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Abstract 

In this paper, we solve different theoretical problems associated with the calculation 

of the kernel occurring in the Hill-Wheeler integral equations within the framework of 

generator coordinate method. In particular, we extend the Wick's theorem to non-

orthogonal Bogoliubov states. Expressions for the overlap between Bogoliubov Btates 

and for the generalised density matrix are also derived. These expressions are valid 

even when using an incomplete basis, as in the case of actual calculations. Finally, the 

Hill-Wheeler formalism is developed for a finite range interaction and the Skyrme force, 

and evaluated for the latter. 
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1 Introduction 

About fifteen years ago, the ability of the density-dependent Hartree-Fock aprroximation1'2) 

to describe reasonably the mean field in nuclei was demonstrated by the accuracy of its pre­

dictions in several nuclear structure calculations. This success provided the incentive to go 

beyond the static description and attack on theoretical grounds the problem of finding coher­

ent microscopic descriptions for some specific collective phenomenon in nuclei. By "specific" 

we mean those phenomenon whose dynamics is expected to depend essentially on the time 

evolution of the mean field. As an example, let us recall here that various giant resonances 

are satisfactorily described by assuming that they are associated with small oscillations of 

the mean field. As is well known, the linearisation of the time-dependent Hartree-Fock 

theory with tespect to these small oscillations provide the microscopic description for their 

time evolution (e.g. the RPA approximation). 

In. this paper, we are interested in large amplitude motions such as those encountered 

in fission or in the description of low-lying excited states of soft nuclei. The derivation of 

a microscopic theory adapted to this case is not as straightforward as in the case of giant 

resonances. The time-dependent Hartree-Fock approximation with the adiabatic hypothesis 

(ATDHF) can again be the foundation for the theoretical formulation of large amplitude 

motions. In this approximation, Baranger and Veneroni3) derived a set of coupled equations 

whose resolution would, in principle, provide the collective paths and the mass parameters. 

With this information, it is possible to construct the semi-classical collective Hamiltonian 

and to quantize it. 

In Villars'4' approach to large amplitude motions, the collective Hamiltonian is extracted 

from the kernel of the Hill-Wheeler theory6' by a simple expansion around the locality in 

the collective variables. As a result, the collective potential is corrected by some zero-

point energies. In contrast to the ATDHF theory which is semi-classical, Villars' procedure 

is quantized to start with and gives a collective Hamiltooian which is automatically and 

uniquely quantized. 

These theoretical works have certainly contributed towards a coherent foundation to 

a previous phenomenological collective model, as proposed by the Copenhagen group6). 

However, a couple of remarks regarding these theories are in order. First, it is clear that 

the resolution of the set of coupled equations would require a considerable amount of effort. 
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Second, there is no genera] proof of the existence of their solutions. That is why in actual 

applications, the collective paths are generally not determined from these equations. In 

order to bypass these difficulties, one has recourse to the mean-field approximation with 

additional external fields. By varying their strength, one can deform the mean field and 

generate a set of Hartree-Fock solutions which can be labelled by the mean values of the 

operators associated with these external fields. Somehow these mean values will define a set 

oi collective variables. The choice of the fields will depend on the type of proceases we want 

to describe. For instance in fission7), it seenu sufficient to consider the following collective 

variables: 

1. qto- quadrupole deformation (stretching), 

2. qao- octupole deformation (left-right asymmetry), 

3. ?4o: hexadecapole deformation (necking). 

Evidently, pairing correlations can be included in the description by using the Hartree-Fock-

Bogoliubov1,8' approximation instead of only Hartree-Fock. The dynamics of fission in this 

collective space is then described with the microscopic collective Hamiltonian. 

Our motivation in this paper is to go, among other things, beyond the collective model 

and solve the full Hill. Wheeled equations. We have in mind further applications to the 

predictions of possible shape isomeric states, if they exist, and on their characteristics. 

The paper is organized as follows. In Sec.2, we derive, for completeness, tbe Hill-Wheeler 

equations. Sections 3, 4 and 5 are devoted to the presentation of all the technical aspects 

which are necessary to calculate the kernel occurring in the Hill-Wheeler integral equations. 

In Secs.6 and 7, we apply the formalism to non-zero finite range interaction and to the 

Skyrme interaction, respectively. The paper is concluded in Sec.8. 

2 Derivation of the Hill-Wheeler equations 

In the generator coordinate method (GCM)9), the stationary wave function describing a 

system is chosen in the factorized form 

!*>=/<to}x({«}) I *{,)>, (i) 
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where {q} denotes a set of "collective variables* — the so-called generator coordinates, and 

the function | ${ 4) > are supposed to take into account the internal degrees of freedom. In 

the Hill-Wheeler theory6', it is assumed that the | ${,) > are predetermined and only the 

x{{?}) are the unknowns. As long as we are interested in the low-lying excited Btates, this 

approximation can be justified by arguing that the collective oscillations are much slower 

than the internal motion. Thus applying the variational principle to | • > which states that 

the total energy < * | V | # > / < # | * > b e stationary with respect to variations in the 

functional space spanned by the function Xi we obtain the following system of equations: 

/ Xii, flxWW = EJ /(*, rtxfoW, (2) 
where I{q, q1) is the overlap between the states * , and *,«, i.e. /(?,?') =< Qq | *,< >• (For 

the sake of simplicity, we shall henceforth use the notation q instead of {q}. The notations 

and conventions used in this paper are outlined in Appendix A.) By defining a set of new 

functions as 

*w = / / 1 / W ) x ( « w , (3) 
we can rewrite Eq.(2) as 

/K(? .? ' )X(7W = £*(<?), (4) 

which is in the form of the familiar Hill- Wheeler*' type integral equations. The kernel 

K[q,rf) is given by the expression 

K{q, «') = J r */»(,, q')U(q', q"r)r1%'", f)df*T, (5) 
where #(?,?') are the matrix elements of a given effective Hamiltonian, i.e. M(q,q') = 

< * , | M | $ 4i >. The kernel K being Hermitian, the resolution of Eq.(4) is a simple 

eigenvalue problem 

/ ^ t . f e h W ^ x . l j ) , (e) 
with the eigenfunctiona normalized according to 

J Xn («)Xr.' (?)<*? = Snn<. (7) 

This guarantees the normalization of | * >, defined in Eq.(l), to be unity. The eigenvalues 

of Eq.(6) can be interpreted as those of the ground Btate (lowest En), the first (collective) 

excited state (next higher E„), and so on. The wave functions of these states, according to 

Eq.(l), are 
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I *„ >=/*»<«) I *«>d«, (8) 

where 

xn(») = /r l / ,(?,«U>(«W- fl>) 

It remains to be specified how we choose the function | * , > and define the collective 

variables. In our approach, the set of functions | 4>9 > are the independent quasi-particle 

(q.p.) states obtained by means of the Hartree-Fock + BCS theory 1 0 - 1 2 ) , or more generally, 

by the Hartree-Fock-Bogoliubov (HFB) method1-8' with several external constraining fields. 

