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ABSTRACT 

We construct a gauge invariant superspace action in terms of uncon­
strained off-shell superfields for the D=10 Supersymmetric Yang-Mills 
(SYM) theory. We use to th's effect: 

(i) the point particle limit of the BRST charge of the covariantly quan­
tized harmonic Green-Schwarz superstring, 
(ii) a general covariant action principle for overdetermined systems of 
nonlinear field equations of motion. 
One obtains gauge and super-Poincare invariant equations of motion 
equivalent to the Nilsson's constraints for D=10 SYM. 

In the previous approaches (light-cone-gauge, component-fields) one 
would have to sacrifice either explicit Lorentz invariance or explicit super-
symmetry while in the present approach they are both manifest. 
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1. 

1. Introduction 

It is hoped that a relativistic quantum theory of supersymmetric 

strings [1] can describe in a consistent way the quantum theory of space-

time i.e. quantum gravity [2]. Unfortunately the proof (or disproof) of 

this conjecture was not completed to this date [3] because it was impossi­

ble until recently to express the quantum theory of superstrings in a form 

which displays explicitly the super-Poincare invariance. 

In fact the form of the theory which forsakes the space-time super-

symmetry (SUSY) - the Raraond-Neveu-Schwarz (RNS) formalism [4], is 

also very awkward in expressing the super-Yang-Mills (SYM) and super-

gravity (SUGRA) field theories in the massless sector of the superstring. 

Indeed, the zero-mass bosons, described by these theories are in fact 

appearing in the RNS formulation as string-excitations and are recognized 

as the physical (degenerate) string ground states only after the GSO [5] 

truncation which eliminates the Fock-space ground state together with 

half of the spectrum. 

It is strange that these gauge particles should appear at the excited 

string level while in fact describing infrared properties of the model and 

string ground states. 

This way of appearance of the SUGRA and SYM gauge particles 

greatly obscures their relation with the geometry of supersymmetric 

space-time which is believed to be the physical fundamental reason be­

hind their, very existence [6]. 

This relation of the superstring with the supersymmetric space-time 

geometry is more naturally expressed within the the explicitly space-time 

supersymmetric formalisms of the Green-Schwaxz (GS) superstring [7] 

and its point-particle limit- the Brink-Schwarz (BS) superparticle [8]. 

However, until recently, it seemed impossible [9] to quantize the GS and 
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BS systems while preserving the manifest super-Poincare invariance. 

In a series of papers [10-15] this obstacle was overcome through the 

introduction of appropriate "spinorial vielbein" variables called "harmonic 

variables". 

It becomes now appropriate to address the question of how the SYM 

and SUGRA theories do appear in our explicitly covariant quantum su­

perstring formalism, i.e in which sense is the GS superstring theory a gen­

eralization of the SYM and SUGRA theories. After all, the very purpose 

of the superstring theory is to provide a generalization of these theories 

which is finite through the regularizing effect of its infinite tower of ex­

cited modes. 

The space-time SUSY and YM gauge invariance, are important also 

technically,as tools in finiteness proofs [16]. For the superstring theory 

such a proof is necessary for the very consistency of the theory. In the 

RNS formalism there is little hope that such a proof can be performed as 

the quantum perturbation expansion in higher than two loops is plagued 

presently by severe complications [17]. 

The explicit space-time supersymmetric superfield approach is also a 

very desirable tool in string phenomenology. Some successes were already 

obtained in the study of the spontaneous symmetry breaking mechanisms 

which govern the "low" energy spectrum and dynamics of the string the­

ory using a supeiiield effective action for to the low-energy states. [18]. 

The direct use of the superstring field action might improve these studies 

solving in particular the problems of CP violation, cosmological constant 

etc. One may hope to explain some of the "miracles" appearing in the 

RNS formalism [19]. 

In ref. [15] it was shown how to describe the interactions of the co-

variant quantum GS superstring in terms of explicitly supercovariant 

dual-model massless vertices. 

The long range objective of the string-field theory approach is the 
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systematic study of the nonperturbative quantum ground state of space-

time in a way quite similar to the study of the ground state of any other 

theory (QCD, electro-week, etc). The practical use of the second quan­

tized formalism requires that we describe interactions also in the frame­

work of the resulting super-string-field-theory. 

Since in the GS formalism there is no GSO truncation, the field theo­

ries characterizing the zero-mass sector are expected to appear in a natu­

ral way already at the point-limit level. 

Therefore, before attacking the issue of the super-Poincare invariant 

superstring field theory it is appropriate to study its massless limit. 

In the present paper we use the BRST charge of the super-Poincare 

covariant first quantized GS superstring with N = l space-time SUSY com­

puted in [15] to construct the gauge and super-Poincare covariant field 

theory corresponding to its zero-mass sector (i.e. the D=10 SYM) in 

terms of unconstrained (off-shell) supernelds. 

To this end we employ (and review below) the general covariant ac­

tion principle for arbitrary consistent overdetermined systems of nonlinear 

field equations proposed in our preceding paper [20]. 

The actions obtained this way resemble the Siegel-Zwiebach-Witten-

Neveu-West [21] construction of (super)string field actions but do not in­

volve the peculiarities (star products, Chem-Simons forms etc.) specific 

to the field theory of RNS strings. The main tool on which our covariant 

action principle is based is the BFV-BRST ghost formalism [22] . 

The use of this action principle to derive the superspace action for 

D=10 SYM in terms of unconstrained superfields is inevitable since, as we 

show in section 5, the D=10 SYM on shell squations (the so-called Nils-

son constraints [23], see equations (1.9) and (5.1),(5.3-7) below), can be 

reformulated with the help of the auxiliary harmonic variables [10-15] as 

a consistent overdetermined system of nonlinear superfield equations 

meeting all the requirements for application of our covariant action princi-
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pie. 

The D=10 SYM is a fascinating system in his own right [23,24,6,25] 

as it has deep connections with integrable systems (i.e. admitting Lax 

representation), super-twistors, light-like geometry of space-time etc. By 

dimensional reduction to D=4 it yields the N=4 SYM which has the re­

markable property to be a finite quantum field theory. The supersymmet-

ric D=10 SYM field theory was discovered in the component formalism 

by [5,26] and has an on-shell supersymmetry due to the celebrated Fierz 

identity for D=10 a-matrices: 

K)a / 3(<7„)7 4 + K)0,(<7„)„« + K)-,Q(<7„),w = 0 (1.1) 

It is this identity (and its analog in D=3,4,6) that is responsible for the 

manifest (classical) SUSY of the GS superstring [7]. (1.1) stands behind 

many beautiful mathematical constructions (division Ugebras, triality re­

lations, etc.) which are accumulating more and more evidence to be in 

deep connection with D=3,4,6 and lo SUSY [27]. 

Unfortunately, in the form in which it was discovered, the SYM La-

grangian: 

L = —trif^rn - jtr(« fiw) (1-2) 

was not explicitly supersymmetric. In (1.2)tc„ is a left handed Majorana-

Weyl D=10 spinor while flxv and v^ are gauge covariant expressions in 

terms of a gauge vector field a,,(x): 

«$/„, = [*•„,?„] (1-3) 

v» = d„ + ig[ap,.] (1.4) 

We use here lower case characters o, v, f, to,<j> etc... in order to emphasize 

that the respective expressions are ordinary fields and not superfields as 
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we will use in the rest of the paper and denote by capitals: A, V, F, W, 0. 
Later we will also introduce ghost-haunted superfields which we will de­
note by ^,^,)V,$etc. 

The field equations of motion which this field action generates by 
varying with respect to a and respectively w are: generalizations of the 
Maxwell 

v'/^fKr^K.,^} (1.5) 

and respectively Dirac 

f}W = (CT")°"'V,1«I>/J = 0 (1.6) 

equations. 
The lack of off-shell superspace formulation of (1.2)hampered its 

study and the extension of its successes to other models (may be even 
-uperstrings). 

In order to obtain an explicitly supersymmetric theory it was tried to 
formulate the theory in terms of superfields: 

16 1 

<Kx, 0) = *{x) + J2 ~.6a, ...*„><•' ••°"(x) (1.7) 

These attempts to formulate the theory in superspace lead to more 
tantalizing discoveries. The general 1-form gauge superfield in the D=10 
N=l superspace: 

A(x, 6) = dx" A„(x, 6) + d0aA°(x, 6) (1.8) 

describes too many degrees of freedom and in order to describe just the 
on-shell SYM it has to be submitted to certain constraints (the Nilsson 
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constraints) [23]: 

gF°l> = {VQ, V } - 2i(<7*)»'?V„ = 0 (1.9) 

where: 

V„=dlt + ig[All,.] (1.10) 

Va = Da+g[Aa,.} ( l . l l ) 

0 " = ^ + ^ " ) " % ^ (1.12) 

The structure of the constraints which the superfield hac to fulfill in order 

to describe on shell the SYM spectrum turned out to have deep geomet­

rical meaning in the sense that it can be interpreted as the integrability 

conditions [6] for certain systems of linear partial differential equations. 

