (LIDAR) system has been developed for the 
Joint European Torus (JET) [6]. The spatial resolution of the 
former system is about 1cm and that of the latter about 10cm. In 
order to obtain the temporal evolution of the profiles, further 
development of the TVTS would be required. One complete profile 
is usually obtained with each tokamak discharge, except in the 
case of scattering systems using YAG lasers [7]. For a small 
tokamak like JFT-2M, a TVTS system would be suitable for 
measuring electron temperature and density profiles. 

On JFT-2M, a 13-point Thomson scattering system using 
photomultiplier(PM) detection has been taking data for 2 years 
[9]. Although measurements are presently being made at 13 
spatial positions, this number could be increased to 38 or more. 
The present configuration represents a compromise as concerns 
the physical size of the enclosure containing the PM tubes. The 
separation in the plasma between adjacent measuring points is 
approximately 5cm. 

PM tubes have been chosen because of their wide dynamic 
range, high gain, high quantum efficiency and 
highly-reproducible gating action during data acquisition. 
Because of variations in quantum efficiency over the surface of 
the photocathodes, as well as sample-to sample variations in the 
tubes themselves, careful calibration of each tube is necessary 
in order to obtain accurate data. Rather than a 
tungsten-filament lamp, LED's have been used for this 
calibration [10]. 

This paper describes the components of the 13-point Thomson 
scattering system, with emphasis on the glass fiber optic 
bundle. Electron temperature (Te) and density (ne) profiles for 
plasmas showing good confinement (improved L-mode and other 
modes) are also presented and discussed. 
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JAkkl \1 *.. ] n.i 

2. Thomson ScatterJriff System 
The Thomson scattering system described here, shown in Fig.l, 

represents an upgrade of a 6-point system described previously 
[8]. A typical optical path is shown in Fig.2. The collecting 
lens is designed for gathering light from a 110cm long vertical 
plasma volume. The lens is of Gaussian type, as was also the 
case in the previous design. Vignetting from the observation 
window limits the vertical field of view to a length of 60cm. 
The optical axis of the lens is 10cm below the plasma mid-plane. 
A motor-driven vertical adjustment of 5cm is provided. The 
diameter of the collecting lens is approximately twice that of 
the 6-point Thomson scattering system [8]. The lowest 
observation point in the plasma(position 1) is 10cm below the 
plasma mid-plane, for which the scattering angle is 80°. The 
scattering angle for the highest observation point, at position 
13, is 131°. The spatial resolution is 1.6cm at the plasma 
mid-plane. A polarizer plate mounted behind the collecting lens 
reduces plasma radiation and stray light by half. Each fiber 
bundle is mounted with its input face perpendicular to the 
optical axis. The fiber bundles depolarize the scattered light. 
This effect simplifies the calibration procedure by removing the 
differences in polarization between the scattered light and the 
unpolarized LED radiation used for calibration. (The 
reflectivities of the diffraction grating and of other optical 
surfaces in the beam path are polarization-dependent.) High-pass 
optical filters are mounted at the input end of the first 
optical fiber bundle in order to decrease the stray light. The 
output end of the fiber bundle is divided into 2 sections, each 
going to the input slit of a separate spectrometer. The 
spectrometers are again of the Littrow type, but with a larger 
wavelength range:5200-7000A. A second fiber bundle runs from the 
output slits of each spectrometer to the PM tubes(48 in all). 
The optical transmission of the system is similar to that of the 
previous one. The PM tubes are gated on for 3-8 sec for 
detection of scattered light, and again after 10 sec for the 
same time interval in order to measure the plasma light. The 
output signals are amplified tenfold and then attenuated as 
required to accommodate the dynamic range of 500 counts of the 

2 -
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A/D converter. The attenuation is adjusted from the control 

room， the attenuation values and the scattered signals being 

recorded together. The signals are integrated during the 100nsec 

gate duration. Graphic display of electron temperature and 

density profiles follows immediately. In addition， untreated 

data is stored in a memory module in the CAMAC crate for 

subsequent transfer to the central computer(Mitsubishi Ltd 

[11]). Software has been developed for calculating Te and ne 

from the experimental data [10]. Automatic recording and display 

of the 180 attenuation values increases system reliability. 