For instance, the external fields can be some low order multipolar one-body operator Qim . 

Then the set of collective variables {qim} ue the mean values 

?<„ =<*,!<?&» I * , > • (10) 

It is worth pointing out that our approach is fully consistent and microscopic in the 

sense that the mean-field, the pairing field and the kernel of the Hill-Wheeler equations 

are calculated with the same Hamiltonian, the only input being the effective interaction 

between nucleons and the choice of the constraining fields. In the next section, we develop 

the formalism for the calculation of the kernel when using independent q.p. states. 

3 Calculation of the kernel K(q,q') 

For the sake of completeness, we present here an extension of Wick's theorem13) to the case 

of non-orthogonal independent q.p. states. This theorem will allow us to express in terms 

of simple contractions the expectation values of the one- and two-body operators occurring 

in the definition of the kernel K(q,q') in Bq.(5). We mention that the Wick's theorem for 

non-orthogonal Slater determinants has been worked out by Blaizot and Ripka1*). 

3.1 Wick's theorem 

The extension of Wick's theorem is readily established by using the Bloch-Messiah theorem16) 

concerning the decomposition of the most general Bogoliubov transformation16). Let us re­

call briefly that a general Bogoliubov transformation maps a given set of creation and 

annihilation operators (o',a) onto a new set (»j'>*0 associated with the creation and an­

nihilation operators of the so-called "quasi-particles". We write the transformation in the 

form 
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=B\ | . (11) 

The transformation B has to be unitary (BB* = B'£) in order to preserve the anticommu-

tation relations between the fermion operators (a\a). Also, to avoid writing explicitly the 

quantum labels, we use compact notations where U and V represent block matrices. Thus, 

* = £(«•*•*+•>}) (13) 
8 

The Bloch-Messiah theorem stipulates that the transformation given by Eq.(ll) can be 

factorized into product of three transformations. More specifically, the first transformation 

just rotates a f and a separately and defines new operators 6' and b: 1' = Daf and o = Da. 

D is real and it diagonalizes the matrix VV. The second transformation is of the BCS type 

and defines the q.p. operators f' and ( as 

In the above equation, the transformation matrix is of the order 2 x 2 and | i > and | i > 

denote states which allow the pairing tensors to be cast in the canonical form. However, 

in all the applications we present in this paper, 11 > represents the time-reversed state of 

| » >. Furthermore, the ratio ttj/u,- is simply related to the eigenvalues of VV. Finally, the 

third transformation rotates £' and £ and defines the q.p. operators tjt and q according to 

the relations IJ' = C£* and r) = C£. 

This decomposition of the most general Bogoliubov transformation allows us to express 

the vacuum | 0 > of the q.p. operator IJ (17 | 6 >= 0) in terms of the vacuum | 0 > of the 

operator a (a | 0 >= 0), The relationship is given by 

| 6 > = < 0 | 6 > e * | 0 > , (15) 

where 

* - £ * # (16) 
«> ^ 
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(The notation i> implies that the time-reversed states | i > are not included in the sum­

mation.) 

It is now quite straightforward to establish the connection between two independent 

q.p. states | *« > and | *«< >, as defined in the previous section, since they are both 

by definition the vacuum of two q.p. sets !}* and tj* which are related according to the 

Bogoliubov transformation 

?M:H(:)-
In fact, by using the same arguments that led to Eq.(15), we find that 

| *,i >=< # , | *,. > e*^ | *„ >, (18) 

where 

»> " • 

and 6? | * , >=0V«. 
Equation (16) males it much easier to calculate any general contraction of the form 

Using Eq.(18) and inserting eJf« ,fe~Jff'i as many times as necessary, this contraction becomes 

< *, i *,. >< •, i m-ifji-ii i «« >, (2i) 

where we have used the fact that < $ , | rx«'< = < * , ) . The new operators 6'* and &4 are 

defined as 

6«t = e-X,,, bi1gX^ s (22) 

b" = «- J fi ,fJ»e J f«'f, (23) 

and obey the same commutation relations as f and t g t . Consequently, we can use Wick's 

theorem and express contraction (20) in terms of the simple contractions 

< * , | *„• > _ l < * , | &"*« | *,- >, (24) 

< 4 , | %. >">< * , j VW | *,. >, (25) 
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< ft, I «,. > - , < ft, I o*i* | *,' > • (26) 

The usual Wick's theorem still applies under the condition that we use the contractions 

defined in (24)-(26) and multiply by the overlap < ft, | ft,i > the final result. As an 

example, we show how to use this new theorem for the contraction occurring in a two-body 

operator: 

<»,i#w,l*,.x*,|pfojl»«'> 
^ < ft, | ft,r > < ft, | »,> > 

< * , I * , i > < *« ] *»' > 

<»« I # f l I »t. ><*,!>;«• !»,»>. 
< * , I* , . > < * , |*,. > '' K ' 

In the next subsection, we calculate by a direct method the overlap < ft, | *,i > and 

the elements of the generalised density matrix that appear in the contractions given by 

(24)-(26). They are needed for the calculation of the kernel. 

3.2 Evaluation of the overlap and the elements of the generalized den­

sity matrices 

In order to calculate the overlap, we define the quantity 

R[z) =< 0 | f*t& | 0 >= - n

< , ? v X i * £ * , (28) 
y ' ' ' <0|*,. ><*, |0>' v ' 

where x ia some parameter. According to Eq.(15), we can express the independent q.p. 

state I ft, > in the form 

| ft, >=< 0 | ft, > «*« | 0 > . (29) 

Consequently, the overlap is simply related to R(x) by 

< ft, | *,. >=< 0 | »,» >< ft, f 0 > R(l). (30) 

For convenience, we set 

*an*? = $ . (31) 
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so that Xf becomes 

* , = £ ; tan «!••'*?*. (32) 
•'> 

We new show that R(x) satisfies a simple differential equation by calculating the first 

derivative Bf(x) with respect to x. Starting from Eq.(28), we immediately find 

&(x) = tr[tan B* A{x)), (33) 

where the elements of the matrix A(x) are 

<*„x|«t?|*,'> 
^ W = < 0 | w ^ > < w f l | O > - ( 3 4 ) 

As shown in Appendix B, the evaluation of A(x) necessitates the introduction of another 

matrix B(z) with elements 

and to solve the set of coupled equations 

A(x) = rw'tan^'r^Kfx) -T««'tan0«'B(z)tan0<'V«'t, (36) 

B{x) = xr«'* tan 0*T«'R{X) - x V ' t tan 0M(x) tan 9«T«', (37) 

where r«' = {b^,V>}. (See Appendix A.) 