In fact in the case of SYM, these partial differential equations express the 

pure gauge character of the field along arbitrary light-like superspace di­

rections X11: 

x" = xS + tX" - K ^ A ^ e " 

where (xo,6°) parametrize the offset of an arbitrary super-light -like ray 

while (t,ea) parametrize the position within the super-ray. 

This pure gauge character of some of the field-theoretic degrees of 

freedom is in turn related to the fermionic K-gauge invariance [28] essen­

tial for the consistency of the GS superstring [7]. On the other hand the 

integrability conditions (1.9)together with their consequences from the 

Biancchi identities for the covariant derivatives (1.10),(1.11) can be shown 

to be equivalent to the ordinary field equations of motion obtained from 

the (1.2)Lagrangian [6,24,25]. 
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The great puzzle was the fact that it was still impossible to find an 

explicitly super-Poincare invariant action from which the Nilsson's con­

straints (1.9) would appear as field equations of motion when the action 

is varied with respect to the superfields. This impossibility was codified 

in the statement [29] that it is impossible (within certain assumptions) 

to write a D=10 SYM action in terms of unconstrained superfields (i.e. 

superfields which vary freely off-shell and the only constraints appear 

on-shell as a result of the free variation of the action). The existence of 

a covariant unconstrained superfield action is the necessary basis for a 

quantum field theory which explicitly displays all the super-space-time 

invariances of the model. 

Similar properties are shared by N=2 type B D=10 supergravity [30] 

and of course, at least in some sense, by the superstrings. 

The harmonic "spinor-vielbein-like" variables avoid the above no-

go theorems [10-15]. This is not completely unexpected in view of simi­

lar successes obtained by the harmonic superspace approach in different 

contexts [31]. Moreover the apparent relation of certain "vielbein-like" 

auxiliary variables with supertwistors [32,33,34] renders natural their use­

fulness in describing massless systems [6,25]. 

In the present paper we show explicitly that our gauge and super-

Poincare invariant unconstrained superfield action based on the point-

particle limit of the BRST charge QBRST of the Super-Poincare covariant 

GS superstring gives on-shell the Nilsson constraint equations of D=10 

SYM. 

The plan of the paper is as follows. 

In section 2 we review pedagogically the developments [10-15] which 

lead us to the super-Poincare covariant QBRST of the GS superstring. 

In particular we explain the origin of the auxiliary variables and of the 

additional gauge invariances. Also the statement in the recent paper by 

Kallosh and Rahmanov [35] claiming "nonunitarity" of our formalism is 
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shown to be incorrect. 

In section 3 we describe the super-Poincare covariant first quantiza­

tion of the N = l BS superparticle (the zero-mode of the GS superstring) 

in the Dirac canonical formalism. 

Section 4 is devoted to the covariant first- and second- quantization 

of the D=10, N = l BS superparticle in the BFV-BRST formalism. 

In section 5 we derive a harmonic superfield representation of the 

Nilsson constraints for D=10 N = l SYM and prove its equivalence to the 

original Nilsson constraints. In particular, the linearized form of these 

harmonic superfield equations is shown to exactly coincide with the Dirac 

constraint equations for the superfield wave function of the covariantly 

quantized D=10 N = l BS superparticle. 

In section 6 we review our general covaiiant action principle for ar­

bitrary overdetermined systems of nonlinear field equations and apply it 

to construct a superspace action for D=10 N = l SYM in terms of uncon­

strained (off-shell) superfields. 

In section 7 we discuss the implications of the present results and the 

directions for further developments. Appendix A summarizes the spinor 

conventions while appendix B describes a remarkable Lorentz-SO(l,9)-

invariant SO(8) algebra. Appendix C supplies the general proof of the 

pure gauge nature of the auxiliary harmonic variables, needed to perform 

super-Poincare covariant quantization. 
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2. 

2. The Super-Poincare covariant quantization of the GS su-
perstring 

The present work constructs the unconstrained superfield action of 
the D=10 SYM making use crucially of the point-particle limit of the ex­
plicitly super-Poincare invariant BRST charge of the GS superstring. 

Such a BRST construction was possible as a consequence of the har­
monic superstring program for a manifestly super-Poincare covariant 
quantization of the GS superstring which we developed during the last 
year [10-15]. 

In order to make the structure and the origin of the BRST charge 
construction clear, we will describe in this section in a sketchy but hope­
fully pedagogical way the main ideas and concepts of the harmonic super-
string program. 

The GS superstring is formulated as a superspace generalization of 
the bosonic string. 

Indeed, it substitutes in the bosonic string action 

sB = J dTdf^=g{~sr
tamx>'anxll} (2.i) 

in place of dmX1' the superspace expression 

amX" + i(6o»dm8) 

The resulting GS action [7] in the Lagrangian form is: 

Sos = Jdr J dSV^{-±gm"Wmnnii - itmnWm ^ ( - l ) ^ ^ * , ^ 

(2.3) 

(2.2) 
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where 

n* EE dmx" + i Y, {eAo»dmeA) (2.4) 

Here gmn(T,£) ( m,n=0, l ) is the 2-D world-sheet metric and X' x ( r ,^) , 

8A(TI£), (•A = 1,2) are the superstring coordinates which are world-

sheet scalars. 0\ are anticommuting (grassmanian) D=10 Majorana-Weyl 

(MW) spinors. The last term in the superspace action (2.3)is crucial for 

the correct physical content of the theory. Classically SGS (2.3) exists in 

D=3,4,6 and 10, however, after quantization, due to quantum anomalies 

it is consistent only in D=10 [7], From now on we shall always work in 

the critical space-time dimension D=10. 

The superspace formulation of the theory has very important poten­

tial advantages in the study of the conceptual foundations of the theory 

and of its implications. 

Unfortunately, these advantages could not be exploited until recently 

because of severe problems in quantizing this theory. 

indeed, the conditions for the application of the covariant Faddeev-

Popov procedure in the Lagrangian formalism do not hold for the GS su­

perstring since its local symmetries do not form a Lie group. Thus, one 

has to return to the techniques of canonical Hamiltonian quantization. 

The heart of the passage to the Hamiltonian formulation consists in 

the introduction of conjugate momenta to the coordinates parametrizing 

the Lagrangian L(q,q): 

= SL^qil (2 5) 

bqi 

For nonsingular systems, one can then eliminate the variables </,- by 

expressing them as functions of ?,-, p, from the system (2.5). 
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However, if the system (2.5)is singular [36] i.e.: 

(as the GS superstring happens to be) this elimination cannot be effec­

tuated and two types of situations can arise which can be epitomized by 

their simplest cases: 

case 1 : pi = 0 for some i in (2.5) (2-6) 

case 2 : Pi ~ qi for some i in (2.5) ; with p and q grassmanian. 

(2.7) 

In both cases, since <jj does not appear, it cannot be eliminated. The 

equations (2.6)and (2.7)are the simplest examples of first and respectively 

second class constraints [36]. Given a constraint system, the precise defi­

nitions are: 

1) A subset of constraints is first class if their Poisson brackets (PB) with 

any constraint of the system are 0 modulo the constraints of the system 

l^.e. "on the constraints shell"). 

2) A subset of constraints is second class if the matrix formed by the 

Poisson brackets among its elements is nonsingular on the constraints 

shell. 

It turns out that any set of constraints can be reduced to the form 

(2.6)and/or (2.7)by appropriate canonical coordinate transformations 

(which however break in general the space-time locality and the global 

symmetries of the problem). 

The GS superstring has constraints of both classes. 

In order to concentrate on the essentials we will explain this on the 

example of the D=10, N = l BS superparticle [8] where the formulae are 

simpler. 
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The BS action in the Hamiltonian formalism is: 

S-- jdT \pvdrx" +pfdT0a - HT] 

HT = Ap2 + XaD
a 

(2.8) 

(2.9) 

In (2.8) , 0a is a left-handed D=10 MW spinor*, A and AQ are Lagrange 

multipliers, and the fermionic constraint Da reads: 

(2.10) D" a -ip%- ^00 

The system (2.5)is therefore: 

Pi = i £a% 

with 

P2 = 0 

(2.11) 

(2.12) 

In a particular frame: p = (p + ,0 ,0 ,p~ = 0), and using a noncovariant 

separation of the D=10 MW spinors 9a (and also pg) into two SO(8) (s) 

and (c) spinors 0+, 0£, (2.11)reduces indeed to a mixture of equations of 

the form (2.6)and (2.7): 

(2.13) 
'pi 
Pe 

—i 
Pe. 

'V2p+ 0" 

0 0 

= 
'V2p+0+ 

0 

'0+ 

0-

(2.14) 

* see Appendix A for our spinor conventions. 
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which on components reads: 

-tpj" = V2p+8+ (2.15) 

Pfl- = 0 (2.16) 

The first line is now explicitly of class 2 (cf. eq. (2.7)) while the second 

line is explicitly of class 1 (cf. (2.6)). 

In order to carry out the quantization procedure, one has to deal 

separately with the first and second class constraints. In the technical jar­

gon the system of constraints has to be reduced to a covariant, first class 

and BFV-irreducible one [22]. 

However, since (2.10)is an irreducible Lorentz expression (a MW 

spinor), any separation of the type (2.15)-(2.16)has to break the Lorentz 

invariance. 

