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1 Introduction

About fifteen years ago, the ability of the density-dependent Hartree-Fock aprroximation!?)
to describe reasonably the mean field in nuclei was demonstrated by the accuracy of its pre-
dictions in several nuclear structure calculations. This success provided the incentive to go
beyond the static description and attack on theoretical grounds the problem of finding coher-
ent microscopic descriptions for some specific collective phenomenon in nuclei. By “specific”
we mean those phenomenon whose dynarmics is expected to depend essentially on the time
evolution of the mean field. As an example, let us recall here that various giant resonances
are satisfactorily described by assuming that they are associated with smal! oscillations of
the mean field. As is well known, the linearization of the time-dependent Hartree-Fock
theory with respect to these small oacillations provide the microscopic description for their
time evolution (e.g. the RPA approximation).

In this paper, we are interested in large amplitude moticns such as those encountered
in fission or in the description of low-lying excited states of soft nuclei. The derivation of
a microscopic theory adapted to this case is not as straightforward as in the case of giant
resonances. The time-dependent Hartree-Fock approximation with the adiabatic hypothesis
(ATDHF) can again be the foundation for the theoretical formulation of large einplitude
motions. In this appraximation, Baranger and Veneroni® derived a set of coupled equaiicns
whoee resolution would, in principle, provide the collective paths and the mass parameters.
With this information, it is posaible to construct the semi-classical collective Hamiltonian
and to quantize it. _

In Villars™) approach to large amplitude motions, the collective Hamiltonian is extracted
from the kernel of the Hill-Wheeler theory®) by a simple expansion around the locality in
the collective variables. As a result, the collective potential is corrected by some zero-
point energies. In contrast to the ATDHF theory which is semi-classical, Villars’ procedure
is quantized to start with and gives a collective Hamiltonian which is automatically and
uniquely quantized.

These theoretical works have certainly contributed towards a coherent foundation to
a previous phenomenological collective model, as proposed by the Copenhagen group®).
However, a couple of remarks regarding these theories are in order. First, it is clear that

the resolution of the set of coupled equations would require a considerable ainount of effort.



Second, there is no general proof of the existence of their solutions. That is why in actual
applications, the collective paths are generally not determined from these equations. In
order to bypass these difficulties, one has recourse to the mean-field approximation with
additional external fields. By varying their atrength, cne can deform the mean feld and
generate a set of Hartree-Fock solutions which can be labelled by the mean values of the
operators associated with these external fields, Somehow these mean values will define a set
of collective variables. The choice of the fields will depend on the type of processes we want

to describe. For instance in fission”), it seema sufficient to consider the following collective

variables:
1. q10: quadrupole deformation (stretching),
2. gso: octupole deformation (left-right asymmetry),
3. quo: hexadecapole deformation (necking).

Evidently, pairing correlations can be included in the description by using the Hartree-Fock-
Bogoliubov!:8) approximation instead of only Hartree-Fock. The dynamics of fission in this
collective space is then described with the microscopic collective Hamiltonian.

Our motivation in this paper is to go, stnong other things, beyond the collective model
and solve the full Hill- Wheeler®) equations. We have in mind further applications to the
predictions of poasible shape isomeric atates, if they exist, and on their characteristics.
The paper is organized as follows, In Sec.2, we derive, for completeness, the Hill-Wheeler
equations. Sections 3, 4 and 5 are devoted to the presentation of all the technical aspects
which are necessary to calculate the kernel occurring in the Hill-Wheeler integral equations.
In Secs.6 and 7, we apply the formalism to non-zero finite range interaction and to the

Skyrme interaction, respectively. The paper is concluded in Sec.8.

2 Derivation of the Hill-Wheeler equations

In the generator coordinate method (GCM)?), the stationary wave function describing a

system is chosen in the factorized form

¥ >= [ dabx((a)) | 20) >, W



wherz {q} denotes & set of “collective variables” — the so-called generator coordinates, and
the function | $,) > are supposed to take into account the internal degrees of freedom. In
the Hill-Wheeler theory®), it is assumed that the | ®(;) > are predetermined and only the
x{{g}) are the unknowns. As long as we are interested in the low-lying excited states, this
approximation can be justified by arguing that the collective oscillations are much slower
than the internal motion. Thus applying the variational principle to | % > which atates that
the total energy < ¥ | ¥ | ¥ > / < ¥ | ¥ > be stationary with respect to variations in the
functional space spanned by the function x, we obtain the following system of equations:

[ Hadxie)id = B [ 1o g )it )
where I{g, ¢') is the overlap between the states ®; and Dy, i.e. I(g,¢') =< ¥, | By >. (For
the sake of simplicity, we shall henceforth use the notation ¢ instead of {g}. The notations
and conventions used in this paper are outlined in Appendix A.) By defining a set of new

functions as

2(9) = [ 100 (e)de, 3
we can rewrite Eq.(2) as
[ K@ d)x)dd = Exta), (4

which is in the form of the familiar Hill- Wheeler®) type integral equations. The kernel
K(q,q") is given by the expression

K(g,q) = f (g, ") (g™, ¢")dg"dg", (s)
where ¥(g,¢') are the matrix elements of a given effective Hamiltonian, i.e. ¥ (9,9") =

< @, | ¥ | ®p >. The kernel K being Hermitian, the resolution of Eq.(4) is a simple

eigenvalue problem

[ K@ )%ald)d = Bnsale), (0
with the eigenfunctions normalized according to
[in(q)in'“)d? = bppt- (7

This guarantees the normalization of | ¥ >, defined in Eq.(1), to be unity. The eigenvalues
of Eq.(8) can be interpreted as those of the ground state (lowest E,), the first {collective)

excited state (next higher E,), and 50 on. The wave functions of these states, according to

Eq.(1), are



|9 >= [ xala) | € > da, ()
where
xnle)= [ I (0. 0)%nld)dr' ©)
It remains to be specified how we choose the function | $ > and define the collective
variables. In our approach, the set of functions | &, > are the independent quasi-particle
(q-p-) states obtained by means of the Hartree-Fock + BCS theory'®~13), or more generally,
by the Hartree-Fock-Bogoliubov (HFB) method?*} with several external constraining fields.
For instance, the external fields can be some luw order multipolar one-body operator Qim.