We note that the matrices A(x) and B(s) enter also in the calculation of the elements 

of the generalized density matrix since, as shown in Appendix C, we have the relations 

< * , | bpq' | *, . > = tantfBji < 01 * , . > < * , | 0 >, (38) 

< * 4 | bfbi' | *,. > = - < * , | * c , > tan*?'*,-, 

+ tan fff tan flj'fly < 0 | *,- >< * , \ 0 >, (39) 

< * , | 6f',S't | fy >= Bfi < 0 | *,. >< $, | 0 > . (40) 

Due to the structure of | * , > and \ %• >, the matrix elements < $„ | b^'bi | $,> >, 

< *» 1 bftf [ *,- > and < « , | bfbf | *,. > are all zero. 
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3.2.1 Overlap 

l b calculate the overlap matrix [Eq.(30)J, we need to evaluate # ( x ) as given by Eq.(33). 

Introducing the notations 

Ci{x) = tan$*A(z), (41) 

0,(x) = ( r " ' * ) " 1 ^ * ) tan^Vw't, (42) 

Af = tan*»r«' tan P'T*'*, (43) 

we find with the help of Eqs.(36} and (37) the following equations for C\(x) and CJ(I ) : 

Ci(x) = M*R(z) - M*C(x), (44) 

Ct(x) = xM*R(x) - I'CitsjAf 4- (45) 

The second equation allows us to eliminate Cj(x) in the first and, consequently, Ci(x) must 

be the solution of 

Ci(x) = M*R(x) - x(M*)*R(x) + xIAf»Ci(*)A/«. (46) 

A solution of Eq.(46) in the form of a series can be found by iteration end it is 

<?i(*) = {l-xW + x*(Af»)» - x s(M»)* + • • -jAf R(x) 

= (l + xM«)- 1A^B(z). (47) 

While the above is quite general, in actual calculation, the Bogoliubov transformation is 

performed in a restricted basis. Consequently, we calculate a restricted set of q.p. operators 

IJ?' (cr 17*f) characterized by the Bogoliubov angles tf? (or 9? ) such that tan 9? ^ 0 (or 

tan 6? ^ 0). In that case, Af* can be written as i "M* where P* la the projector in the 

space spanned by the q.p. set rft. Then with the present notation, Eq.(47) becomes 

C,(x) = [i*Af« - xJ*AfP* + x*(P<M*Fi)2 + • • •jP»M»i?(x), (48) 

which has the important consequence that, indeed, we do invert (1 + xMg) in the restricted 

space. 

Combining Eqs.(33), (41) and (47), we obtain 

tf(x) = B(*)tr[(l + xM* )~lM*\. (49) 
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Equation (40) can be readily integrated (between 0 and 1) to give 

R(i) = exp[tr{iog(l + Af)}] = det[l + M*]. (50) 

Thus we find for the overlap [Eq.(30)J 

< * , | *,< >=< 01 *«. >< $ , | 0 > det[l + Af*|, (51) 

where 

<*,I°>=IN- ( 5 2 ) 
•'* 

with a similar definition for < 0 | * f i >. We emphasise once again that * hen working in a 

restricted space, [1 -f Af«] has to be defined only in this aper- ([1 + P*Mi]P*). 

3.2.2 Generalised density matrix 

To calculate the overlap matrix, we had to only evaluate tanl 4 A(z). He vever, to completely 

determine the elements of the generaUVid density matrix aa given by Eqs.(38)-(40), we need 

to calculate B(x) aa well as tan 0* B(x). (Details are given in Appendix C.) 

The calculation of tan 8* B(x) ia very similar to that of tan 0* A(s) and we shall content 

ourselves to quota the result only: 

tan tf«'B(x) = xR(x)(l + W'^M"', (53) 

where 

M>' = tan^V"*'* tan J«r«'. (54) 

Again, in actus! calculation, we must invert [1 + Mq j in the restricted space spaxmed by 

IP-
The expression SET B(x) -an be obtained in the following way. Substituting Eqs.(4l) 

and (47) into Eq.(37) and setting x = 1, we find 

B = f««'t(l + Af»)-1tan^r«»'B(l). (5&) 

Consequently, the elements of the three generalized density matrices take the form 

< * , | fr?'f6« | *, , >=< * , | *,. > ([1 + M**]-»M"V (56) 

< * , | 6?'M' I *,. > = - < $ , | $,, > ([1 + M"'J"1 tan 6"%, (57) 
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< *« I ^M ' 1 I *«* >=< *« I *«' > ('"''l* + W]" 1 tan^r"'),,. (58) 

The elements of the generalized density matrices enter into the calculation of the kernel 

through the effective Hamiltonian. In the next section, we show the explicit dependence of 

the Hamiltonian on these matrix elements. In particular, we apply the formalism developed 

in this section to the calculation of one- and two-body operators. 

4 Evaluation of the matrix < $ , | H | $^ > 

The interaction between nucleons will be assumed to be a two-body effective potential so 

that the expression for the Hamiltonian takes the form 

* = £ < a | T | 0 > « £ « , + ± £ < « J 9 | V | ^ > o t 0 t 0 4 a r . (59) 

In the above equation, 7 denotes the kinetic energy (one-body) operator and < ctfl \ V | 

f6 > is the antisymmetrized matrix elements of V: 

< ap | V | T« >=< afi | y | 7« > - < afi | V | fry > . (60) 

Since the states $ , defined in Appendix A, provides a complete basis, it is convenient to 

express )l in this representation, i.e. write M as 

v = £ < ,y! 7 I;,' > bfhf + i £ < ,VJV I D | w > *ftftft̂ 'jf. (6i) 
ij , «>"JU 

Using Wick's theorem established in Sec.3.1, we can express the matrix elements of # 

between the two states | 4 f > and I # / > as 

< *, | * | *,. >=< *, i #,, > { £ < iV | r | JV > si( 

»/ 

+ i E < ' V j V | T | kM > SuSy 
ij'U 

+j £ < «V5V I v | W > T~YJIC}. (62) 

The matrices 5, !T and V are related to the generalized density matrices according to the 

relations 

SH = ' , i , (63) 
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T „ = *' • 1 ' ' (64) 

v < * , | * f . > V ' 

K „ = — " ' ; ' ' , (65) 

and their properties are presented in details in Appendix D. 

In Eq.(62), we can exclude summation over the time-reversed states (i and j) by using 

the fact that the interaction V is real, i.e. 
< tfJV I y I W >=< WW I V I kq'lg' >* . (66) 

Furthermore, using the properties of S, Y and T (given in Appendix D), we find 

< # , i * i *,. >=< * , | * 4 . > » { 2 ^ ; < *v | r i M ' > Sjt 

+ £ l(< ««W l T l *TOr > + < W'JV I v I I ? V >)5«5J} 

+ <,VJVlv|ifc%'>7;?r, tj}. (e?) 