This was for years the puzzle of covariant quantization of the GS su-

perstring (and the BS superparticle): the spinor objects relevant for the 

quantization procedure are too small to fit into a spinor representation 

of the Lorentz group. In fact the structure of the constraints requires ob­

jects which transform under the group SO(8) x SO(l,l). 

The solution of the problem lies in an analogy with the vielbein for­

malism of general relativity. Using vielbein-like objects we reduced the 

GS superstring to a system whose constraints were covariant, first class, 

and BFV-irreducible [13-15]. The covariant BFV-BRST quantization of 

the system is then straightforward. 

Let us now comment on the importance of BFV-irreducibility 

[22] requirement which was often underestimated. Indeed, the BFV-

irreducibility is crucial [37,38,39] for the success of the super-Poincare 

covariant BFV quantization of the GS and BS systems. The BFV-

irreducibility means the functional independence of the constraints. The 
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entire puzzle of the covariant quantization of the GS and BS systems can 

be formulated as a clash between the concept of irreducibility of Lorentz 

group representations and the concept of BFV-irreducibility of constraint 

systems. If part of the constraints of a system are dependent, the BFV 

procedure requires the introduction of additional ghosts. In particular, it 

was repeatedly tried [40,38] to quantize the system by expressing the 8 

first class constraints (2.16)covariantly in terms of a 16 component MW 

spinor. This lead into trouble because 8 of the 16 components have to be 

dependent. Then, the correct quantization procedure requires the intro­

duction of 8 (second generation) ghosts which will again raise the problem 

of expressing covariantly 8 component objects. One can again try to do it 

by introducing 16 (second generation) ghosts related by 16 (second gen­

eration) constraints out of which only 8 constraints are independent. 

However the other 8 (dependent) constraints will again require 8 (third 

generation) ghosts and so on. The procedure never <?nds unless at some 

stage one imposes directly and irreducibly 8 independent constraints [38] 

which however are bound to break Lorentz invariance. In [38] the Lorentz 

invariance is broken through the introduction of two fixed light-like vec­

tors N and M which are not dynamical variables. Even though it can be 

formally shown that the physics dots not depend of the direction of the 

two fixed vectors N, M, their presence is no less a breaking of the explicit 

Lorentz invariance than the imposition of the light-cone gauge.There too 

one can show formally that the physics remains Lorentz invariant in criti­

cal dimensions. 

Let us now return to our fundamental vielbein-like construction. 

To better understand it, let us first see what is the role of the vielbein 

variables in general relativity and then we will explain the role of the 

vielbein-like variables in our formalism. In general relativity, the viel-

beins are introduced to solve the following problem (see e.g. [41] ). One 

cannot introduce spinors as representations of t t e general coordinate 
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reparametrization group. The relevant objects (vector fields etc.) trans­

form as: 

V(x) -* V * ( * 0 = § £ v ( * ) (2.17) 

where the matrix f££ belongs to the GL(N, R) group. The GL{N, R) 

group (2.17)does not have spinor representations. 

However, spinors are representations of the SO(N) group which is a 

subgroup of GL{N, R). 

In order to express objects transforming under SO(N) without 

breaking the GL(N, R) invariance, one introduces some auxiliary vari­

ables: the vielbeins. 

As by-product of conceptual value, the vielbeins constitute an ex­

plicit realization of the principle of equivalence which is the underly­

ing feature of the general relativity. Indeed, introducing the vielbeins 

is in fact defining at each point in space time an arbitrary orthonormal 

Lorentz frame. The equivalence principle requires that the physics is 

independent of the particular orientation of the Lorentz-frame in each 

point. 

This requirement is realized by choosing the appearance of the viel­

beins in the Lagrangian in such a way that the physics is not modified. 

Mathematically, these properties are expressed as follows: The viel­

beins have N-valued GL(N, R). indices fi which identify them as space-

time vectors and N-valued indices a which index them as the elements of 

a basis. The fact that the basis is orthonormal is expressed by: 

e^0e'i6 = »?o6 (2.18) 

(where rfab = diag{-, +. . .+)) . 

The principle of equivalence is realized by requiring that the physical 

quantities are invariant under the rotations of the local orthonormal ba-
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sis. In other words, the theory possesses a local SO(N) invariance acting 

on the internal indices a. 

The presence of the vielbeins allows now to express objects covariant 

under SO(N) but not under GL(N, R) in a way in which GL(N, R) is 

not broken. 

For instance a spinor transforms as: 

i/>(x) —> A.(x)ip(x) 

where A is an SO(N) matrix written in the spinor representation. Also a 

GL(N, R) vector can be expressed in terms of N GL(N, R) scalars orga­

nized as an SO(N) vector: 

V" = cJV" (2.19) 

Let us now see how these ideas apply to our case. We want to be 

able to express objects transforming as spinors of SO(8) without breaking 

the 5 0 ( 1 , 9 ) Lorentz symmetry of the system . 

To this end we introduce the auxiliary variables [10-15]: 

u^Va* (2.20) 

where the indices //, a transform as vector and MW-spinor under the 

global Lorentz 5 0 ( 1 , 9 ) respectively, while the indices a , ± j transform 

respectively under the internal groups 5 0 ( 8 ) and 5 0 ( 1 , 1 ) . These aux­

iliary variables will act as "spinorial vielbeins" bridging covariantly be­

tween 5 0 ( 1 , 9 ) and 5 0 ( 8 ) spinor objects. Due to the remarkable triality 

properties of 5 0 ( 8 ) , the indices a can be chosen to transform in any of 

the fundamental (s),(c),(v) representations of 50 (8 ) . 
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The orthogonality relations analogous to (2.18)are: 

u^ub" = Cab 

[v? V ) a " » £ * K = 0 (2.21) 

[vtH",'r^)[^h^VSv-s'] = -1 

In the first line of (2.21) Cab denotes the invariant metric tensor in the 
relevant 50(8) representation space (see appendix A). 

In the sequel the following two light-like vectors u* will appear, 

which are composite variables built out of the elementary variables va ': 

«J = vt * ( a „ ) ^ * (2.22) 

This construction automatically encodes the light-like geometrical charac­
ter of u j which is due to the D=10 Fierz identity (1.1). There are indica­
tions that this fact has deep relations with the twistor light-like geometry 
of space-time [42,33,34]. Henceforth , we shall use the shorthand nota­
tions: 

u* as in (2.22) 

A" = u^A" ; o-0l"a- = u2'1...M«;<T
[",...o-'i"l (2.23) 

for any Lorentz vector A11. Let us particularly stress that A^jA" are 
Lorentz scalars and they should not be confused with the vector compo­
nents of A11 which appear in the non-covariant light-cone formalism. 
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The gauge invariances insuring that the introduction of the vielbein-
like variables u, v does not affect the physics are expressed in the Hamil-
tonian formalism by the first class constraints: 

D"> s ui-JL _ u* ^ + hv+ia°b-JL + v-io°b-?-r) (2.24) 

D - +
S i ( » i * 4 r - " - * - £ r ) (2-25) 

1 dvt% dva* 

. + Lv*ia±a° - (2.26) 
" du„a 2 dv*k 

They express the fact (analogous to the principle of equivalence) that the 
physics is invariant under arbitrary rotations of the "vielbein-like" frame 
(u°,uj). The operators (2.24)-(2.26)represent indeed the SO(l,9) alge­
bra under commutation: 

[Dab, Dcd] = CbcDad - CacDM + CadDbc - CbdDac 

[Dab, D±c] = CbcD±a - CacD±b ; [Dah, D~+] = 0 

[Z>-+, D±a] = ±D±a (2.27) 

[D+a,D~b] = CabD~+ + Dab 

Prom (2.27)one immediately recognizes Dab, D~+ as generators of 

50(8) x SO(l, 1) whereas D±a are recognized as the coset generators 

corresponding to safrff&Sli.i)1 
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The second important requirement is the requirement about the 
specific dependence of the wave functions <t>(x, 0, u, v) on the auxiliary 
variables u j , va ' . The representation space Ho of the quantum algebra 
(2.27)is spanned by definition by functions of the following general form 
(here 0 is taken in the momentum space representation with respect to 
x): 

«M,«,«)= E ( $ ) - ( ^ ) ( ^ ) - ( 5 ) * « H " } C P . « . « . « ) (2-28) 

(recall p± = v^i /rv^i), where *£/ axe defined by the following 

specific expansion in the auxiliary variables u,v (recall (2.22)): 

(2.29) 
The expansion (2.29)is characterized by the fact that each term is a 
monomial in the auxiliary variables in which all the 50(8) x 50(1,1) 
indices are saturated among the u°'s and the only, whereas the 

coefficients * H „ „ (p, 5) are arbitrary ordinary superfields inert 
under the 50(8) x 50(1,1) internal group, i.e. they do not carry any 
50(8) x 50(1,1) indices. In order to have the terms of the expansion 
(2.28)all independent, the coefficient superfields have to be symmetric in 
the indices {A} and {u} : 

•ii"*'-"*'--}{,'}(p,«,ut«) = •li"*'™*'-™M",CM,«,iO 

^"-" '•••• ' ' ••••W.ti . tO = •J*>t--"*-^-->(p,tf,„,w) (2.30) 
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the homogenous space ^Vgw^tVi is instead of being a function on the 
original space C defined by the kinematical constraints (2.21)on va ' , u j . 
Hence the functions of the form (2.28)will be called harmonic super-
fields whereas the functions (2.29)will be called analytic harmonic su­
perfields (because of their analytic dependence on va

 a , uj). This also 
justifies the name "harmonic" for the auxiliary variables w„' ,uj which 
effectively enter the present formalism through SMS\^S6(I I)- Analytic 
harmonic superfields were first introduced in a different context in [31]. 