Then the set of collective variables {g;m} are the mean values
@im =< Qq ,é{m ’ Qq >, (10)
It is worth pointing out that our approach is fully consistent and microscopic in the
sense that the mean-field, the pairing field and the kernel of the Hill-Wheeler equations
are calculated with the same Hamiltonian, the only input being the effective interaction
between nucleons and the choice of the constraining fields. In the next section, we develop

the formalism for the calculstion of the kernel when using independent q.p. states,

8 Calculation of the kernel K(g,q')

For the sake of completenesa, we present here an extension of Wick’s theorem??) to the case
of non-orthogonal independent q.p. states. This theorem will allow us to express in terms
of simple contractions the expectation values of the one- and two-body operators occurring
in the definition of the kernel K(¢,¢") in Eq.(5). We mention that the Wick’s theorem for
non-orthogonal Slater determinants has been worked out by Blaizot and Ripkal),

3.1 Wick’s theorem

The extension of Wick’s theorem is readily established by using the Bloch-Messiah theorem?®)
concerning the decomposition of the most general Bogoliubov transformationt®. Let us re-
call briefly that a general Bogoliubov transformation maps a given set of creation and
annihilation operators (a!,a) onto a new set (n',n) associated with the creation and an-
nihilation operators of the so-called “quasi-particles”. We write the transformation in the

form



t v v af o

n v U a a
The transformation B has to be unitary (BB = B! B) in order to preserve the anticommu-
tation relations between the fermion operators (at,a). Also, to avoid writing explicitly the

quantum labels, we use compact notations where U and V represent block matrices. Thus,

'7; = Z("cﬁaz + Vaﬂ“’): (12}
p

fla =3 (udp0p + v5pal) (13)
B

The Bloch-Messiah theorem stipulates that the transformation given by Eq.(11) can be
factorized into product of three transformations. More specifically, the firat tranaformation
just rotates al and @ separately and defines new operatora b! and b: 8t = Dat and b = Da.
D is real and it diagonalizes the matrix VV. The second transformation is of the BCS type
and defines the q.p. operators £' and £ as

) _[w -w)[¥ . (14)
& Vi % b
In the above equation, the transformation matrix is of the order 2 x 2 and |7 > and |1 >
denote states which allow the pairing tensors to be cast in the canonical form. However,
in all the applications we present in this paper, | 1 > represents the time-reversed state of
| £ >. Furthermore, the ratio v;/u; is simply related to the eigenvalues of VV. Finally, the
third transformation rotates £' and ¢ and defines the q.p. operators ' and 5 according to
the relations p! = ¢! and n = CE.
This decomposition of the most general Bogoliubov transformation allows us to express

the vacuum | 0 > of the q.p. operator 5 (5 | 0 >= 0) in terms of the vacuum | O > of the

operator a (a | 0 >=0). The relationship is given by

j0>=<0]0>¢]0>, (15)
where
X= z%bfbg (16)
>



{Thz notation §> implies that the time-reversed states | ¢ > are not included in the snm-

mation.)

It is now quite straightforward to establish the connection between two independent
q.p. states | ®; > and | By >, a3 defined in the previous section, since they are both
by definition the vacuum of two q.p. seta nf and n’ which are related according to the
Bogoliubov transformation

o't ot ot

n _ E"l n =B ' ne n . (17)
¢ 9 'l

n n n

In fact, by using the same arguments that led to Eq.(15), we find that

IQ,1>=<Q¢IQ,I>EX¢'UIQ¢>, (18)
where
of'* otat
Xpg= E‘-:".;b: b.v 3 (19)
L 53 ]

and b} | B, >=0V.
Equaticn (1B) makes it much easier to calculate any general contraction of the form
< @ | 8118 b | B> (20)
Using Eq.(18) and inserting Kt % an many times as nccessary, this contraction becomes
<8y [ g >< By [ B BIBL B0 | @y >, (21)

where we have used the fact that < @, | e¥¢'« =< &, |. The new operators 5% and bt are

defined as
E'” = ¢_ I"bﬂfexl'C, (22)
B = e Xe'rbleXvn, (23)

and obey the same commutation relations as 7 and ?f. Consequently, we can use Wick’s

theorem and expresa contraction (20) in terms of the simple contractions
< By | B >71< B | BN | By >, (24)

<@ | @y >l &, | b | By >, (25)



<@ (B >7I< Dy [ 8B B > . (26)

The usual Wick’s theorem still applizs under the condition that we use the contractions
defined in (24)-(26) and muitiply by the overlap < &, | $p > the final result. As an

example, we show how to use this new theorem for the contraction occurring in a two-body

operator:
< @ | bIOYBLES | By >=< @, | By >

< @ | BlHE | B > < B | 830] | Bp >
< By | Bpr > <@y | By >

< B | BIBY | By > < By | DS | By >
<P | 0y > <Py | By >

< | BB | B > < @, | B | By >
X AETE <&y [ By > -

(21)

In the next subsection, we caiculate by a direct method the overlap < &, | $4 > and
the elements of the generalized density matrix that appear in the contractions given by
(24)-(26). They are needed for the calculation of the kernel.

3.2 Evaluation of the overlap and the elements of the generalized den-
sity matrices

In order to calculate the overlap, we define the quantity

<@q,ziﬁ'r>
<0 Py ><Pp 0>’

R(z)=<0] XXy [0>= {28)

where z is some parameter. According to Eq.(15), we can express the independent q.p.
state | &4 > in the form

| @y >=<0]®; > e (0>, (29)
Consequently, the overlap is simply related to R(z) by

<P | By >=< 0| By >< B | 0> B(2). (30)

For convenience, we set
"
tantf = 2, (5)



so that X, becomes

Xy = 3 tanatattad!. (52)
We ncw show that R(z) satisfies a simple differential equation by calculating the first
derivative R'(z) with respect to z. Starting from Eq.(28), we immediately find

R'(z) = trjtan 87 A(z)), (33)

where the elements of the matrix A(z) are

<Q¢,:|b§b!|‘?¢l>
4= 5Ta, >< 2,105

(34)

As shown in Appendix B, the evaluation of A(x] necessitates the introduction of another
matrix B(z) with elements
< &,z b}"&;'* | &g >

Bij(=) = <0|Pp>< P |05’ (35)
and to solve the set of coupled equations

A(z) = 19¢' tan g¢' 40t R(z) — 79 tan 67 B(z) tan 07’791, (36)

B(z) = 2r%" tan 49797 R(z) ~ 219" tan 09 A(z) tan 69797, (37)

where 90" = {89, 0}, (See Appendix A.)
We note that the matrices A(z) and B(z) enter also in the cslculation of the elemnents

of the generalized density matrix since, as shown in Appendix C, we have the relations
< & b1 | &y >=tan 87 B;; < 0| By >< B, 0>, (38)
< ¥ | b:?'bg' | @ >= — < B | By > tandi §;
+tand? tand! By < 0| By >< & 10>, (39)

<® | BT | @y >= By <0| By >< 3, |0>. (40)

] ']
Due to the etructure of | &; > and | 8y >, the matrix elements < G, | & fbg. | By >,

< B, | bg’b;' f@qp > and < Py Ibglfb;"' | B > are all zera.