As shown in Appendix D, it is convenient to define the new matrices 

p=(l+Af ,'')- 1tantf«V«' ,tantf«, (68) 

K* = {\ + M*)-ltsaff>, (69) 

&' = (l+M«')- 1tan««', (70) 

and express < * j | # | $,» > in terms of matrix elements between the two sets of single-

particle states 4>f &nd $ . The result is 

< • , I >/1 • , . >=< * , | *,< > * { 2 £ < . ? i r i JV > Pa 

+ < ,»i , | 1) | fc^fg' > * £ < ] } . (71) 

We now have alt the quantities needed to calculate the kernel K(q,tf). 
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5 Practical considerations 

For a given nucleus, we can define a Fermi level i> as the highest (last) occupied level 

ii the absence of pairing. The behavior of u,- and u.- in actual calculation is shown in 

fig.l. For very deep levels, »,- — 1 and u< = 0 which means that tanfl,- = v./u, ^ oo and, 

consequently, all the quantities defined in Eqs.(68)-(70) are singular. Our purpose in the 

following subsections is to rewrite them in a non-singular form. 

5.1 Overlap 

According to Eq.(Sl) in Sec.3.2.1, the overlap is 

< *« i *• >= I K n «*' MI+*•!. (72) 
which can be rewritten as 

< * , | $,, >= det(««) det(t/) det[l + ^T'"'%p'*v'% (73) 

Using the well-known properties of determinants such as det(yl) det(fl) = det(AB), det(A) = 

det(A), etc, it is easily seen that 

< *„ | *,- >= det(r«')det[««'(r«')- lu« + u«'r«V]. (74) 

As mentioned in Sec.3.2, the dimensions at collective variable q and q' are determined 

by the number of tan 5* and tan 0 s which are non-zero. Let us call these dimensions Nq 

and JV,«, respectively. If Nq > Nq<, then Eq.(73) is correct. In fact, in the original definition 

of the determinant, the overlap matrix T occurs in a combination like r" (v* /uq ) r M ' and, 

consequently, we can complete the space at q* with states for which v9 = 0, so that we can 

build the square matrix of dimension Nq x Nq. We can then safely perform the different 

manipulations leading to Eq.(73). On the other hand, if iV,< > AT,, we have to use Eq.(73) 

with q and q' interchanged. This is easily understood if we note that < $ , | $,< >—< $,i | 

%>. 
As will be apparent in the following subsections, it \a convenient to define here the 

quantity 

31"' = u'frw't)- 1^' + u«r«V, (75) 

which is nothing but the Hermitian conjugate of the second determinant in Bq.(74). Then 

the overlap becomes 
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< * f I *,- >= det(r«') a*t(Zn\ (76) 

or, according to a property of the determinant, 

< * , | * ? - >= dtt{T^')dtt[Z*9'). (77) 

Parenthetically, we remark that r" ' -fc ( r w ' ) _ 1 when one does not use the complete 

basis, as is the case is actual calculation. Furthermore, in the Hartree-Fock limit u , « P = 0, 

\>i<iF = 1 and ttj>i> = 1, «,>t> = 0 and we fall back onto the expression |det(v*rM vq ) ] a . 

The square of the determinant occurs because the contribution of time-reversed stated is 

taken into account in Eq.(73). 

5.2 Matrices K* and K*' 

Let UB first consider K". By definition [Eq.(69)] 

/f« = (l + A^)- A tan^, (78) 

where, according to Eq.(43), 

Af = t-r^'—T^. (79) 

It is clear that 

1 + W = -^|u«(r«' ,)- 1u«' + «.«fMV'l—.r"'*. (80) 

Therefore, according to the definition of Zn , 

(1 + Af')" 1 = {^'*)- 1u«'(Z«')- 1u9. (81) 

Thus, 

& = { ( r™'* ) -V(2« ' rV}« - (82) 

The same demonstration applies to K9 and we obtain its expression by making the substi­

tutions u« ;=* u«', v» 5=* ««' and .-«' ^ r"'' in the equation for K1: 

*& = {( '"VVK^'frvv (83) 
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5.3 Matrix p 

By definition [Eq.(C8)j, p is given by 

? = ( l + Af')-1tanff«V«''ttanS«, (84) 

which is also equivalent to 

p = [1 + (M«')- 1]- 1(M«')- 1tanff«V'« , ttan^. (85) 

But 

[M"')~l tan««'r««'t tan*' = (r™')"1. (86) 

Hence, 

^ = [ H - ( A f ' ) - , J - 1 ( r « ' ) - 1 . (87) 

By using the expression 

[1 + (M"')- 1]" 1 = V « ' ( Z « ' ) - V T ™ ' , (88) 

we can recast p in the form 

?=(,»'(£<"')-V. (89) 

6 Application to a non-zero finite range interaction 

We present here tlie calculation of < $ , j U | $,i > for a non-zero finite range interaction. 

Such an interaction allows us to calculate without ambiguities all the quantities associated 

with pairing, in contrast to that of Skyrme forces17) with an ad hoc prescription for pairing. 

We choose an interaction of the fern 1 8) 

V{*u*i) = *t(Wi + BiPa - H{Pr - M^P,)*-^-**?!* 

+r 0(l + :r 0P„ )p a(i[r 1 + ri\)S(ri - r 2) + VLS, (90) 

where P„ = ^(1 + ffi.fft) and P, — 5(1 + f\.r%\ are the usual spin and iaospin exchange 

operators, respectively. In order to calculate < * , | M \ $,< >, we der)-- *\w following three 

quantities: 
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„W;*V) = £#(x,<0$(*VM„ (si) 
0" 

jr*(s, „;*',•) = ECfr'^ry.OfS. (92) 
0' 

**'(*, <^V) = Etfte.^^V)*;!'- (93) 

The summation is performed also over the time-reversed states, and the quantities K'S, 

K*i and p* are defined in Kqs.{82), (83) and (87), respectively, except that the index t 

is now used to distinguish between orbits of neutrons and proton*. For instance, since p 

is diagonal in isospin space, we use the notation pij = p\j and the indices do not contain 

anymore tiie isospin label. Using the properties of K1, Kq , p (see Appendix D) and the 

definition of time-reversed states, it is shown in Appendix E that 

p'(x, a; *', </) = acV'i*, ~*\ *', -*')> (64) 

#'«<«'>(*, a; * V ) = .Tff'jjr '^'fx.-ffja/.-V), (95) 

Kt*M(x,<T,i<;<r') ••= -g*M{J,Jix,«). (96) 

It is now possible to express < * , | X | $,< > in the following way: 

< *, | u | *,. >= £ < uq [ r i jW > ,{, + £ / / r^^i-WWx-

x { £ [ ( » * ~ HiSt^p^x, <T; x, v)pR(x', B-; x', <r) 
a' 

+{Bi-MiSH<){[pt(x,a;x,a)pi'{x',a;x',(r)}R - [pt(x,a;x,-a)p''(x',ir;x',-o)]R) 

+(H< - ̂ M([A*, *;*>)/(*>; *,<01H - l^x,*;*',-*)/(*',*;*, -»)]*)] 

+(Wi - Bt+Bt - Mi)Y,({K«(x,a;x,,<,)Kt*\x,<y;X',<,)]K 

t 

+ lKu>{x,<T;x,,-<T)Kt"'(x,<7;x',-<,)}R) - (B, - Mt) 

x £(1**1*,°; * » # * V , * ; * , < > ) ) * + \Kt9(x,a; J, -o)K«{J,e;x, -*)J*)} 
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+t0 I ^ ^ { ( l - x0Sat)2p*it(z,ffix,a)/fx{x,ff;x,a) 
J w 

+(x0 - S,f)([pt(x,atx,ff)p''(xicr,x,a)]R 

-\pt(z,r)x,-a)pi\x,-a-,x,-a)\R)}{2p{x,a\x>0))a

R. (97) 

In the above equation, we have suppressed the summation over ihe spin variables and 

expressed < * 7 | V | $,i > in terms of the real (subscript R) parts of />', if'* and Ktq . 