Let us point out, that the harmonic superfields (2.28)(2.29) are also 
characterized by the fact that they do not carry external overall SO(B) x 
SO(l, 1) indices (hence the subscript o in the notation Wo of their space). 
In section 3 we shall introduce more general harmonic superfields bearing 
external SO(8) x SO(l,1) indices which are simply expressed in terms of 
the fields (2.28),(2.29)(see also Appendix C). 

Now, one can easily deduce (cf. [11]), that the Dirac constraint equa­
tions: 

(D"6, D-+, D+a, £>—)* = 0 (2.36) 

on the space W0 (2.28),(2.29)imply (in the notations of (2.28),(2.29)): 

*oooo(p, ff) = arbitrary, 

0MMMW (pj) = 0 j (fc>,, m i n ) f (o, o, 0,0) ( 2 - 3 ? ) 

i.e. the Dirac first-class constraints (2.24)-(2.26)together with the spec­
ification (2.28),(2.29)of the representation space Ti0 imply that uj ,w„ ' 
are pure gauge degrees of freedom. A simple explanation of this property 
is that the harmonic superfields from Wo (2.28),(2.29) depend only on 45 
independent combinations of harmonic variables : u°, «* 

• The 100 harmonic combinations u£, u;f are subject to 55 kinematical constraints 
(cf. [46]): uju*" = C 4 , u»u±f = 0, (u*) a = 0, u+ti-» = - 1 
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which exactly matches the number of equations (2.36). 

The restriction of the quantum states of the harmonic formalism 

*(p, 6, u, v) to the form (2.28),(2.29), i.e. to the space Ho is crucial. It 

is this restriction which substitutes within the harmonic formalism for the 

"missing" 

14 gauge invariances = 

59 {the number of independent u ° , va
 3 from (2.21) ) 

- 45 (the number of Dah,D-+,D±a) 

which would b e necessary to gauge away completely all the u j ' s and the 

va *'s if the wave functions * were allowed to depend arbitrarily on the 

u j ' s and the «J* ' s : 

{/•}{«>{« (2.38) 

x *!*Z-k)M{a}m(p,o) . 
Overlooking the crucial difference between the naive wave func­

tions (2.38)and the relevant space Ho of quantum states defined by 

(2.28),(2.29)lead to a statement in a recent paper by Kallosh and Rah-

manov [35] claiming the "non-unitarity" of our formalism. The above 

explanation, and the discussion in Appendix C below, shows that their 

claim is not correct. 

From the constraint algebra (2.27)one easily deduces the action de­

scribing the pure-gauge "dynamics" of of the system of harmonic vari­

ables u ° ,D a * : 

Sharmomc = j dr\p^dTV,l + Pv '"0Tvt* +pt^"dTvZ^ 

- kabD
ah - A + - Z T + - \:D+a - A + D - ] 

Because of the kinematical constraints on (u, v) (2.21), their respec-
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tive conjugate momenta are similarly kinematically constrained: 

P ^ l f f " ! ) * * = 0 (2.40) 

v+sP;±a+vMia = o 
In (2.39)Aa(,,..., AJ denote Lagrange multipliers for the correspond­

ing first-class constraints Dab, ...,D~a which are the classical counterparts 

of the harmonic differential operators (2.24)-(2.26)and, therefore all con­

straints are first class. 

The classical analog of the requirements (2.28),(2.29)on the repre­

sentation space Ho of quantum states is the requirement on the form of 

the classical "observables" [11]. The latter are not arbitrary functions of 

(u, v) and their conjugate momenta (p„,p„), but are given as expansions 

in (u,v;pv,pv) where all internal SO(8) x 5 0 ( 1 , 1 ) are saturated among 

«) v,Pu,Pv and, therefore the corresponding coefficients do not cany any 

5 0 ( 8 ) x SO(l , 1) indices. 

The BRST charge corresponding to (2.24)-(2.26)reads: 

9% "I" "1>><t "tad 
. +-rr . -+ + # - 9 . (2.41) 

OTjJ drja 

where 

Va6,V+-,Tl+a,r,-<> (2.42) 
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are the ghosts corresponding to the constraints 

Dah,D-+,D—,D+a. (2.43) 

Let us now see how the presence of the auxiliary variables allows us 

to express separately the first and second class constraints [11]. 

Given the constraints (2.10), and using the vielbein-like harmonic 

variables (2.21) we can express the 16-component 10 D MW spinor con­

straint (2.10): 

D" = -ip%- p a % 

in terms of 2 sets of 8 Lorentz scalars (organized as two SO(8) spinors): 

G+i" = " i ^ K r V " ' " ) ^ (2.44) 

£>+*« = vav+i^)a0 faff, (2.45) 

The projectors in front of D~< are chosen such that the Lorentz indices are 

saturated. In particular one sees that without the v,s it is impossible to 

saturate the Lorentz-spinor indices. However va
 2 together with {c^)"13 

can convert a spinor index p into a vector index M which is then saturated 

with an u j . The role of a+ (cf. (2.23), + is an internal SO(l , l ) index 

which is inert under Lorentz transformations) in (2.44)is to appropriately 

rise a spinor index. The role of jp in (2.45)is to make D+^a first class. 

It turns out that indeed G + i ° constitute 8 second class constraints 

(i.e. the matrix of their Poisson brackets 

{G+h°,G+±b}PB = ip+Cab (2.46) 
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is nonsingular) while (2.45)are first class (i.e.: 

{D+ia,D+ib}PB = -2i(p+)p2 ( = 0 modulo constraints)). (2.47) 

In turn Da can be reconstructed out of Da
 2 and G<, ' '• 

Da = (p+)-1(ebv+±)aD^ + {p^)~\^(jbv-i)aG^ (2.48) 

Once the covariant separation of the constraints is effectuated, one can 

use a trick invented in [43,44] to transform the second class constraints 

G + 2 a (2.44) into first class constraints G + 2° without changing the physi­

cal content of the constrained system by introducing auxiliary dynamical 

real fermionic variables $ ° [13,14] with transformation properties'* and 

Poisson Brackets similar to the second class constraints which they con­

vert into first class ones: 

G+* a = G + i " + v /£+#° (2.49) 

{*", Vb}PB = -iCab (2.50) 

One can then use the decomposition (2.48)to reconstruct [13,14] the 

Lorentz MW-spinor first-class constraint Da out of the first class con­

straints D+ia (2.45) and G+i° (2.49): 

D° = (P+nv«+*)°.D+* + (p+r1u><r+*bv-irGti
 (2 51) 

= Da + (p+)-lU>o+(Tav-i)aya 

The introduction of the auxiliary fermionic variables >P° (2.50) into 

(2.51) necessitates the simultaneous modification of the harmonic first 

+ In some special cases [34] the Faddeev-Shatashvili trick works even when separa­
tion is not possible. However, the auxiliary vielbein-like variables u, v are always 
necessary. It turns out that they are related with certain twistor-like D=10 objects 
[34] 

** The *'s are related to the grassman-odd components of certain supertwistors [34] 
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class constraints (2.24)- (2.26): 

jjab _ , ffab = Dab + Rab^ y <ft) 

D— — £>— = D~b - Z±Rab, (2.53) 

with D~+,D+a remaining the same, where: 

#>» = hsab)cd9
c^d (2.54) 

(Sab)cd = l(rbU = lv-ioc<T°b<r+odv-l (2.55) 

The 8 x 8 matrices Sab (2.55)are precisely the D=10 Lorentz-invariant 

generators of the harmonic SO(8) (c)-spinor representation (see Appendix 

B). 