3.2.1 Overlap

To calculate the overlap matrix [Eq.(30)], we need to evaluate R'(z) as given by FEq.(33).
Tntroducing the notations

Ci(z) = tan 67 A(z), (41)
Ca(z) = (r99'")"1 B(z) tan 67" r94't, (42)
M? = tan#r% tan o' 790t (43)

we find with the help of Eqs.(38) and (37) ihe following equations for C1(z) and Cy(z):
Ci(z) = MIR(z} - M*C3(z]}, (44)
Ci{z) = M R(z) — 2'Cy(z)M1. (45)
The second equation allows us to eliminate Ci(z) in the first and, consequently, C}(x) must
be the solution of
Ci(z) = M*R(z) — (M) R(z) + M Cy () M®. (46)
A solution of Eq.(46) in the form of a veries can be found by iteration ard it is
Ci(z) = {1 - zM* + 2} (M)? - ()% + .. JMIR(z)
= (1+ zM¥) I MIR(2). {(47)
While the abave is quite general, in ectual calculation, the Bogoliubov transformation is
performed in a restricted basis. Consequently, we calculate a restricted set of q.p. operators
of (es q}"*) characterized by the Bogoliubov angles 87 (or 9:") such that tan8f # 0 (or

tan 8'?' # 0). In that case, MY can be written as PIM? where P9 is the projector in the
space spanned by the q.p. set q,". Then with the present notation, Eq.(47) becomes

Ci(z) = [PAM® — zPIMYP? + 2*(PMIP?)? + - | PTMYR(z), (48)

which has the impcertant consequence that, indeed, we do invert (1+ zM?) in the restricted

space.

Combining Eqs.(33), (41) and (47), we obtain
R'(z) = R(z)tr[(1 + 2M7) "2 M. (49)

10



Equation (49) can be readily integrated (between 0 and 1) to give
R(1) = exp{trflog(1 + M)} = det[1 + MY). (50)

Thus we find for the averlap [Eq.(30)]

< By | Byt >=< 0| By >< By | 0 > det|l + MY, (51)
whure
<@ |0>=]]t, (52)
iy

with s similar definition for < 0 | @y >. We emphasize once agzin that v hen working in a

restricted space, {1+ M%) has to be defined only in this sparc= {[1 + P3M9]P9),

3.2.2 Generalise? density matrix

To calculate the overlap matrix, we had to only evaluate tan 87 A(z). Ho vever, to completely
determine the slements of the generaliz«i density matrix as given by Eqs.(38)-(40), we need
to calculate B{z) as well as tan &’ B(z). (Details are given in Appendix C.)

The calculation of tan 8¢ B(z) is very similar to that of tan 89 A(z) and we shall conten:

ourselves to quote the result only:

tan 89 B(z) = z2R(z)(1 + M¥)" M7, (53)
where
M = tan 69'r9¢" tan $r9", (54)

Again, in actusl calculation, we must invert {1 + M7 ] in the restricted space spauned by

(]
it

The expression fct Bz} -an be obtained in the following way. Substituting Eqa.(41)
and ({47) into Eq.(37) and setting z = 1, we find

B =914 M) tan 87r% R(1). (55)
Consequently, the elementa of the three generalized density matrices take the form
< | B8 | @ >=< B | B¢ > ([t + MV]IMT )y, (56)

<@ | B8] By >= — < &y | By > (1 + M| an o7y, (57)

1



<& | bg"a;" | &g >=< &, | B > (r971[1 4+ M) tan 859", (58)

The elements of the generalized density matrices enter into the calculation of the kernel
through the effective Hamiltonian. In the next section, we show the explicit dependence of
the Hamiltonian on these matrix elements, In particular, we apply the formalism developed
in this section to the caleulation of one- and two-body operators.

4 Evaluation of the matrix < @, | ¥ | &, >

The interaction hetween nucleons will be assumed to be a two-body effective potential so
that the expression for the Hamiltonian takes the form
1 ~
J{=E<u|7|ﬁ>u’,ap+-;2<aﬂ|1’|78>a;a;a5a.,. (59)
a8 afys
In the above equation, T denotes the kinctic energy (one-bady) operator and < a8 | V |

'?5 > ia the antisymmetrized matrix elements of V:
<af | VivE>=<af|V|16>-<aB|V|éy>. (60)

Since the states gs‘?', defined in Appendix A, provides a complete basis, it is convenient to
express X in this representation, {.e. write ¥ as
\ , 1 . -7
W= <id | T dg' > 6Ny + 13 <idid | V | kgl > BN Y (61)
if ikl

Using Wick’s theorem established in Sec.3.1, we can express the matrix elements of ¥
between the two states | $;, > and | By > as

B H| By >=< By |8y > (3o <id | Tdd > 55

i

1 “geq —
+Ez<lq'_1q | V| ke'lg > SiiSy;

S5k
1 = - s
+32 <id5d | V| ke'lg > Tz¥y ). (62)
ik

The matrices S, T and Y are related to the generalized density matrices according to the

relations
< & | '8 | oy >

5= <@, | By > ! (63)

12



<@ | BT 2y >
BT <@ [ B >

' (64)
B < B | 5705 | By >

3 < Q' JQ.! > ! (65)

and their properties are presented in dstails in Appendix D.
In Eq.(62), we can exclude summation over the time-reversed states (i and ) by using

the fact that the interaction V is real, s.c.
<igid | V| kele' >=<ig'ia' | V | kg'lg' >*. (66)
Furthermore, using the properties of S, Y and T (given in Appendix D), we find

<P [N | Bp >=< Py | By > R(2)_<é¢' | T |57 > Sy

iy

+ S ((<idid | VIKIg > + <ig'id | V | kg'lg' >)SuiSis
(71779

+<idig | V | kel > T¥yl). (67)

As shown in Appendix D, it is convenient to define the new matrices °

p=(L+M")  tan 6779 tan 67, (68)
K= (14+ M) tan &, (69)
K = (14+ M) tand?, (70)

and express < ®; | ¥ [ $, > in terms of matrix elements between the two sets of single-

particle states ¢7 and ¢7. The result is

<@ | N | @y >=< B, | By >R <iq| T |id > pji

iy

+ 3" (< sgiq| V| kglg' > + <igjq | V | kgl >)puinij
skl

) = 4
+ < igiq | V| kel > KK} (71)

We now have all the quantities needed to calculate the kernel K(g,¢').

13



5 Practical considerations

For a given nucleus, we can define a Fermi level ip 8a the highest (last) occupied level
ir. the absence of pairing. The behavior of ¢; and v; in actual calculation is shown in
fig.1. For very deep leveis, v; = 1 and u; = 0 which means that tanf8; = v;/t = co and,
consequently, all the quantities defined in Eqs.(68)-(70) are singular. Our purpose in the

following subsections is to rewrite them in a non-singular form.