Furthermore, Xo is always equal to one and, consequently, the density dependent part never 

contributes to the pairing. 

7 Hill-Wheeler kernel with the Skyrme interaction 

As a further application of the formalism developed in the preceeding sections, we present 

here the calculation of the kernel for the Slyirne interaction. The par&metrization of this 

interaction in terms of ^-functions hc-ipa iii reducing the number of integrations and to 

express the matrix elements as functions of \arious densities. 

The Skyme interaction can be written as 2 , 1 7 ' 

IKri.'j) = <o(l + *aPa)S(ri - *s) + j t i p f o - r») V « 

+ V u 5(ri - r*)] + ti V12 £(ri - rj) Vu 

+iW0(3l +1?3). Vu xfi(n - r 2) Vu +*i/>°(-[r l + r,])«(n - r,), (98) 

where 

Vi2= ^ (Vi - Vi). (99) 

The direction of the arrow indicates on which side (left or right) the operator acts. 

The calculation of the kernel with the Skyrme interaction requires the evaluation of 

| < * , | $ , - > Y, <i9t>3qt'\y\kq%lq'f>pt

kipfi, 
ijkt.W 

which can be recast in the form 

\ < * , | * , . > £ <iqtJqt'\V(l-PxPaPr)\k<i,t,lq

lt,>p*kip*. 
HUM' 
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ID the latter expression, we took into account the antisymmetrization by introducing the 

operator PxP0PT, which exchanges particle 1 and particle 2 in the configuration, spin and 

isospin spaces, i.e. 

J'«|ri,r2>=|r*.*-i>. (100) 

Per I <?!,<?! > = | ( 1 + *!.<?*) I *lA >=l 3*Jl >, (101) 

Pr \tutt >= i ( l + n.Ft) | tuh >= | »j, t! > . (102) 

Because of the S-functions, it is easy to see that P , is + 1 or - 1 depending on the different 

terms present in the expression for V(ri ,ra)- In fact, it is clear that for the terms to, h 

and t», the two-body wave function must be symmetric in the configuration space and, 

consequently, Px = +1 for them. For the other two terms, namely t3 and W0, the wave 

function must be antisymmetric and P% = - 1 . It is also obvious that we can replace PT by 

8u>. 

7.1 Contribution of t 0 

If we use the property P% — 1 and take into account the previous two remarks, then the 

contribution of the to term is 

1 
2 < » , | • , ! > i to £ [(1 - xoStt.) /d^C(*>*)^(*>*V«(*.<04(*.*') 

OU.fffl'.M' 

This expression suggests to define the following densities: 

/ (*,»y) = £*ST(*.»W!l(*.»V*. P(*.».<0 = X > W y ) - (104) 
•i * 

The contribution of the to term can now be expressed as 

\ < * , | *,r > to j **{]?*{*) - M^W + •*'(*))] 

+(x0-8tt.)'£pt{x,<r,a')pt'{xto',o)}. 
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The term containing pt(xl <r, a') can be simplified with the aid oi Eq. (169) given in Appendix 

E. The result is 

| < * , | *,' > t0f<^x{S[P\x) - xa[(?\x) + pn*{x)) 

+2(x0p1(x,a) - f^*) - pn\x,a))) 

-a* | p{x,c,-a) | 3 + | p*(s,<r,-<r) | 2 V(z,<r,-«r) | J } . 

7.2 Contribution of tx 

We first restrict ouraelf to the calculation of the direct matrix element and take into account 

the fact that both the terms present in t\ give contribution which are Hermitian conjugate 

of each other. Therefore, we just consider the term 

~k < *fl I *«• > *i £ < «'«'.J9>' I %i - r 0(^ l - Vj)2 | kq'tM't > pip?. 
1 D ijU.it' 

which, due to the symmetry between coordinates 1 and 2, is equal to 

This expression can be rewritten in the configuration space as 

-J < *, i *,. > *. r /fxWMtiix,*)^(xywUz,*') 

i:U,<r<r',tf J 

It is now natural to define 

so that tue contribution of ti takes the form 

-\<*,\ *<,• > h f <Pzi[K<">'{x) + **(*)Mx) 

where R and t are defined in Eqs.(lVl) and (177) (Appendix E), respectively, ffwe define 
an additional quantity 
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«•» * 

and use Eqa.(176) and (179) of Appendix E, then the contribution of U becomes 

- i < 4 , | *,. > hffxlpMV'plz) - A"' (*),»{*) 

+r"'(*).vp(x) - r«'(2) J M ' ( * ) ] . 

The derivation of the exchange term is quite straightforward since oae has only to Bet 

equal t and t' and to permute the spins a aid a*. By noting that 

TV W V ) = I>£(*,*)^(*VMi, (108) 
y 

A«''(x.a)ff') = Z^ixrf.fyfa,*')^, (105) 

the exchange term becomes 

j<* , |* , -> t, £ / W ( i , , y ) V V ( ^ » - A?''(*,<ryy(xy,<r) 

+i7''(*,<r>*W(*y.*) - r^s^y) . !^* ,* ' ,*)} . 

As shown in Appendix E, all the quantities, p*(x, a1, a), Af (2, a, a') and I"'* (x, u, a'), have 
the property 

A{xyif) = aa>A'{x,-tr,-a'), {a = ±\). (110) 

We can, therefore, perform the summation over spin and rewrite the exchange term in the 

following form: 

^ < *, I *,. > t j S ^ y rfMpW.<0VV(*,<r,<0 

-,'*(*>*,-*)VV(z,<r,-<x) - [An'(r,ff1ff)A»(*,ff,ff) 

-A«''(» ; ,a > - f f y( a i ,<7, -a)] + [r?«'(x,a,<r).^«(2,a,<r) 

-rr'(*, *,-*).?,"(*, <T,-*)] - [r?«'(x,a1«r).rt«J(xJ<'̂ ) 

-^ ' (x .^-^Tr '^a . -^) !} . 

In the above expression, we can choose either a — +1 or ff = - 1 . 

21 



T.S Contribution of *» 

The derivation for the contribution of the tt term is very similar to that of ti. Hence, we 

shall not describe the details of the calculation but rather give the final result which is 

< *, | *,, > t ,{ l /"d8s[A«'(i)/,(x) + r«'(x).r««'(x) 

-Aj«'( I > (r, -<r)p"(*,<r, -a)] - (T^f*, »,»).*,«(«,»,») 

-rr'(«,»,-*).*/*(*,»,-»ji+pr,(*,».»)Tr,(*,»,») 

All the quantities appearing in the above expression have been defined earlier. 