Also one can easily check, using the explicit expression (2.54)and the 

anticommutation (upon quantization) relations (2.50), that: 

[ftab, Rcd] = CbcRad - CCR'"' + C°dRbc - CbdRac (2.56) 

[D°b, Rcd] = 0 (2.57) 

Thus, both parts Dab (2.24)and Rab (2.54)in the modified first-class con­

straint Dab (2.52)(generating once again the 5 0 ( 8 ) algebra (2.27)under 

commutation) may be interpreted as harmonic "orbital" and harmonic 

"spin" SO(8) rotations respectively. The implications of these will be 

elab rated upon in Section 3 (see also Appendix C). 
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The modifications (2.52), (2.53)are needed in order to preserve the 
first-class property of the new system of covariant and irreducible con­
straints: 

p2, J9a(2.51), Z>°6(2.52), £T+, JD+a, £»-°(2.53), (2.58) 

{D°,D0}PB = [i&!L]l? (2.59) 

{D-\ b-"}PB = [ij£j[&' V (2-60) 

{£)-", t^po = [ - J (p + ) - i ( < T + a-*«- i r* 6 b 2 (2-61) 

i{D+a, b-b}PB = Co6£>-+ + Z>a6 (2.62) 

all remaining PB relations being unaltered. 
Thus we arrive at the harmonic BS action [14]: 

&auperparticle = &BS + ^harmonic (2.63) 

SBS = / rfr[p^9Ti" + p%dTOa + MadT9a - Ap2 - AaD
a) (2.64) 

5*Brmo».-C = J dT^drU^+pZ^drV^ +pti°'drVai 

- Aabb
ab - A+-D-+ - A~D+a - A+£»-°] 

(2.65) 

The new action (2.63)-(2.65)is physically equivalent to the original BS ac­
tion (2.8), however, it possesses the decisive advantage of having super-
Poincare covariant and irreducible first-class constraints only (2.58)-
(2.62). Thus, the super-Poincaxe covariant canonical quantization of the 
BS superparticle (either a la Dirac or in the BFV-BRST formalism) is 
now straightforward (see Sections 3 and 4). 
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Let us particularly stress, that all first-class constraints (2.58) and 

the auxiliary fermionic variables #„ (2.50) are all real. Therefore, the 

harmonic BS-action (2.63)-(2.65) is real too. The harmonic BS and GS 

actions in [13-15,34] are also real. This is to be contrasted with our ini­

tial choice of a set of BFV-irreducible first-class constraints in the very 

first paper on the harmonic superstring program [11]. There, we have 

used the special constraint structure of the N=2 BS superparticle to form 

ho lomorph ic (rather then real) first-class combinations out of the two 

available fermionic constraints D%, A = 1,2. Thereby we escaped the 

necessity to introduce the auxiliary fermionic variables <P„ [13-15] through 

the Faddeev-Shatashvili trick [43]. 

The harmonic super-string action in the hamiltonian formulation is a 

generalization of the above harmonic BS action (2.63)-(2.65) [13-15]: 

S = SGS + Sharmanic (2.66) 

SGS= fdr f dtfcdrX" + Y, ( P ? ^ ^ a + < * ^ . * x . ) 
Aml* (2.67) 

- £ (AAf4 + A4a£>X)] 
A=l,2 

The main characteristics of this harmonic superstring action 

(2.66)(2.67)are: 

1) it contains the harmonic space variables va
 2, u° ; 

2) it contains new fermionic string variables *Jt(£); 

In references [12,35] the action is also not real because the constraints E+I in 
[12] (identical with F , , + in [35]) are holomorphic and their complex conjugates E~' 
were not included in the action. However, this is not a drawback of refs. [11,12,35] 
since it is perfectly consistent to quantize in the canonical Dirac formalism systems 
with holomorphic (instead of real) first-class constraints (see [50] and appendix C 
of [11]). The corresponding procedure is called the Gupta-Bleuler quantization. 
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3) all its constraints are first class and irreducible; 
4) the space-time supersymmetry is realized linearly; 
5) it possesses a larger set of gauge invaxiances and it reduces,in a partic­
ular gauge, to the original GS action. 

The term Sharmonic in (2.66)has precisely the same form as 
Sharmonic (2.39)with the constraints Dab, D~" appropriately modified due 
to the introduction of * ^ ( 0 (cf (2.52)(2.53)). Accordingly, the new first 
class, independent and covariant system of constraints is more compli­
cated [15]. The constraints generalizing the harmonic constraints (2.24)-
(2.26)are: 

D - + S ! ( « + * - * „ ; ; * * : ) (2.68) 
2 dvP dvZ* 

•K 

jjab s Dab + ^ f (%&£, (2.70) 

•K 

(2-71) 

A 

where (cf. (2.54)): 

!($ = \(§*Un*A (2-72) 

{ « A ( 0 , *"B(V)}PB = -MABC*6(£ - i?) (cf. (2.50)), (2.73) 

and Sab is the same as in (2.55)(cf. appendix B). The bosonic constraints 
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generalizing p2 are: 

fA«) s 1$ - ii(-l)A0'AaDA + 2i(-l)A*A(WAa(0, (2-74) 

with the notation: 

n ^ = P» + (-1)A[X'" + 2i«yt<7"^] . (2.75) 

The fermionic constraints (2.51)are generalized by: 

b%(0 = D%(O - z(-i)*(n+r V v + ^ r ^ c 
+ (nATi(PA*+°bv-iriiAk, 

(2.76) 

where DA is the mixture of first and second class constraints appearing in 
the original GS formulation [7]: 

Da
A = -ip?A - [P" + (-1)A(X'» + i0A°"9'A)](°jAr • 

The PB algebra of these covariant, first class, BFV-irreducible constraints 
(2.68)-(2.71),(2.73),(2.75) is: 

{TA(0,TB(V)}PB = 8(- 1)A6AB[TA(0^ ~V) + ̂ i t t W * " •»)]; (2-77) 

{fU(0,6g(r,)}PB = 4(-l)A6ABDA(t)«'(( - ij) ; (2.78) 

0 5 ( 0 , A|(I»)}PJI = i W K - 7?)(<r+)Q'3(n+(0)-In>i(0; (2.79) 

-i{b-\b-b}PB = Y, f ^(n^fi^n^O; (2.w) 



i{bah,b-c}PB = C*CD-° - cacb-b, 

i{bab, bcd}pB = cbcbad - ccbbd + cadbbc - cMbac, 

i{Dab, D+c}pB = CbcD+a - CacD+b , {Dab, D-+}PB = 0; (2.81) 

i{£r+ ,D+0}pB = +D+0, 

i{D-+,b-a}PB = -b-*; (2.82) 

i{D+a, b-"}pB = CabD-+ + bab; (2.83) 

{ £ - , bA(0)PB = - ^ ( O r ^ + ^ - l j - f f ^ c o n A K ) . (2.84) 

where the following notation is used: 

UA = fA + 4i(-l)A6'AabA (2.85) 

The information of the constraint algebra (2.77)-(2.84) is encoded in 

the BRST charge [15]: 

QBRST = Q harmonic + Qttring I (2.86) 
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^harmonic = iT>ab0ab + V+"-£r - »? + 6 -^T 

8 a + r>~°^=- f 3=3 + »?5£- - % 3i?| aVo- ' d e » ; M •,ddrla, 

dv+ ft;" 

+ \ £ / ^(nj)-2(»;+6^a6 - i(n+) W + ^ M T * ) ^ ) 

( ^ + 4 i ( - 1 } ^ ^ 
(2.87) 

1T 

Q„™„ = ̂  j dt{cA[tA - 4»(-l) V A ^ J + X'Aa^)] 

+ XA«DA + (2Tl+
A)-HxAC+XA)[^r + 4i(-l)A0'AaT^-]}. 

0CA °XAa 

(2.88) 
The ghosts appearing in (2.87)-(2.88)correspond to the following con­
straints: 

ghost constraint ' 

CA(S) fA(S) 

W O D%(S) 

Vab Dab (2.89) 

«7+- D~+ 

T)-a D+a 

n+a D~a 

In [15] it was shown that using the harmonic superstring formula­
tion ia the dual model framework, one obtains covariant vertices for the 
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emission of masslesR states which represent the D=10 SYM multiplet: 

VS(C; *) = Ca(fcX(P+; »)p»» - £-P+]eikX; (2.90) 

VF(F;k) = -i(P+)-H*d(.-ra)
cdF+i)gtf(V+-,9)[Pb-!g:V+)eikx, 

(2.91) 
with the notations: 

*>"«)« **•«)-**(€) = 4 - £ <e** (2.92) 

PB = cosh(M I), 

gF = (M-i)s»n/»(Af*); (2.93) 

where M = (Af") is a matrix with elements: 

Mab = 2k+(V+)-1it'b, 

Ma- _ 2(p+)-1#"!fcc = - A T 0 , (2.94) 

Using these vertices we have shown that one recovers in a covariant way 
the four-point scattering amplitudes: 

A» = Kinematical factor (&, &i; &,Afe; Cs> *s;C<> *4)/i armontc scalar 

r(-f)r(-|) 
x i f i 

5 — 5; 
(2.95) 

ff l-I-*)' -

These vertices were computed in a Lorentz-covariant gauge in which the 
supersymmetry is explicit but partly nonlinear. Loop computations and 
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vertices with linearly realized supersymmetry will be presented elsewhere. 
In the the sequel it is the field-theory formalism which will occupy our 
attention. 

We conclude this section with the following remarks concerning the 
extension [35] of the harmonic superstring program [10-15] to the the la-
grangian formalism. This important development might allow for the ap­
plication of the powerful methods of the two dimensional conformal field 
theory to the covariantly quantized GS superstring. 

Since in the present formalism the harmonic variables ujj, ua * do not 
depend on the string world-sheet coordinate £, the action Sharmonic in 
(2.66)does not possess manifest reparametrization invariance. 

However, as already explained in refs. [10-12], the harmonics va ' , u°, 
whose dynamics is described by the action Sharmonic (2.39), are pure-
gauge degrees of freedom and, therefore, their independence on the world-
sheet parameter ( does not spoil the reparametrization invariance of the 
physical superstring dynamics described by (2.67). In fact, in the hamil-
tonian framework (in which we always work) the reparametrization invari­
ance is accounted for by the presence of the first-class constraints TA(£) 
(2.74), satisfying the correct Virasoro algebra (2.77). Therefore, there 
is no breaking of reparametrization invariance in the present canonical 
hamiltonian formalism. 