5.1 Overlap
According to Eq.(51) in Sec.3.2.1, the overlap is
< & | @y >= [] uf [Tu? det]r + 7], (72)
> b
which can be rewritten as
] D‘ o’ ﬂql 't
< &, | By >= det{u®) det{u? ) det[1 + i ] (73)

Using the well-known properties of determinants such as det(A) det(B) = det(AB), det(;i) =
det(A), etc, it is easily seen that
<@ Ty >= det(799") det[ud' (+9') 1 + o?' 790 9), (74)

As mentioned in Sec.3.2, the dimensions at collective variable ¢ and ¢’ are determined
by the wumber of tan §9 and tan #9' which are non-zero. Let ua call these dimensions N,
and Ny, respectively. If N, > Ny, then Eq.(73) is correct. In fact, in the original definition
of the determinant, the overlap matrix 7 occurs in a combination like 799" (v¢' /u?')r%'t and,
consequently, we can complete the space at ¢ with states for which v = 0, so that we can
build the square matrix of dimension Ny x N;. We can then safely perform the different
manipulations leading to Eq.(73). On the other hand, if Np» > Ny, we have to use Eq.(73)
with ¢ and ¢' interchanged. This is easily underatood if we note that < @, | By >=< By |
@, >.

As will be apparent in the following subsections, it is convenient to define here the
quantity

LA (r‘"'T)" Lyt 4 27997, (75)

which is nothing but the Hermitian conjugate of the second determinant in Eq.(74). Then

the overlap becomes

14



< @y | By >= det(+90) der(29¢), (76)
or, according to & property of the determinant,
< By | By >= det(r"') det(297'). (77)

Parenthetically, we remark that 99’1 # (799')~! when one does not use the complete
basis, as is the case in actual calculation. Furthermore, in the Hartree-Fock limit u; i, =0,
Yeip = 1 and 54, = 1, Yi>ip = 0 and we fall back onto the expression [det(v'r“'v")]’.
The square of the determinant occurs because the contribution of time-reversed states is

taken into account in Eq.(73).
5.2 Matrices K7 and K¢
Let us first conside: X9. By definition [Eq.(69)]
K9 =(1+ M%)~ tan#?, {78)

where, according to Eq.(43),

I
—_ -y ad't
M= uqf e (79)
It is clear that
1
14 M= Eluc(,.wt)_luql + u"f“'v“']-ul?,-f"'t- (€0)

Therefore, according to tbe definition of Z,

(1 + M)t = (r19'1) 148" (Za0') 1o, {81)
Thus,
K = {991 (299) ). (62)

The same demonstration applies to K7 and we obtair its expression by making the substi-

tutions u? = u¥, o7 = v?' and ;%' = r9't ig the equation for K¥:

K = () [(29)T] 1o Y. (83)

15



5.3 Matrix p
By definition [Eq.(88)], p is given by
p=(1+M") " tan 09197 tan 69, (84)

which is also equivalent to

p=[1+(M¥)Y"{(MT)"  tan 6719 tan 09, (85)
But

(M%) tan 89'r99't ¢an 69 = (r99') 1. (86)
Hence,

p= 1+ (M) (o), (87)

By using the expression
[+ (M) 1)t = o' (299') 1999 (88)
we can recast g in the form

p=v"'(29) 19, (89)

6 Application to a non-zero finite range interaction

We present here tie calculation of < &, | ¥ | &, > for a non-zero finite range interaction.
Such an interaction allows us to calculate without ambiguities all the quantities associated
with pairing, in contrast to that of Skyrme forces!”) with an od hoc prescription for pairing.

We choose an interaction of the furm!3)

K
V(r1,72) = 3 _(W; + BiP, — HiP; — M;P, P,)e~ "1 -ral"/u}

=1
1
+o(1 + zDPa)Pa(E[rl + r2])8(ry ~r2) + Vis, (90)

where P, = 3(1L + #1.7;) and P, = 3(1 + 71.73) are the usual spin and isospin exchange
operators, respectively. In arder to caleulate < @, | ¥ | Dy >, we defi~- .ue following three

quantities:

18



#l2,0:2,7) = 3 65 (z,0)8%( o)}, (1)
]

K%z,0;2',0') = }_¢¥(z,0)85, (', o) K ], (92)
i

K¥'(z,0;2',0") = 3 93 (z,0)6%, (', ) K1Y . {93)
i

The summation is performed also over the time-reversed states, and the quantities K:.:,‘,
K;:" znd pt are defined in Eqs.(82), (83) and (87), respectively, except that the index &
is now used to distinguish between orbits of neutrons and protons. For instance, since p
is diagonal in isospin space, we use the notation p;; = p,‘-,- and the indices do not contain
anymore tue isospin iabel. Using the properties of K9, K @, p (see Appendix D) and the
definition of time-reversed states, it is shown in Appendix E that

plx,0,7',0") = 0d'p"* (2, -0 2", -0"), (¢4)
K@) (z,0; ’:‘: a,) = ‘.m.'Kiq(q')t (z,—a; z'l -—ﬂ') ’ (95)
K501, ') = — O s 2,0) (s0)

It is now possible to express < @, | ¥ | Py > in the followin;, way:

<@ [ H|Bg>=D <itq|T|jtg > ol +) / j X1/ g3 S

it .-
x{;f(Wi — Hibw)20k(z, 03 2,0)05(2 o3 2, )

+HB: - Mibw) (o' (z,0:2,0)0" (2, 012, 0)r - [o'(2,03 2, o )" (<, 032", ~0)}n)
+(M; — Biby)2p%(z, ;7' 0)ok (2, 0 2, 0)

+(H; = Wibw) ([0 (2, 032", 0)8" (2, 03 2,0)]R ~ [0z, 05 2", —0)p" (&', 0 2, —0)]R)]
+(Wi— Hi + B; - M;) g([ff"’(:,a;z',a)x'v'(,,.a; 2\0)le

+[K¥(z,0;7', —a) K (2,032, ~a)]g) — (B: — M)

x 3 (IK%(z,0:2',0) K" (2!, 0;3,0)|p + [K¥(5,0; 2, —a)K¥' (2!, 0,2, ~0)] )}
H
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+to f &'z 3 {(1 — zobw)205(2,0; 2,0) (2, 0} 2,0)

i

+(:0 - 6,,:)([;;'(:,a,z,a)p"(z,a, z, 'I)]R
~¢(2,077, ~0)p" (z,~0: 2, ~ o)) }26(2, 03 7, 0)] 3. (97)

In the above equation, we have suppressed the summation over .he apin variables and
expressed < ®; | ¥ | &y > in terms of the real (subscript R} parts of o', K*? and K4,
Furthermore, zo is always equal to one and, consequently, the density dependent part never

contributes to the pairing.

7 Hill-Wheeler kernel with the Skyrme interaction

As a further application of the formalism developed in the preceeding sections, we present
here the calculation of the kernel for the Skyrme interaction. The parametrization of this
interaction in terms of S-functions heips i1 reducing the number of integrations and to
express the matrix elements as functions of various densities.