7.4 Contribution of W0 

The presence of the spin operator (<?i + o'j) simplifies considerably the calculation of the 

exchange term. In fact, it is easy to convince oneself that this operator acts on triplet 

(S = 1) states only so that Pa = 1. Thus, recalling that Pz = — 1 in the spin-orbit case, we 

get PZPOPT = —bit' so that the total contribution of the direct and exchange terms is 

*-^- < * , [ * , . > £ <i7*,j ' j i ' | [Vij*(ri -rj)x Vu].(*i + aj) 

x\krftMlf>M-

There is an obvious symmetry between 1 and 2 which allows us to rewrite the spin-otbit 

term as 

2,W0[(Vi x fy.* + f , .^, x ffii - tf[ x f ,).<?, - ?',.{?! x «?,)]. 

Furthermore, after carrying out different integrations by parts, it can be shown that the 

above expression reduces to the simple form 

4.W0[(^i x 'vv

1).?j - ( f a + f i).(f, x ft)]. 

If we now define 
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*?*'(*) = «" E €(*>*') < * I 9 I a' > $ ( * , * > $ . , »"'(*) = E *?''(*)> (112) 

Jr'W = -• E 4${*,*)*4(*,<f)x «r\9\c'>p\i, J«'(x) = £ 3r\x), (113) 

then the contribution of the spin-orbit term is given by 

±W0 J dPxl^P"'lx).^'(x) + 3p(z).3«'{z)] 

+£(nr'(*)-*r'(*)+^/w jr'wi)-
< 

7.5 Contribution of t s 

In the first p&rametrization of the Skyrme interaction proposed by Vautherin and Brink3), 

there was a three-body contact term t36{ri - rj)S(rj - r s ) . Later on, however, different 

authors10^ introduced a density-dependent two-body interaction term 

In the following, we shall consider both the cases. 

7.5.1 Three-body interaction 

We have to calculate 

^ E < «V*. JV*'> V*" I "(123) | Iq't, m?? , nq't" > 
ijtlmn.n't" 

where the matrix element is antisymmetrized with respect to the three particles. According 

to Wick'B theorem described in Sec.3.1, we can express the above contraction in terms of 

the quantities S, T and Y defined in Eqa.(63)-(65). Since, to our knowledge, the Skyrme 

interaction is never used directly to calculate pairing correlations, we shall only keep the 

normal contractions associated with S. As we did with two-body interactions, we can 

express the contractions in terms of the generalized density matrix. We only give here the 

result which is 
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XPnkPmjPli-

Due to the presence of the {-functions in the definition of f(123), the wave function must be 

symmetric in the configuration space and, consequently, antisymmetric in the spin-isoapin 

space. We shall denote the corresponding antisymmetrixer as PaT which will allow us to 

rewrite the above expression aa 

i < * , | *,. > t„ £ < iqtjqt', kqt" | 1/(1,2, Z)P„ \ Iq't, mq'lt, nq't" > 

t" ? t XPnkPmjPli-

Taking into account the obvious symmetries between particles 1, 2 and 3, and relabelling 

the indices in the summation, it can be shown that 

P„ = 1 + 2P„(l2)>V(23)Pr(l2)J>r(23) _ 'jP #(lS)P r(l2), (114) 

where P„ and PT have been defined in Eqs.(lOl) and (102). After substituting this form of 

POT in the expression just given above, we obtain 

i < * , | *<,, > * j » y Afcfyt) - cp{x)y>\*,a-) + pn'(x,v) 

- I ^(«,a,») |» - | p"(x,a,<7) p) + 4 { ( / ( x ) f f ) 

-3^(* ,<7) / (x ,a , -<r)) + [fin\x,c) - 3A*»»K"(*,». -*))>!• 

7.5.2 Density-dependent Interaction 

Clearly, only the diagonal elements 

\taj < * , | 5(r, - r,)/>"(|ir, +r»J) | %• > d W r , 

are unambiguously defined when using a density-dependent interaction. In order to extend 

its definition to the non-diagonal case, we make the substitution 

Pit) H £ < *f I • t{r,<0*(r,er) | *,. H 
a 

which reduces to the density p(r) when q = q1. Then the contribution of such an interaction 
is simply given by 
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\ < * , I *, . > t s J fxifix) - 2*|p"a(x,<r) + p"a(x,<r)] 

+ | p>(x,<r, -<r) I1 + i p"{z,<T, -<r) |"}^(«), 

It is clear that we have different ways of extending the definition of this interaction. In 

particular, we could have substituted in place of p any combination of p[x), p{xtc,a) and 

p(x,a,-a). 

Finally, we mention that when g = tf, we have 

p'(x,a,-<r)=0, (115) 

Si*.',') = \A*), ("6) 

and the expression for the SVyrrae interaction reduces to the well-known Hartree-Fock 

form"}. 

8 Conclusions 

This paper has detailed the methodology requisite for Circulating the kernel, or matrix 

element, of the Hill-Wheeler equation. In tils, the first of a series, the methodology has been 

developed and illustrated for tee normal, i.e. non-pairing, pari of zero-range, t.e. Skyrme-

lilce forces. It has also been developed for the normal part of a finite range interaction, the 

Gogny form. Application to the finite range case will be reserved for a subsequent paper. 

We have also developed the methodology for the abnormal part of the force, i.e. the 

pairing force, only for the finite range case1, although its illustration too will aw.iit a subse­

quent paper. We have rot toached upon the delicate question of a unique definition of the 

Hill-Wheeler kernel, or matrix element, for density dependent forces. While this presents 

no ambiguity for diagonal terms, an arbitrary prescription has been introduced for off diag­

onal matrix elements. The presumed, modest uncertainty this will introduce into numerical 

examples must await future illustration and illumination. 

'The ttrnctare of the Skyrme force doet not permit its direct application to the pairing matrix elemeats. 

Pairing is always added to the Skyrme Hamiltoni&n in an ad Koc manner. 
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Appendix A: Notations and conventions 
As already mentioned in Sec.3, tiws Bloch-Messiah theorem1') allows UB to write the most 

general Bogoliubov transformation16' in the form of the so-called BCS transformation: 

with the condition that v\ + of •= 1. As long as we are only interested in the construction 

of the vacuum | $ , >, then $ = >}• In that case, we can neglect the third transformation 

(outlined in Sec.3.3). The operators fr' create a particle in a state $ which is defined as 

*?(*.') =< *» I *!' I 0 >. [o • *P»»> variable). (118) 

We mention here that in the Hartree-Fock + BCS theory 1 0 - 1 3 \ the states <ffi are assumed 

to be Hartree-Fock states. 