The Q-switched laser system [8]， producinσabout 43， has been 

in operation since 1977. 
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3.FJber Bundle Construction 
Recent improvements in the reliability of optical fibers have 

motivated their use between the collecting lens and the 
spectrometers, and also at the output of each spectrometer. This 
modification has reduced the optical path between the collecting 
lens and the spectrometers from about 2m to less than lm, thus 
reducing the size of the optical system. Figure 2 shows a 
typical path through the complete optical system. When a large 
lens with a large solid angle is used for collecting scattered 
light, correct matching requires the use of a fiber of small 
numerical aperture. The field lens transmits light from the 
fiber bundle to the Littrow lenses in each of the two 
spectrometers used for analyzing the radiation scattered from 
the 13 vertically-arranged points. Here a flexible fiber bundle 
is used, in contrast to the systems developed for PLT and 
DIII-D, where small-diameter (50 micron) flexible glass fibers 
are used. The flexible type used here allows easy modification 
of measuring positions and spectral channels by interchanging 
fibers or moving the collecting lens vertically. Except for the 
number of channels, the fiber bundles used here are similar to 
those previously employed. Each bundle in the first has an input 
end of rectangular cross-section, while two output faces are 
curved, with dimensions 70mm by 3mm. The dimensions of height is 
larger than that of the bundle used previously [8]. The 13 
measuring points are separated into 2 groups for spectral 
analysis-the 7 points from the central (high temperature) reg:.-i. 
and the 6 from the edge (low temperature) region. In order to 
reduce losses, the fibers are kept as short as possible. 
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4. Profile Measiuremen ts 
Density calibration is performed using Raman scattering and 

the spectral calibration is performed using LED's [12]. The 
average electron density determined from Thomson scattering 
correlates well with values obtained from HCN interferometer 
measurements, as shown in Fig.3. 
Profiles obtained during the H-mode phase have already been 
presented previously [13,14]. Here we present profiles obtained 
during the improved L-mode(IL-mode) phase. The IL-mode plasma is 
described elsewhere [15]. The global plasma energy is higher 
than in the H-mode, as shown in Fig.4. Their profiles are shown 
in Fig.5(a) and (b), the latter showing the peaked profiles 
observed during the IL-mode phase. The edge electron density 
decreases by about 5095 through the disappearance of the electron 
temperature pedestal which is the resulting increase in the 
diffusion coefficient D=0.2*xe, as derived from the relation 
xe=const/(ne*dTe/dr). A steepened gradient is measured during 
the early phase of the H—mode, while the L-mode phase is 
characterized by greater decay lengths of profiles at the plasma 
edge for both the electron density and the plasma emission [16]. 

The peaking ratio of electron density, neo/<ne>, neo and <ne> 
being the central electron density and the volume-averaged value 
of electron density respectively, is high in the IL-mode phase, 
as shown in Fig.6. The IL-mode can be characterized by a 
specific electron behavior, namely a larger value of Te due to 
the peaked, narrow ne profile. Such conditions are favorable for 
central energy deposition using neutral beam injection to 
produce a high and broad electron temperature profiles. We next 
present results obtained during pellet injection. In many 
discharges, pellet injection causes profile changes. Higher 
central density and peaked profile, as shown in Fig.7, results, 
ne profile is similar to those of the IL-mode phase. 
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5. Summary 
A 13-point Thomson scattering system for measuring Te and ne 

has been collecting data reproducibly since 1987. The following 
points should be noted. 
1)A large collecting lens collects the light scattered from a 

60cm long plasma volume. 
2)Attenuation values from 180-channel attenuator are 
automatically transfered into the CPU memory. 

3)High-pass optical filters and polarizer plate are used to 
reduce stray light. 

4)The fiber bundles used minimize the polarization differences 
between the scattered light and that used for calibration. 

5)The system operates reliably for electron densities above 
(4-5)xl0 1 2cm - 3. 

6)Peaked density profiles are measured in the IL-mode, in 
contrast to those of the H-mode. 

7)Broad temperature profiles are measured in the IL-mode, which 
will lead to good confined plasmas. 

8)The electron energy in the IL-mode -is higher than in the 
H-mode, due to the increase of electron temperature. 

9)The density peaking ratio is highest in the IL-mode, which is 
similar to that of pellect injection. 
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D + plasma, three deutrium pellets and lower single-null 
divertor configuration. 
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