The Skyrme interaction can be written as®17)
1 —12
V(r1,73) = to1 + 2P )8(ry — x2) + 5‘1[5(1'1 -13) Vya
+—2 - -
+ Viz 8(r1 = r2)] + 12 V12 6(r1 — T2) V12
I - 1
+iWo(d: + &3). Viz x8(r1 —r2) Viz +ap® (5[rs + 7al)b(rs —12),  (98)
where

= 1= =
V2= E,;.(Vl - V2)- (99)

The direction of the arrow indicates on which side (left or right) the operator acts.

The calculation of the kernel with the Skyrme interaction requires the evaluation of

1 - —~ ’
3 < @, | Dp > Y <dghget' | V| ke't,lg't' > Priblys
i5kL et

which can be recast in the form

1 \ , '
3 <P, | By > z < igt,jgt' | V(1 —- PP, P,) | kq't,ig't’ > p’“p:j.
ikl et
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In the latter expression, we took into account the aniisymmetrization by introducing the
operator Py P, F,, which exchanges particle 1 and particle 2 in the configuration, spin and

isospin spaces, i.c.

By 11,13 >=| 13,11 >, (100)
- l - =3
P, | g1,07 >= E(l +5'3.0’1) ,0’],51 >=l &z, 01 >, (101)
1
Pty >= 5(1 + 71.72) | 21,82 >=| 23,81 > . (102)

Because of the §-functions, it is ezsy to sece that P, is +1 or —1 depending on the different
terms present in the expreasion for V(ry,rs). In fact, it is clear that for the terms to, t;
and {3, the two-body wave function must be symmetric in the configuration space and,
consequently, P, = +1 for them. For the other two terms, namely t2 and W), the wave

function must be satisymmetric and P; = —1. It is also obvious that we can replace P, by

bu.

7.1 Contribution of {;

If we use the property P? = 1 and take into account the previous two remarks, then the

contributior of the ip term is

3<BI B>t X [(1-mbe) [ 26 (2,002, 0)(z, )02, 0)

ijkloa’ it
x ol + (20 = ) [ Pzl (0160 (2,0 Wiz, )0 2,0 Dokl

This expression suggests to define the following densities:

#o) = S dimoin ol o) =3 A ), (103)
ij,0
plzr,0,0) =3 ,7;(2,0)1#};(4:,0')#:-.-. #(z,0,0") = ZP‘(“’:”:"’)- (104)
is ]

The contribution of the t3 term can now be expressed as
1 3 3
3 < 218> to [ P2((5H(2) - 20" (@) + 1" (2)]

+zo~ 8w) Y. #(2,0.0")" (2,0, 0))}.
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The term containing p*(z,a,0') can be simplified with the aid of Eq.{169) given in Appendix
E. The result is

—;— <Py | B > tofdsz{R[p3(z) - zo(p”" () + p"i(z))
+2(20p(2,0) = 47 (z:9) = o™ (2,9))]

-9 l P(:‘:d’ _d) lz + I p’(’la: —d’) |2 +Pn(:,d’ —0’) lz}

7.2 Contribution of t,

We first restrict ourself to the calculation of the direct matrix element and take into account
the fact that both the terms present in t; give contribution which are Hermitian conjugate
of each other. Therefore, we just consider the term
1 ) L. = '
—16 <%l ® >t 3 <ighiet | 8(ry - ra)(Vi - Vo) | ke't, it > gl
kW
which, due to the symmetry between coordinates 1 and 2, is equal to
1 .. ;
~5 <P lty>u 3 <igigt'| 8(r - r)(V? - ViVa) | ke't gt > plol.
VG gt
This expression can be rewritten in the configuration space as

—% <& |Bs>t1 3. [d"‘z{q&f,'(z,a)nﬁ{l(z, a)qb}:.(z,a')vquf;‘(z,cr')

ifkl,co' tt!
-85 (2, 0) V¢, ). %5 (z, 0" 9 6 (=, )Y ohin;.

It is now natural to define

s (@) = 3 68 (=, 0)V%(z o)k, w9 (z) = 3wl (a), (108)
ijo ¢
TV (2) = Y ok (wo)¥e(zoleh, T =TT (), (106)

so that tue contribution of ¢; takes the form

1

2<% 2> 1 f E2{[x%'(z) + 27(z)|p(2)

- [199' () 79 (2) + T99(2). 199 (2))},

where & and I' are defined in Eqs.(171) and (177) (Appendix E), respectively. If we define
an additional quantity
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A¥'(2) = Z:\? 5 (z,0) Vel (.00,  AV(z) = ; A (2), (107)
and use Eq..(n:; and (179) of Appendix E, then the contribusion of f; becomes

~ <% 18> [ E2le(2)9%(2) - A% (2)pl)

+T% (2).9p(z) - TV (2). T (z)].

The derivation of the exchange term is quite straightforward since cae has only to set

equal ¢ and #' and t5 permute the spins ¢ ard o'. By noting that

Ilql(za 0,0') = E :¢f,'(z,c)e¢};(=.d')p},-, (208)
i

AT (2.0,0") = 3 V4, (2,0). Vi (z,0")pl;, (10¢)
i

the exchange term becomes

al— <@ | Dp>t1 ) fd’z{p‘(z,o,a')vzp‘(z,a',a) ~ A (z,0,0')0'(2,0',0)
ot

+T (2,0,0').V4!(z,0' ,0) - T (2,0,0").T¥ (z,0", 0)}.

As shown in Appendix E, all the quantities, p*(z,0’, o), A.,"'(:r.,a, ¢'} and I‘E"'(a:,ﬂ,a'), have
the property

A(z,d' ") =0d A*(z,~0,-0"), (o= %1). (110)

We can, therefore, perform the summation over spin and rewrite the exchange term in the

following form:
% < B | By > :lszz(‘ f &z{pt(z,5,6)V* (z, a,0)
-p**(z,0,-0)V3i(z,0,—0) ~ [A’,"'(z,a',a')p’(a:,a, o)
-AF (z,0,-0)p"(2,0,-0)] + [T¥¥ (z,0,0).96'(z,0,0)
~T¥ (2,0, -0). 90" (2,0, ~0)] - [T (z,0,0).T{" (z,0,0)
-I%(z,0,-0) T (2,0, -c)}.

In the above expression, we can choose either ¢ = +1 or 0 = —1.
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7.3 Contribution of 22

The derivation for the contribution of the #; term is very smilar to that of t;. Hence, we
shall not describe the details of the calculation but rather give the finai result which is

<& | By > :,{% j S2[A (2)p(z) + T (2).19(2)
%' (z) Vola)] + %sz{‘; [ #+((48 (2,0,0)¢H(z.0,0)
—A¥ (2,0, -0)p" (2,0, —0)} — [T¥ (z, 7,0). V6! (2,0,0)
-T¥ (2,0, -0).¥ 0" (2,0, -0)] + [T (2,7,0).T{" (z,0,0)
-I¥ (z,0,-0).L5" (2,7, -0)]}}.