(i) Time-reversed states 

The states 4>\ can be grouped by pairs (<f>1, $) which are in correspondence via the time-

reversal operator T by 

*?=Ttf . (119) 

Using the conventions of ref. l s), this correspondence in the (x,ff) space is such that 

4S{xt a) = <7^{x, -<7), (a = ±1). (120) 

(ii) Single-particle overlap matrix 

If we assume the two sets ^' and ft to form a complete basis, we can expand one in terms 

of the other as 

*f(*,<o=i; #'#(*,*), (121) 
i 

where 

tf'=f>n*.<o*?W)<fc. (122) 

Tb'- saine expression holds true for the operators 4*' and 6 , ' ,

) t'.e 

»J' ,=E^'»? ,

> (123) 

so that the anticommutator 
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{̂ .W-tf'- (124) 
This relation is frequently used in Appendix B. Tt is easy to establish the relations 

r « ' = f « " , (125) 

*# = <$*• (126) 

Appendix B: Coupled equations satisfied by A(x) and B{x) 
In this appendix, we derive the equations for A(x) and B(x) whose definitions are 

< * „ x | 6 ? b ? | * , . > 
*'<'>= < o | W < » , I o>" ( m ) 

<*„x|6fM' t|*,'> 
B<M= <Z\*qX<*q\l>- < 1 2 8 > 

An equivalent definition of Aj(x) is 

Aijix) =< * „ x | eA* ,e _ JW|6?e J C«' | 0 >, (129) 

*nere X is defined in Eq.(32). Starting from Eq.(129), we expand in a well-ksown manner 

the quantity e~ f'bZbfe**' in terms of commutators. The result is 

c-X'bU^ = bUI - [X,,, 656?] + ±[Xtl> [X,r, 6«6?]] + • • •. (130) 

Evaluation of the first and second commutators gives 

l ^ ' . ^ n = E t a n ^ ( $ V ; f 6 ? + rgbfq - <£$), ("1) 
*> 

[Xq;[X,,,bni]} = - 2 £ t a n ^ t a n t f / ' r ^ V l ' ^ ' t . (132) 

As a consequence, the expansion ends after the second commutator. Substitution of Eqs. 

(130)-(132) into Eq.(129) leads to 

A(x) = r«' tan ̂ V ^ B f * ) - r«' tan ««'B{x) tan e'V"'*, (133) 

where R(x) is defined by Eq.(28). In deriving Eq.(133), we have used the property r" = 
rij'- (See Appendix A.) The notation tanfl' means the matrix whose elements are 

(taa**')y = * y t w , « ? \ 

The equation for B(x) is easily obtained from the one for A(x) by noting that if we 

exchange q ^ q' and replace tanfl* by stanfl*, then B[x) = A'(x). Thus taking the 

Hermitian conjugate of Eq.(l33) and using the property r M * = r" , we obtain 
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B(x) = *r«'» tan0V«'rt(z) - sV«'» tan PA(z) tan 0«r«'\ (134) 

Appendix Ct Evaluation of the generalized density matrix 
It is convenient to write tiie element < ft, | Aj 'bq- | ft,. > in the form 

< *<= I IpVj I *«' >=< 0 I *»' >< *f I e**e-x>fbpb<eK* | 0 >, (135) 

and expand e~*»'ij ̂ oj ê V in terms of commutators. The expansion is given by Eq.(130). 

However, all the commutator terms in the expansion except the first one are zero. Therefore, 

< ft, | bfh< | ft,. >=< 0 1 ft,- >< ft, | ^•(bl'hf - \Xq.,bfb<']) | 0 >, (136) 

where 

Using now the definition of B [Eq.(35)], Eq.(136) can be written as 

< ft, | %'*%' | #, . >= tan tifBji < 0 | *,. >< ft, | 0 > . (138) 

Finally, using Eqs.(5l) and (53), we get 

< ft, | bflq' | *,. >=< ft, | ft,- > ([1 + Af'j-1Af'),-,-. (139) 

To calculate the element < ft | bf bl | ft,' >, we proceed as before and note that only 

the first two commuttor terms are non-zero. Hence, 

< ft, | hftf | ft,. >=< 01 ft,. >< ft, | <*.•($'b<' - [Xq,,bfbi'\ 

+\[Xi:[x,.,bfbp)\o>, (uo) 

where 

[*«'. •?'«'! = - *«efbfbf - tan ff?'(&SV - *,,), (141) 

[A,.,[A,.,&fi«']] = 2tanfl? ,tlln^'*J' tt! , ,. (142) 

Substituting Eqs.(Ul) and (142) into Eq.(140) and then using Eqs.(35), (51) and (S3), we 

obtain 

< ft, | i f *«' | * , , > = - < ft, | ft,. > ([1 + AfO'l"1 tan »y) t f . (143) 
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The expression for < *« | 6' 'K * | *,• > is, by definition, directly connected to B and 

is 

< * , | bfbi'* | fy >= fl« < 0 | *,. >< 9„ | 0 > . (144) 

Using Eqg.(53) and (55), Eq.(144) can be reduced to 

< *« I &i' , 4f | fy >=< * , | *«' > (r'^fl + Af*]- ltanff«r«') ;<. (145) 

Appendix D: Matrices S, T, Y, K and p 
(i) Properties of S, T and Y 

Pros/: Using the definition of S [Eq.(63)j, we can write 

*" Uik.> ' (146) 

where 

if = TfitT, (147) 

fct = -VbiT, (148) 

and T is the time-reversal operator. Furthermore, [ $ 4 > as well as ( $,< > are even 

under application of the time-reversal operator, i.e. T | * 4 >= | * 4 >, and the overlap 

< $ , | *,• > is real. Therefore, 

^1 < * f f j *,' > 

< *, | bfbf | *,. >* 
< * , | * , • >* 

But 5 is real. So, 

= Sy. QEZ> 

(149) 

(b) Yh = - y ( J = yj, 

Proof: Using Eqs.(es), (147) and (148), we can write I';y as 
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< * , I 6?'tf' I *,< > 
Y-, — ' 3 * 
" < * , | *,. > 

<*,(*„»>• 
= ~ ^ J = - * i j . (15°) 

Hence, 

Proof: The proof is the same as that in (b). 

(ii) Definition of p and K 

Let us fint calculate Tnj^ii < iV Ii w r j e re S,^, according to Eqa.(63) and (139), can be 

written as 

Sii = (ll + M<]-liP')ii. (151) 

We now express Sy -^y < J?' I M 

S( tanO«V« ' t t an t f») t m r^ < # | . 