Moreover, as stressed in [15,34] nothing prevents us from taking the 
harmonic auxiliary variables v, u to depend also on £ by a straightforward 
generalization of (2.39),(2.68)-(2.71). In the latter case, however, the ex­
pressions for the modified superstring constraints TA (2.74), D% (2.76)and 
the PB algebra (2.77)-(2.84)become more complicated. 

Actually, if we delete the fermionic string variables *^ from the har­
monic GS action (2.66) ,(2.67) and work instead (as in our original ref. 
[10] ) with the civariantly disentangled first class 
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D+Ja = v+ia" flADA 

and second class 

constraints, then it is possible to rewrite Sharm0nic (2.39)in a manifestly 

reparametrization invariant form by promoting va *, uj to depend also on 

t [35]. 
The set of auxiliary variables used in ref. [35] exactly corresponds to 

the harmonic variables (2.21 introduced in [10-15] while the constraints in 

[35] are identical to a subset of the harmonic constraints in [12]*. 

Actually, using the auxiliary variables vAa, xi% introduced in [37], one 

can construct a simpler manifestly reparametrization invariant harmonic 

GS action. Here the symbols 

A = (a,a) , B = (b,b) , a,b,a,b= 1,...,8 

label pairs of Lorentz-invariant internal 5 0 ( 8 ) (s) and (c) -spinor indices. 

The explicit form of 5auxiitary entering the modified GS action 

SGs = SGs (eq. (2.3)) + Sauxuiary (2.96) 

• The harmonic variables used by Kallosh and Rahmanov in [35] va *,u*,ujj, (k,k 
= 1,...,4) correspond to the harmonic variables va *,uJ,u>J,iS*, (k,k = 1,...,4) of 
ref. [121 through the relation «* = IBJJUJ , uj = fiijuj. The sets of harmonic con­
straints {H), {F}, {K} in [35) correspond to {D-+(eq.(2.25)above),E'J,E+-}, 
[D+a{eq.(2.26)),E+'}, { ( i w + J a " ' - ^ ) parr of C°*(e9.(2.24))} of [12]. Here 

E*J', E+~, E+1 are the "second generation" harmonic constraints involving tw*,ti>* 
which helped us in [12| to reduce covariantly SO(8) to SJ7(4) x U(l). 
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reads: 

Sauxiliary = J MtV^ffiiAv* + ( p £ ) , & i £ 

-tfe*AB-\lB(VAB)z} 
(2.97) 

where VAB and VAB [37]: 

*^fi(r, 0 s vAa(r, OSg(r, 0 - «AB = 0 (2.98) 

(Z>XB)* S tua(pS)* - v%(pBah (2.99) 

are 2 x 256 Lorentz-covariant and functionally independent Dirac first-
class constraints, responsible for the pure-gauge nature of the 2 x 256 
auxiliary variables vAa,v^. 

In (2.97)(2.99)2, z denote (anti)self-dual world-sheet indices defined 

through the 2 dimensional world-sheet (anti)self-duality projectors ( e.g. 

[1]): 

1 enm 

P2m = Ugmn - i 4 = ) = e?e™ 
2 V-9 

where e"j are world-sheet zweibeins corresponding to the world-sheet 

metric gmn. Then: 

W).=«;(PS)- . «"(i»5)-=o 

and similarly for /ij.f. 

37 



With the help of the auxiliary dynamical variables (vA, SJJ), we can 
now express the fermionic K-gauge invariance of S (2.96)in a Lorentz-
covaxiant and irreducible way: 

sKea = i{jis)a0v^i (2.100) 

where the gauge parameter na
z has only 8 (and therefore - independent) 

Lorentz invariant components . 

One can continue covariantly the quantization procedure in the La-
grangian formalism by imposing covariant gauge-fixing condition for the 
irreducible K-gauge symmetry (2.94) (cf. [45]): 

X. = v28a = 0 (2.101) 

The corresponding gauge fixing in the hamiltonian formalism was used in 
[15] in the process of constructing the covariant vertices (2.90), (2.91). 

By further imposing the gauge conditions [35]: 

\AB _ AB _ 0 

one may obtain a gauge fixed action of the form: 

SGs\,..,.,i..i - SGS\„=0 + 5«UX,-K«n,|(„i.0 + ( ghost terms) (2.102) 

Let us emphasize that (2.102) is not manifestly super-Poincare in­
variant since the gauge fixing condition (2.101) apparently breaks half of 
the space-time SUSY. Consequently, the supersymmetry algebra becomes 
nonlinearly realized as in the non-covariant light-cone formalism (see e.g. 

[!])• 

* Recall a = 1, ...,8 which is the correct number of independent K-gauge symmetries 
(cf. [9|). 
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Constructing systems as (2.96)-(2.99)or [35] in which the number of 
new constraints equals the number of new auxiliary variables is not diffi­
cult [37,34] and it is esthetically appealing but it is not a necessary con­
dition for the consistency of the model. This was already shown in [11] 
for our case and it is well known in general from the harmonic superspace 
approach [31,46]. Namely, the "missing" gauge symmetries are substi­
tuted in the harmonic superspace approach by the requirement for spe­
cific dependence of the superfields on the auxiliary variables (2.28)-(2.35). 
For additional details, see the appendix C. 

The Lagrangian formulations of the type (2.96)are useful if one 
wants to quantize covariantly the GS superstring within the Lagrangian 
functional-integral approach [47]. However, for our main objective: an ex­
plicitly space-time supersymmetric superstring quantum field theory, it is 
preferable to use (as we do in the present work) the hamiltonian formal­
ism and a set of variables which are strongly confined on the harmonic 
constraint shell (2.21). 

Moreover using at this stage the Lagrangian formalism might prove 
treacherous since the gauge invariances of the GS superstring, even after 
their covariant disentangling with the help of the auxiliary variables, still 
do not form a Lie group. The corresponding Lagrangian formalism for 
constrained systems with an open constraint algebra [48,49] is not guar­
anteed to be unitary (as explained in detail in [49]), while in the hamilto-
nian BFV formalism unitarity is guaranteed by well established theorems 
[22]. 

* Using such systems, in which the auxiliary variables are not strongly constrained 
by equations of the type (2.21),(2.40), one obtained interesting relations between 
supersymmetric particles, twistors and higher N SYM in 4 dimensions [34] 
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3. 

3. Super-Poincare Covariant Quantization a la Dirac of the 

B S superparticle 

Before entering in the details of the construction of our gauge covari­

ant and manifestly super-Poincare covariant field theory for D=10 SYM, 

we discuss the first quantized theory of the zero-mode (point-particle) 

limit of the GS superstring, i.e. the (N=l ) BS superparticle. 

In the present section we describe the super-Poincare covariant first 

quantization of the latter in the Dirac canonical formalism. 

The resulting first quantized system will consist in a overdetermined 

set of linear Dirac constraint equations which are independent and in in­

volution. This is insured by the existence of a super-Poincare covariant 

nilpotent BRST charge QQ of the BS superparticle - the point particle 

limit of QBRST (2.86-2.89). 

In section 5, we will establish the equivalence between our Dirac sys­

tem and the free D=10 SYM superfield equations (the linearized Nilsson 

constraint equations). 

To first quantize the system means to promote the classical variables 

to quantum operators and endow them with an (anti-)commutation al­

gebra determined by the Poisson algebra of the respective classical vari­

ables. 

One then finds a linear space which supports a faithful and irre­

ducible representation of this algebra. The elements of this space are in­

terpreted as the states of the quantum system. 

The physical states of the D=10 N = l BS superparticle are the ones 

which fulfill the Dirac constraint equations (as it will be explained be­

low, they are matrix equations for a vector-valued * in ou- representation 

space) 

p 2 * = 0 (3.1) 

40 
t 



Da<t> = [Da + - ^ = ( ^ 7 + < r 6 u - i ) * f c l * = 0 

+ V ^ z J r + --^fc^r) + ̂ >=o, 

(3.2) 

(3.3) 

£>-+0= \(yth-^-r -vJ-^-T)0 = O (3.4) 

' du„a 2 a„-

(3.6) 

where: 

jj°6 = hrk)cd*c*d (3.7) 
4 

and the linear operators of the left hand side of (3.1)-(3.6)are the quan­
tized first class constraints (2.58). 

In passing to second quantization one reinterprets the quantum 
states as classical fields, and the constraint equation (3.1)-(3.6)as the free 
field equations (recall that the superparticle hamiltonian is weakly zero). 