All the quantities appearing in the above expression have been defined earlier.

7.4 Contribution of W,

The presence of the spin operator (¢ + d2) simplifies considerably the calculstion of the
exchange term. In fact, it is easy to convince oneself that this operator acts on triplet
(S = 1) states only 8o that P, = 1. Thus, recalling that P, = —1 in the spin-orbit case, we
get P, P, P, = —b&p 8o that the total contributien of the direct and exchange terms is

W N = = o
'—8—" <P [ B> Y <igt gt | [V1z 6(ry — ra)x Vigl(dh +@2)

syt
4
x | kq't,I¢'t’ > phipl;.

There is an obvious symmetry between 1 and 2 which allows us to rewrite the apin-orbit

term as
2Wo[(¥ x Vi).d3 + V1.(V1 x @) - (V) x $a).dh - V4. (Va x &)

Furthermore, after carrying out different integrations by parts, it can be shown that the

above expression reduces to the simple form
4"Fv‘i'[(ﬁ'l x ﬁl)-az - (vﬂ + v"'z)(el X El)].

If we now define
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' (2) = 3 Vel (z,0) x Valy(z,0)el;, T¥'(2) = ;ng*"(z), (111)

F(2)=i Y #(z0)<old|o"> ¢hz,aVh, (@=L d#@), (12)
if.oo!? [
@) =~ X #¥(z,0)¥%(z,0)x <0 | 7| o' > dy, I (z) =331 (2), (113)
ijoo! t

then the contribution of the spin-orbit term is given by
o / P[99 (2).59(2) + Vp(z).39'(2))
+ 3 ()88 (=) + Vot (2). 307 (=]}
t

7.5 Contribution of ty

In the firat parametrization of the Skyrme interaction proposed by Vautherin and Brink?,
there wes a three-body contact term £36(F1 — rz)5(r; — r3). Later on, however, different

authors?®! introduced a density-dependent two-bedy interaction term

tap”( %!.l'; +12))b(r1 ~ 13).

In the following, we shall consider hoth the cases.

7.5.1 Three-body Interaction
We have to calculate

is g, —
= z < ig't, 7g't' , kq't" | £(123) | Ig't, mqit!, ng't" >
ijkimn,tehe”

X < B | B BL B 0L | B >,

where the matrix element is antisymmetrized with respect to the three particles. According
to Wick’s theorem described in Sec.3.1, we can express the above contraction in terms of
the quantities 5, T and Y defined in Eqs.(63)-(65). Since, to our knowledge, the Skyrme
interaction is never used directly to calculate pairing correlations, we shall only keep the
normal contractions associated with $. As we did with two-body interactions, we can
express the contractions in terms of the generalized density matrix. We only give here the

result which is

23



1 ., . —~—
g <Dl >ty 3 <igt et kqt" | ¥(128) | Ig't, mg't, ng't" >

1iMimn,HUY
"
X PhkPnsih:.
Due to the presence of the §-furctions in the definition of +/(123), the wave function must be
symmetric ir the configuration space and, consequently, antisymmetric in the spin-isospin
space. We shall denote the corresponding antisymmetrixer as F;, which will allow us to

rewrite the above expression as

é <® | B>ty Y, <igt,jqt' k" | v(1,2,3)Ps | Ig't, mq't, ng't" >

Skimn ('™
XP::;P;:;’PI‘-'-
Taking into account the obvious symmetries between particles 1, 2 and 3, and relabelling
the indices in the summation, it can be shown that
Por = 1+ 2P,(12) P,{23) P, (12) P, (23) — 3P, {12) P, (12), (114)

where P, and P, bave been defined in Eqs.[101) and (102). After substituting this form of

Poy in the expression just given above, we obtain
% <& | By > t;ﬁj #z/p’(z) — a-p(z)(p"(z,a) +p"’(z,¢r)
— 1 #%(2,0,0) ! - | ™(2,0,0) [F) + 4{(#"' (z,0)

-30%(z,0)6" (2,0, —a) + (™ (z,0) — 3p™{z,0)8" (2,0, —a))}].

7.5.2 Density-dependent interaction
Cleazly, only the diagonal elements
1 1
ztg/ <P, | 8y~ r:)pa('illj +r2}) | By > &Eridy,

are unambiguously defined when using a density-dependent interaction. In order to extend

its definition to the non-diagonal case, we make the substitution
plr) =) 3 < & | ¥H{r,0)¥(r,0) | &y >,
o

which reduces to the density p(r) when ¢ = ¢’. Then the contribution of such an interaction

is simply given by
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% <@, | By >ty f E2{0*(z) - 280" (2,0) + 0™ (2,0)]

+| PP(z,0,-0) |* + | o"(z,0,—0) [*}o*(2).

It is clear that we have different ways of extending the defivition of this interaction. Ir
particular, we could have substituted in place of p any combination of p(z), p(z,¢,0) and

»(z,0,—0).

Finally, we mention that when g = ¢', we have
2(z,0,-0)=0, (115)
¢ 1,
=7, U) = EP (:)l (r16)

aud the expression for the Skyrme interaction reduces to the well-known Hartree-Fock

form!?).

8 Conclusions

This paper has detailed the methodology requisite for caleulating the kernel, or matrix
element, of the Hill-Wheeler equation. In ttis, the firat of a seriea, the methodology has been
developed and illustrated for the normal, i.e. non-pairing, pari of zero-range, f.e. Skyrme-
like forces, It has also been developed for the normal part of a finite range interaction, the
Gogny form. Application to the finite range case will be reserved for a subsequent papes.
We have also developed the methodology for the abnormal part of the force, f.e. the
pairing force, only for the finite range case', althongh its illustration too will await a subse-
quent paper. We have rot touched upon the delicate question of a unique definition of the
Hill-Wheeler kernel, or matrix element, for density dependent forces. While this presents
no ambiguity for diagrnal terms, an arbitrary prescription has been introduced for off diag-
onal matrix elements. The presumed, modest uncertainty this will introduce into numerical

examples must await future illustration and illumination.

“The structure of the Skyrme force doas not permit its direct application to the pairing matrix elements,

Fairing is always added to the Skyrme Hamiltonian in an ad Aoc manner.
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Appendix A: Notatinrns and conventions
As already mentioned in Sec.3, izc Bloch-Messiah theorem?®) allows us to write the most
general Bogoliubov transformation?® in the form of the so-called BCS transformation:

& ) NEECATEA] am
¢ ) \a )l

with the condition that v} + v} = 1. As long a8 we are only interested in the construction

of the vacuum | ®, >, then £ = . In that case, we can neglect the third transformation

(outlined in Sec.3.1). The operators B! create a particle in a state ¢f which is defined as

#¥(z,0) =< zo |67 |0 >, (o : spin variable). (118)

We mention here that in the Hartree-Fock + BCS theory®~1%), the states ¢? are assumed
to be Hartree-Fock states.
(i) Time-reversed states
The states 4] can be grouped by pairs (¢f, ¢} which are in correspondence via the time-
reversal operator T by

¢ =Tl (119)
Using the conventions of ref.}), this correspondence in the (7, o) space is such that

¢g(z, o) = o¢i*(z,~0), (o = +1). (120)

(1) Single-particle overlap matrix
If we assume the two sets ¢7 and ¢¢ to form a complete basis, we can expand one in terms

of the other as
¢7(z,0) = 315 8{(2,0), (121)
where

1;!}" = } ¢¥(z, a)¢g' (z,0)dz. (122)

[-4

The smne expression holds true for the aperators b7t and 55, i.e
b:." = Z et (123)
+

3 "¢ ?