It is obvious that 

Thus, 

£ S * < JV 1= E d * + A f ' ] " 1 tanfl«V«'ttan0% < M I, («») 
»i i> 

which leads ua to define 

py = ([1 + Af*']"1 tan tf'Vw't tan *«),,•, (154) 

so that we have the relation 

I>,<jVI=I>y<j>l- U55) 
•;' 0' 

To define K, we look at the quantity £ y T.j < ij'jg' |, where TQ, according to Eqa.(64) 

and (145), can be expressed in the form 
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TJJ = (r"'t[l + A f ] - 1 tan 9«r« V (156) 

Using the identity 

£ ' # ' < # ! = < * « I- (157) 
; 

we find that 

5 > « < 'VJV 1= £([1 + A^] - 1 *»n*%" < i«V I • (158) 

If we set 

J f t ^ f l l + Af ]" 1 <•">»%, U59) 

we get the relation 

£ Ti3 < «V5V |= £ Kl < JM I . (160) 
tf 0' 

Furthermore, from the definition of K [Eq-(65)j and Eq.(143), 

y;-j = - ( [ l + A f ' ] - 1 tan «»'),•„ (161) 

so that by comparing with Eq.(l59), we get the following identity: 

*?j = -Yj. (162) 

(iii) Properties of p, K" and K*' 

According to Eqa.(155), (160) and (162), p has the same properties as S, Kq as T and if9' 

as Y. In particular, p, A"' and K9 are real. Furthermore, 

PH = fir,, (163) 

if* = -K*. = rf,, (164) 

K*l = -K<'. = K%, (165) 

Appendix E: Properties of />', K**, itf and T,'5' 
The quantities pt(x,<r;x,,o'), X ,*4(«,a;x ,,ir')1 « f (x) and I"J* (*) satisfy a number of rela­

tions which we shall derive in this appendix, 

(i) pi[xi<,;x,,o') = ao,pt'(x,-<r;x'>-a') 

We start ircm the definition of p* which iB [Eq.(91)j 
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far, *\ °>) = £ #(*. ̂ ( xW}, - , (166) 
»/ 

where the summation runs over ths time-reversed states also. We can, therefore, also write 
Eq.(l66) as 

„W;*V) = ̂ O r . ^zV)^ - (167) 
«7 

Using Eqs.(120) and (163) in Eq.(167), we get 

a 
which is simply the identity 

p*(x,cr;x'S) = ^ V f * . - * ; * ' , - V ) . (169) 

(U) #««(*, <r; ac'X) = <7<r'K^'{x, -a; x>, -a') 

The definition of K* is [Eq.(92)] 

K*(x,o; x V ) = £ *nx ,a )*«; (*V)*;? , (170) 

which can also be rewritten as 

#«(*,*;*>') = 2X(*,<r)^(*V)J#. (171) 

Again, using Eq.(12Q) E.U< • the properly of K given by Bq.(164), we obtain 

K^{x,a;x',a') = « • £ > £ ( « , - ^ J * (*>•)*;?]' , (172) 

which is nothing but the relation 

K**{x,u;x',a') = ^ ^ ( x , - * ; * ' , - * ' ) . (173) 

The property given by Eq.(96) is easily derived by using the fact that KQ — -Kjf. 
(ill) Properties of ««»'(x) and rf*'(i) 
The definition of *?'*(x) is jEq.(l05) 

*?"'(*) = ElVVfffc^fe^ . (174) 
ij,t> 

It in ibvious that 

*f»(«) + «?''(*) = V * [ £ t f ( . . ^ ( x , * ) ^ ] - 2 $ : V ^ ( x , f f ) . V ^ ( I ) f f ) ^ , . (175) 
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Hence, we have the identity 

««'«(*) + «?«'(*) = VV(s ) - 2A«*'(s), (176) 

where hy'(z) is given by Eq.(107). 

The definition of fj'« (a) is [Eq.(l06)] 

ti"(x) = YlHlMWitMfa ( 1 7 7 ) 
«» 

nLich is also equivalent to 

Hence, we have 

r?'«(x) = fp'(x)-rr'(:t). (179) 
Appendix F: Numerical procedure 
In calculating the energy E within the Hill-Wheeler approach, we have discretized the 

configuration fspace on a three-dimensional rectangular mesh. The mesh size Ax is the 

same in the throe directions. The integrations were performed using the trapezoidal rule 

and the single-particle wave functions 4> (Slater determinants) required in the calculation 

were obtained with the Hartree-Foclc code of Bonche et oi1*'. 

The expression for the total energy (kinetic + Skyrme + spin-orbit) depends on the 

first and second derivatives of the single-particle states. However, the terms involving the 

second derivatives can be expressed in terms of the first derivative as 

j 4>'V2^x = - / f<t>'$<t>£x. (180) 

To achieve good accuracy for all the terms in the energy, it is important that the gradients 

be computed with high precision. We have used the approximation 

% = - t £ «*/(* + ***) + 0(*zln+1), (181) 
A=-n 

where 2n + 1 is th > number of points to be used in the approximation. We have done the 

calculations with the 7-point (n = 3) as well as the 9-point (n = 4) approximations and, as 

expected, found that the latter gives results with the desirable accuracy. The coefficients 

<jj\ are given in Table 1 and an example of the accuracy for the kinetic energy of l c O with 
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spherical oscillator functions is shown in Table 2. In Table 3, we compare the Skyrme energy 

(Skill interaction of Beiner et of10') given by the 9-point approximation with that of the 

Hartree-Fock calculation19'. 

The numerical precision of the present calculation is further demonstrated in Table 4 

where we present the nuclear binding energy of l e O for Ax = 1 fin at finite quadrupole 

deformations q = j* = 130 fan*. We notice a difference of about 2 MeV in the Skyrme 

energy given by the Hill-Wheeler and Hartree-Fock methods. This is because the Hartree-

Fock method uses the 7-point approximation to calculate the first derivatives appearing in 

the expression for the Skyrme energy. If we use the 7-point approximation, we get -351.252 

MeV which is very dose to the Hartree-Fock result. However, the relative difference in the 

total energy calculated with the (wo methods is less that 0.2%. 
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Table 1: Values of the coefficients u/\. 

Approximation wo « ± i W±2 «±» W±4 

7-point 

9-point 

0 

0 

±45/60 

±672/840 

^9/60 

^168/840 

±1/60 

±32/840 ^3/840 

Table 2: Accuracy on the kinetic energy (in MeV) of , e O . The Slater determinant ia built 

from harmonic os.-illator functions (given by the Hartree-Fock code1*') with £=0.275 fm - 2 . 

The Hartree-Fock calculations used a 9-point Laplacian. 

Mesh sue (in fm) 1.0 0.8 0.5 
Hartree-Foclt 192.425 192.452 192.458 

Hill-Wheeler 

a) 7-point 191.382 192.036 192.496 

b) 9-point 192.154 192.398 192.456 

Table 3: Skyrme energy (in MeV) of l e O . The Hill-Wheeler results are obtained with the 

9-point approximation. 

Mesh size (in fin) 1.0 0.8 0.5 

Hartree-Fock 

Hill-Wheeler 

-323.795 

-323.711 

-323.555 

-323.509 

-323.459 

-323.455 
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Table 4: Nuclear binding energy (in MeV) of w O for q = q' = 130 fm*. The HUl-Wheeler 

results are obtained with the 9-point approximation and a mesh size of 1 fm. 

Energy Hill-Wheeler Hartree-Fock 

Kinetic 

Skyrme 

Spin-Orbit 

246.613 

-349.564 

-22.589 

247.959 

-351.549 

-22.191 

Total -125.540 -125.781 



1.000 

Figure 1: u, and v, as functions of i. if denotes the Fermi level. 
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