There are two main ways to represent the quantum algebra associ­
ated with a Poisson-bracket algebra: 
1) through matrices- in this case the states are represented by the vectors 
on which the matrices act. 
2) through functions depending on a maximal set of commuting variables 
on which the operators corresponding to the other variables act as dif­
ferentiations. Way 2) is universally applicable while way 1) is useful for 
grassman-odd variables. 
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In our case we will use a matrix representation with respect to 
9" and a functional representation with respect to the other variables 
z = (x^,9a,uj|, va *). It is more convenient to use the matrix representa­
tion with respect to * a rather than the functional one because a maximal 
set of commuting combinations of $ a ' s would contain only four of them 
and it would require a second generation of harmonics [12] to express it in 
a 50(8) covariant way. In the following, we will call each vector of func­
tions representing a quantum state a "wave function" for conciseness. Let 
us explicitate the matrix structure of (3.1)- (3.6)following from the matrix 
representation of the quantum operators corresponding to the variables 
9a. 

The Grassman variables 9a are defined in (2.64) to fulfill Poisson 
Brackets relations (2.50) which at the quantum level determine the anti-
commutation relations of the corresponding operators (which we denote 
also by 9"). According to these anticommutation relations, the operators 
\P° form an 8-dimensional Clifford algebra: 

{«"•,**} = Cb. (3.8) 

Therefore the operators 9" can be faithfully and irreducibly represented 

by 16 x 16 SO(8) Dirac T-matrices: 

V = -j=Tl. (3.9) 

The index a of *" transforms under the 50(8) generators (3.3)according 

to the relation: 

[Dab, * c] = -(Sab)cd9
d. (3.10) 

(SabU = l(7ahU = v-i*c<r°
ba+<Tdv-i (3.11) 

Consequently, the 9a are in the harmonic (c)-spinor representation (B.8). 
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See the appendix B for the construction and the properties of 
the remarkable D=10 Lorentz-invariant harmonic 50(8) alge­
bra. Due to the triality properties (B.16-B.17) of the harmonic 50(8) 
representations, the * a ' s will relate states which are in the harmonic (s) 
representation to states in the harmonic (v)representation. One should 
be careful to the fact that the same index a might be carried by objects 
transforming under different harmonic SO(8) representations; in fact Aa 

and Fa below are such examples (see also appendix B). Moreover, since 
*" are grassman-odd, they will relate bosons to fermions. In conclusion, 
the 4""s are represented by the 16 x 16 matrices: 

*" = -7=r | = V2 8 
0 k(7"% 7S 

L^(7°)6c 0 
(3.12) 

where 

(7°)((C = y/2v-iab<Ta<Tcv
+i 

(3.13) 

are the Lorentz-invariant harmonic D=8 <r-matrices (B.1)(B.2). 
±*^ 9"1 act on states of the form (recall z = (a;*1,9a, uj , va *): 

*(*) = 
F"(z) 

B'(z) 
(3.14) 

where Fa are fermions and B" are bosons. Let us stress that the wave 
function *(z) (3.14) is real (only in this case it will describe on shell the 
D=10 SYM multiplet; see section 5). 

The internal 50(8) rotation properties of these objects are obtained 
by looking of how they are acted upon by the "non-orbital" Rxb part in 

43 



Dab (recall (2.56-2.57)): 

B*b = i(7°%*l ' : t fd] = 

"S'ab 0 

0 Vab 

where 

(Vab)cd = CaeCM - C o d C M (3.16) 

is the harmonic SO(8) (v) representation (B.9) and S'ab is a representa­
tion related to the harmonic SO(8) (s) representation Sab (see (B.8)): 

{Sab)cd = \{labU = lv+iacCTaba-adv+i (3.17) 

through a similarity transformation U: 

S'ab = USabU~l (3.18) 

[I/]06 = y/2rc(*(c)ab = 2(u+*<rV<:<7i,i;-*)(t;+*<7ci;~*) = C°* - 4r°rfc 

(3.19) 
where 

rc = v+i<rcv-l (3.20) 

Note that 

U~1 = U = UT. 

Consequently, we can now write the Dirac constraint equations (3.1)-

(3.6)defining the physical quantum states in our matrix representation. 

m°buk(rd) o 
o mabU\(:ycd) 

44 



The harmonic constraint equations axe: 

(Dab<P)c = l(Dab + fl"*)*]' = 
Z?o6JBc + ( Vh)c

dB
i = 0 (3.21) 

([£-+•]« = 
D~+Fc 

D~+Bc = 0 (3.22) 

([D+a*]c = 
D+aFc 

D+aBc = 0 (3.23) 

(D—*)b = [(U— - K";Zl)<P]b = 
£ , - a f 6 _ ^S",c)b

dF
d 

D-*Bb - £f(yac)b
dB

d = 0 (3.24) 

In view of (3.18), in order to have Fa transform in the standard (s) repre­
sentation and also, in order to absorb the factor -4rp- in (3.2) it is natural 
to work with new superfield wave functions ^(z) which axe obtained from 
<t(z) through the following linear transformation: 

*{z)^*(z) = 
rf-WO 0 "J tFb{z) 

0 C°b\ [Bh(z) 
_ \Y+ha{z) 

" [ B'(z) 
(3.25) 

In terms of <t/{z) (3.25), the Dirac constraint equations (3.1)-(3.6) 
acquire the form: 

~(-d2)Y+ia 

(-d2)Ba (-&)<* = = 0 

ba4 = 
DaY+i" - i(jd<jbcr<'v+i)aBb 

(3.26) 

(3.27) 
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D+a«f = 
D+aY+ia 1 

D+ttBa J 
(3.28) 

D - V = 
D—Bb - §$(Vc)b

dB
d = 0 (3.29) 

•D°V = = 0 (3.30) 

D-+^ = 
( P - + - i ) r H -

D-+B0 = 0 (3.31) 

where Dab,D-+,D±a are as in (2.24)-(2.26) and 9+ = u+3" d° s uj5". 
Henceforth, the prime on * will be omitted. 

The constraint equations (3.30),(3.31) express the fact that the wave 
function <P(z) (3.25) is a harmonic 50(8) x 5 0 ( l , 1) invariant. This is nat­
ural generalization of the properties of the harmonic superfields belonging 
to the space 7i0 defined by (2.28), (2.29). 

The harmonic superfields (2.28) identically satisfied the harmonic 
equations (2.35) where the harmonic "spin" part R,b (3.15) is absent, 
since (2.28) do not carry external overall 50(8) x 50(1 , 1) indices un­
like the case of <D(z) (3.25). Therefore, it is natural to call Y+ia(z),B"(z) 
harmonic superfields with external 50(8) x 50(1,1) indices (see 
also appendix C). In order to see their structure, one has to actually solve 
(3.30),(3.31) explicitly. 

To achieve this, one expresses first the functions Y+i"(z) and Ba(z) 
in terms of new functions Ya(z) and BM(z) which carry external Lorentz 
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indices but not external 50(8) x SO(l, 1) harmonic indices: 

Y+ia = (v+ie7°)aYa (3.32) 

B" = u°B" (3.33) 

In terms of the new functions, the equations (3.30) and (3.31) reduce to 
the requirement that the fields Ya, B11 are invariant under the orbital 
SO(8) x SO(l, 1) rotations of «;**,< 

D-+ 
B" 

= 0 (3.34) 

£>" 
Bu 

= 0 (3.35) 

i.e. Ya(z),Bl'(z) are general harmonic superfields (without external 
SO(8) x 50(1,1) indices) belonging to the space W0 specified by 
(2.28),(2.29). 

The representation (3.32),(3.33) is unique because the harmonic ob­
jects uj and (v+ioa)a have exactly the same "internal" SO(8) x 50(1,1) 
properties as B°(z) and Y+ia(z) (recall eqs. (3.30) (3.31)): 

Dab{v+iac)a = -(Sab)c
d(v

+i(7d)0 (3.36) 

D*bul = -(V«»)S«J 

and, moreover,the objects aj and (u+iCT*1)0 are the only harmonic objects 
to have the property (3.36)(and the correct SO(l,l) charges). 
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From now on we shall work only on the space W of superfield wave 
functions of the form given by (3.32) (3.33) 

*(*) = 
(«+*<r-)°K,(*) 

(3.37) 

Since on H (3.37) the Dirac constraint equations (3.30), (3.31) are ful­
filled identically, i.e. realized operatorially, D a 6 and £> -+ can be dropped 
from among the set of Dirac constraints to be imposed on the physical 
states. 

The remaining constraints (-d2),Da,D+a,D~a will be imposed only 
"weakly" as conditions on the physical states (3.26)-(3.29). In order to 
analyze their implications it is useful to perform the following transforma­
tion on Ya(z) and BP(Z) in (3.37): 

Ya 

B" 

A" 

A" 

where 

B"(z)=^"(2) + a'iA(2) 

X 

\{z) s-J*.+A»{x(y-;u,t»),6,u,v)dy~ 

(3.38) 

(3.39) 

(3.40) 

x - s u - x " , x»(y-;u,v) = W + u+''u-'')xv-u
+i'y-,d+ = u+5". 

Inserting (3.38)-(3.40) into (3.37) one can easily show that the Dirac 
constraint equations (3.26)-(3.29) for the covariantly quantized N=l BS 
superparticle result in the linearized Nilsson constraint equations of the 
free D=10 N=l SYM for A", A* which become independent on (u v). 

46 
4 



' This statement, instead of being directly proved here, will arise as a 
simple consequence of the more general considerations in the section 5. 

H 
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4. 