80 that the anticommutator
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d !
AR T (124)

This relation is frequently used in Appendix B. It is easy to establish the relations

rl.'," = r;"‘;", (125)
* L)
1".';' = ri'}q'. (128)

Appendix B: Coupled equations satisfied by A(z) and B(z)
In this appendix, we derive the equations for A(z} and B(z} whose definitions are
< Dg,z | 835 | B >

4= olg, < 8,10 (127)
<@z | W &y >
Bile) = <0 Py ><P 0> (128)
An equivalent definition of A;;(z) is
Aiy(2) =< 8,z | Hre X BBl A 0>, (129)

#here X is defined in Eq.(32). Starting from Bq.{129), we expand in a well-kncwn manper

the quantity e_xl'bf,‘.'b.?cx" in terms of commutators. The result is
_ 1
ERBIXT = A — Xy, B8] + 3 [Xep X, W] 4 - (130)

Evaluation of the firat and second commutators givea

] . } [ } ] '
X, 83881 = 37 ean 0f (o35 65160 + 73 8 1ol — 15 80, (131)
ky
X, [ X, 83881 = —2 E; tan0f tan 6 157 r88 5 Neg 1, (132)
kx>

As a consequence, the expansion ends after the second commutator. Substitution of Egs.

(130)-(132) into Eq.(129) leads to
Alzx) = % tan DW'f"q"R(z) — 1% tan 89 B(z) tan §9'r99', (133)

where R{z) is defined by Eq.(28). In deriving Eq.(133), we have used the property 1;5;“‘ =
r,-“f". (See Appendix A.) The notation tan6? means the matrix whose elements are
(tan 87');; = 6;; tan 6y .

The equation for B(z) is easily obtained from the one for A(z) by noting that if we
exchange ¢ = ¢' and replace tan8% by ztan#?, then B(z) = At(z). Thus taking the

Hermitian conjugate of Eq.(133) and using the property r99'! = r1¢', we obtain
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B(z) = zr*"t tan 09r%' R(z) ~ 2%r%%'t tan 9 A(z) tan 9797, (134)
Appendix C: Evaluation of the generalized density matrix
It in convenient to write the element < @, | bg"b‘}' | Py > in the form

<@ | B | By >=< 0| B >< B, | X Xep el e 0>, (135)

and expand ¢~ %+’ bg"b;'exc' in terms of commutators. The expansion is given by Eq.(130).

However, all the commutator terms in the expansion except the first one are zero. Therefore,

<®,| b.?'*bﬁ' | @ >=<0] @y >< B | ‘x"(bg'tb;‘ - lxq'xb.?""}']) [0>, (136)
where
[, 810 = - 3 tanof G Y8+ 0 Mg N (137)
ke

Using now the definition of B [Eq.(35)], Eq.(136) can be written as

<0 | B8 | @ >=tan 6y Bj; < 0| &p >< B |0>. (138)
Finally, using Egs.(51) and (53), we get

< B [ BN | g >=< 8y | @y > ((1+ MTIMY);, (139)

To calculate the element < @ | bg'bgl | @4+ >, we proceed as before and nots that only

the first two commuttor terms are non-zero. Hence,

L | 4. at LI
<O |68 | By >=< 0| Dy >< B | X (] 8 — [Xpr, ] 8]

431 DX 88T [0, (140)

where
[Xy, b3 b8 = — tan 6787 T’ — tan 67 (88148 — 5,), (141)
(X, [Xq, bl'l"b;']] = 2tan ﬂl-" tan Bg'b;'fbg". (142)

Substituting Eqs.(141) and {142) into Eq.(140) and then using Eqs.(35), (51) and (53}, we

obtain

<, |8 | By >= - < B, | By > ((1+ MY tane),;. (143)
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The expression for < @, | b}"b}" | ¢ > is, by definition, directly connected to B and

<Q,,|b§'*b§"|¢,:>=ﬂ,~,-<0|@,,.><@,,|0>.

Using Eqa.(53) and (55), Eq.{144) can be reduced to

<@ | BT | By >=< @y [ @ > (191 + MO} canie00) ;.

Appendix D: Matrices S, 7, Y, K and p
(1) Properties of S, T and Y

(8) 55 = Si;

Proof: Using the definition of S [Eq.(63)], we can write
<&, | BN | @y >

S=—g, a5
where

b} = TH!T,

bt = —THe!T,

(144)

(145)

(146)

(147)

(148)

and T is the time-reversal operator. Furthermare, | &, > a8 well as | $ > are even

under application of the time-teversal operator, i.e. T | ¥, >=| &, >, and the overlap

< & | By > is real. Thercfore,

_<%| T T | 3, >

" <P, | By >

<P | 810Y By >°
- <% [ Bp >*

=55
But S is real. So,
S;=5; QED
(6) ¥ = -5 = %

Proof: Using Eqs.(€5), (147) and (148), we can write ¥y a8
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Y <®, Ibﬂ'b‘i'lﬁ,« >
e < By | By >

<@ | THHT| &y >*

<@ | By >*
= -¥3=-¥; (150)
Hence,
Yy=-Y;=Y: QFED

@ Ty=-T3=T;

Proof: The proof is the same as that in (b).

(i1) Definition of p and X

Let ug first calculate 3°,; S;; < j¢' |, where Sy, according to Eqs.(83) and (139), can be

written as
5i; = ([1+ MY MY, (151)
We now express }°; M:; <jq | as

3 (tan 67 10" tan 0 r? < Jg' 1.

mj

It is obvicus that

Yol < ig =< mq]. (152)
i
Thus,
S8 < 3g' 1= So([1+ M¥] 7 tan 09' 19t tan 69),; < jq |, (153)
i i
which leads us to define
pii = (1 + M9 tan 69799 tan 69),, (154)

80 that we have the relation
Y 8 <id =3 pi; < del. (155)
i 1§

To define K, we look at the quantity T,; Ti; < ig’7¢’ |, where T3, according to Eqs.(64)
and (145), can be expressed in the form



Ty = (15 + MY tan 6997') . (156)

Using the identity

Zf}.ﬂ' <3¢ I=<mq|, (157)
we ﬁnd,that
2Ty <ig3d |= LA+ MY~ tan #); < i | (158)
1] L3 ]
If we set,
Kr=(11 + M%7 tan 89);;, (159)

we get the relation
ST < ig'ie |= K < deid | (160)
i3 1]
Furthermore, from the definition of ¥ [Eq.(65)] and £q.(143),
Y= (1 +M¥] tan %)y, (161)
so that by comparing with Eq.(159), we get the following identity:
K = -Y;. (162)

(iif) Properties of p, K? and K9
According to Eqs.(155}, (160) and (162), p has the same properties as S, K9 as T and K¢
as V. In particular, g, X9 and K¢ are real. Furthermore,

Pis = P (163)

I =~ K = Ko (164)

K% = - KT = K1, (165)
) [} 3

Appendix E: Properties of g, K%, ¥ and T'¥

The quantities p*(z,0;2,0'), K¥(z,0;7',0"), x99 (z) and T%%'(z) satisfy a number of rela-
tions which we shall derive in this appendix.

(i) #(z.0;7,0') = 0’0" (z,~0;2', -0")

We start 1rem the definition of p* which is [Eq.(51)]
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#(z,0:7',0) = E¢"(=,a)¢g,(2 0')p”, (166)

0]
where the summation runs over the time-reversed states also. We cau, therefore, also write

Eq.(166) as

P (z,0:2,0') = T ¢4 (2,004, (o) (167)
Using Eqs.(120) and (1';3) in Eq.{167), we get

0 (z.0:2',0') = 00 (3§ (2~ 0)oy(e, —o ok, (168)
which is simply the identit:

oz,0i2,0") = 0d's" (z,~0; 7', ~¢"). (169)

(1) KY(z,0;2',0') = 00' K" (2, —a; 2, —0")
The definition of K*? is [Eq.(92)]

KY%(z,0;7',d) = Znﬁ (m,a)da"(z a’)K (170)
which can also be rewritten as
K9 (z,0;7,0') = Zeﬁ'?;(z,a')¢§:(z', a')K;g. 71)
s
Again, using Eq.(120) r4.. the property of K given by Eq.(164), we obtain
K¥e,032,0) = o032 4 e, W5 DALY, (172
which is nothing but the relation

K'(z,0;7',d") = 0’ K¥*(z,-0;2', ~0'). (:73)

The property given by Eq.(98) is easily derived by using the fact that K= -Ky.
(i1) Properties of x{*'(z) and I'{¥(z)
The defiuition of &} *(z) is |Eq.(105)
A %(z) = TV (2,005 (=, o). (174)
ije
It is sbvious that

'Q(I) + "'tn (:) v;[z 4'?:(1 0)4’?;(: ’)Pn] - 2zv¢ (z a) V¢§g(= V)P,p (175)

iz ije
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Hence, we have the identity
RY*(z) + #{7 (z) = VAH(z) - 248" (=), (176)

where A§*'(z) is given by Eq.(107).
The definition of 1‘2"(:) is [Eq.(108)]

I1(z) = 2 [V6] (=, 0)8elz, o)} (a7)
$3,0
widch is also equivalent to
T79(z) = V13 6% (2,0)¢% (2, 0)0k] ~ 3 6% (2, 0) ¥ %, (2, 0)0l;. (178)
U4 3.

Hence, we have

I7(z) = ¥p'(z) - T{¥ (). (179)

Appendix F: Numerical procedure
In calculating the energy E within the Hiil-Wheeler approach, we have discretized the
configuration space on a three-dimensional rectangular mesh. The mesh size Ag is the
same in the throe directions. The integrations were performed using the trapezoidal rule
and the single-particle wave functions ¢ (Slater determinants) required in the calculation
were obtained with the Hartree-Fock code of Bonche et al'®),

The expression for the total energy (kinetic + Skyrme + spin-orbit) depends on the
first and second derivatives of the single-particle states. However, the terms involving the

second derivatives can be expressed in terms of the first derivative as

f o' Viodz = - f Vo' Vod e {180)

To achieve good accuracy for all the terms in the energy, it is important that the gradients

be computed with high precision. We have used the approximation

-gé = i xzz_:,. wrf(z + Aaz) + O(Az*"?), (181)

where 2 + 1 is th : number of points to be used in the approximation. We have done the
calculations with the 7-point {n = 3) as well as the 9-point (n = 4) approximations and, as
expected, found that the latter gives results with the desirable accuracy. The coefficients

wy, are given in Table 1 and an example of the accuracy for the kinetic energy of ¥0 with
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spherical oscillator functions is shown in Table 2. In Table 3, we compare the Skyrme energy
(SkIII interaction of Beiner et af2%) given by the 9-point approximation with that of the
Hartree-Fock calculation?®.

The numerical precision of the present calculation is further demonstrated in Table 4
where we present the nuclear binding energy of 180 for Az = 1 fm at finite quadrupole
deformations ¢ = ¢' = 130 fm®. We notice a difference of about 2 MeV in the Skyrme
energy given by the Hill- Wheeler and Hartree-Fock methods. This is because the Hartree-
Fock method uses the 7-point approximation to calculate the first derivatives appearing in
the expression for the Skyrme energy. If we use the 7-point approximation, we get -351.252
MeV which is very close to the Hartree-Fock result. However, the relative difference in the
total energy calculated with the two methods is less that 0.2%.
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Table 1: Values of the coeflicients wy.

Approximation | wo w1 W3 Wil Wiy
7-point 0| +45/60 | F9/60 | +1/60 -
S-point 0 | +672/840 | F168/840 | £32/840 | T3/840

Table 2: Accuracy on the kinetic energy (in MeV) of 0. The Slater determinant is built
from harmonic ozillator functions (given by the Hartree-Fock code!®)) with #=0.275 fm 3.
The Hartree-Fock calculations used a $-point Laplacian.

Mesh size (in fm) 1L 0.8 0.5
Hartree-Fock 192.425 | 192.452 | 192.458
Hill-Wheeler

a) 7-point 191.382 | 192.036 | 192.496
b) 9-point 192,154 | 192.398 | 192.456

Table 3: Skyrme energy (in MeV) of %0. The Hill-Wheeler results are obtained with the

9-point approximation.

Mesh size (in fm) | 1.0 08 0.5
Hartree-Fock —323.795 | —323.555 | —323.459
Hill-Wheeler | —323.711 | —323.500 | —323.455
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Table 4: Nuclear binding energy (in MeV) of %O for ¢ = ¢' = 130 fm?. The Hill-Wheeler
results are obtained with the 9-point approximation and a mesh size of 1 fm.

Energy Hill-Wheeler | Hartree-Fock
Kinetic 248.613 247.959
Skyrme —349.564 -351.549
Spia-Orbit ~22.589 -22.181
Total —125.540 —125.781
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Figure 1; u; and »; as functions of i. ir denotes the Fermi level.
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