4. Covariant BFV-BRST First- and Second- Quantization of 
the BS superparticle 

In this section we perform the super-Poincare covariant first-
quantization of the N=l D=10 BS superparticle in the BFV-BRST for­
malism and indicate its equivalence with the canonical Dirac quantization 
of the preceding question. We also write down a superspace free-field ac­
tion for the linearized D=10 SYM in terms of unconstrained superfields 
yielding as equations of motion the Dirac constraint equations (3.26)-
(3.29) for the superfield wave function <t{z) of the N=l BS superparticle. 

From the mathematical point of view the Dirac system (3.26)-(3.29) 
is an overdetermined system of 33 matrix equations (33= number Af of 
Dirac constraints (—d2), D", D+a, D~a) for only one vector-valued func­
tion *(^). This overdetermined system is however consistent (integrable) 
since the linear operators (-&*), Da,D+a,D-" acting on <t{z) (3.37) form 
a closed algebra under (ant:-)commutation (cf. (2.59)-(2.62) in the classi­
cal theory): 

{D°,DP} = - i i ^ i - ( - 3 2 ) (4.1) 

[£»-", D~b] = 
.(S+)2 

5°* 0 

0 Vab (-a2) (4.2) 

[D-a,Da] = ulb -i-(a+„">v-ir±(-d*) 
^%u o J iy/r a+v (4.3) 

[D+a, D-b] = CabD-+ + bab = 0(on the space H (3.37) ) (4.4) 

the rest of the commutators being identically zero. Here, once again the 
notations (3.13),(3.16),(3.17),(3.19) were used. 
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The BRST charge Qo corresponding to the operator algebra (4.1)-
(4.4) precisely coincides with the zero mode (point particle) limit of 
QBRST (2.86)-(2.89) of the harmonic GS superstring, where the contribu­
tions of Dab and D~+ are deleted (because we are working on the space 
H (3.37) of harmonic superfields). We write Q0 in matrix form: 

Qo = 
[QiBYY Q[BB)C*\ 

(4.5) 

Q0
YY) = c{-d2) + XaD° - (2id+)-l(X0+x)%- + ir)7D+ 

I S " db 

dc 

+ W - - 5 Jp - ^ s - - ^ + r V ^ £ l 
(4.6) 

QiBB) = c(-a 2 ) + XaD° - (2id+)-1(x^+x)^ + iv!D+a 

(4.7) 

[Q?BY = -i(x V » + t ) + _^^(Xff+ff«'«-*)(U7ll)-»±} (4.8) 

(4.9) 
The whole information about the algebra (4.1)-(4.4) is simply encoded in 
the nilpotency property of Q0 (4.5)-(4.9): 

0o = 0 (4.10) 

In the BFV-BRST fonnalism Qo (4.5)-(4.9) is a linear operator acting on 
the space H of ghost-haunted harmonic superfields. H consists of fields of 
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the following form (cf. (3.37)): 

*(*.?) s 

with the short-hand notations: 

y+'a(z,v) 
B°(z,r,) 

(4.11) 

(4.12) 

The property that $ (4.11) is a 50(8) x 50(1,1) harmonic invariant is 
now expressed by the requirement that the ghost-haunted generators of 
SO(8) x 50(1,1) annihilate $(*,»?) ( these equations replace (3.30),(3.31) 
which were fulfilled in the space H (3.37)): 

^-+ + "+a^-'-aaF> = o (4.13) 

°Vb °*la OVb Olja 
= 0 (4.14) 

The explicit form of $(2,77) satisfying (4.13),(4.14) is given (in complete 
analogy with (3.32),(3.33)) as: 

y+l°(z,r,)=(v+io")aya(z,ri) (4.15) 

B»(*,ij) = u;5"(*,i!) (4.16) 
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Each coefficient field in the expansions (4.17),(4.18) is an arbitrary ana­

lytic harmonic ghost-haunted superfield whose formal expansion in terms 

of VaK ul now reads (cf. (2.29)): 

X{Z, Ij) = Yl K \ • • •«;: ,»+* , -rt+"'"r,-:' -ri-C,]S0W single, 
WMW (4.19) 

x «+ ...„+ «! , ...«ri+..,*<"><"><*>(x, 9, c, Xa). 

where X stands for any fff^ H"' or 3>(„'JK£ which appear in the right-

hand-side of the expansions (4.18),(4.17). 

One can now perform a transformation of y+i", Ba in complete 

analogy with (3.38)-(3.40) and rewrite (4.11),(4.15),(4.16) in the form: 

$(«,»?) = 
B'{z,v) 

u-[A"(z,r,) + dn(z,r,)] 

(4.20) 

where \(z, ri) is a functional of A^(z, r/) denned in complete analogy with 

eq. (3.40): 

z 

A(*) = - / u+A»(x(y-;u,v),6,u,v; T))dy~ (4.21) 

The original harmonic superfield <t>(z) (3.37) enters in the ghost-

haunted harmonic superfield $(z,r)) (4.11) as the zeroth order term in 
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the ghost expansion: 

•(*, n) = <*>(*) + Y, -vAl. V"*A,...A„(*) (4.22) 

Eq. (4.20) together with (4.22) implies: 

n > l 

A"(z,n) = A"(z) + £ ^B'-VB"A"B^BJz) (4.23) 
» > i 

where Aa(z),A'l(z) are the D=10 SYM supergauge potentials. 

In what follows it will be very useful to employ the following con­
densed notations for the linear generators (3.26)-(3.29) and their respec­
tive ghosts: 

LA I -d2 D" D+a D~a 

1A I c Xc V' „+a 
(4.24) 

In terms of (4.24', the algebra (4.1)-(4.4) and the BRST charge 

(4.5)-(4.9) are written short-hand as: 

{LA,LB} = LALB + (-iy^+1LBLA = f$BLc (4.25) 

Qo = VALA + k-iY"n*'icf&BJ£z '<V 
(4.26) 

In (4.25)-(4.26) (A denote the Grassmann parity of LA- The correspond­
ing ghosts r)A have accordingly the opposite parity e(i)A) = €4 + 1. 
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The key ingredient of the canonical BFV-BRST formalism [22] is 

that one can rewrite the consistent overdetermined system of (matrix) 

Dirac constraint equations (3.26)-(3.29) for 4>(z) (3.37) as a single linear 

matrix equation for $(2,17) (4.13): 

Qo*(*,»7) = 0 (4.27) 

An important property of (3.60) is that it possesses a ghost-haunted 

gauge invariance as a consequence of the nilpotency of Qo (4.10) : 

6A<b(z,r)) = Q0A(z,T)) (4.28) 

A fundamental result of the BFV-BRST quantization is the general the­

orem [22] about the equivalence of the BFV-BRST physical state condi­

tions (4.27),(4.28) with the Dirac constraint equations for the physical 

wave function (using notations (4.22),(4.25),(4.26)): 

LA<t>{z) = 01 A = l,...,Af (4.29) 

Here is a brief illustration of the above general theorem. Indeed, inserting 

the ghost expansion of $(z, rj) (4.22) and the similar expansion for the 

gauge parameter A(z,t}) in (4.28): 

A(*, x,) = AoO) + £ - V 1
 ...TIA'AA1...A. 0) (4.30) 

into (4.27) and (4.28) and employing the condensed notations (4.24)-

* Due to nilpotency of Qo (4.10) A(z, t() is defined itself only modulo transformation 
of the type (4.28): A ~ A + QoA' for arbitrary A'(z, i/) 
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(4.26), one obtains: 

LA<t>(z) = 0, (short hand for the Dirac system (3.26) - (3.29)) (4.31) 

«A*(Z) = 0; (4.32) 

LA*B{*) + (-iy*tB+1LB»A(z) - f%B<Pc(z) = 0 (4.33) 

6k*A(z) = LAA0(z); (4.34) 

[(-l)«*S;-,(«-.+»)(£A#1>1...Jl.(,) 

_ j(-i)(«o+"»»s;-.<e-i+i)/c,l#eft ...fl.(*))utori.w („,Bl B.)=0 

(4.35) 

*A#B,ft...a.(*) = [(-1)"" S ' - < € ' ' + , ) (£ i i ,A S l . . . B . ( * ) 

-^ L =^( - l ) ( £ C + £ B ' ) E ' - ( € f l ' + I ) /£B a AcB 3 . . .B„( 2 ) ) ]an« . ! , n l m (B 1 «. , 
(4.36) 

for general n. Antisymmetrization in (4.35),(4.36) is defined as: 

M...AB... = (-l)(eA+1)(£B+1).M...B,t... (4.37) 

Now, using (4.25) in the equivalent form: 

[ ( - 1 ) « * < « » + » ( L A L B - i ' / ^ L c J U c , ™ , . (AB) = 0 (4.38) 

one can easily check that the general solutions of (4.33),(4.35) are pure-
gauge ones (cf. [22]): 

0A(z) = S\0A(z) (eg. (4.31)) for arbitrary Ao(z) , 

*fl,...B„(z) = *A*B, . . .B„W (eg. (4.33)) for arbitrary ABl...B„-,(z), 
(4.39) 

whereas the zeroth order term 4>(z) in the ghost expansion (4.22) is 
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gauge-invariant (4.32) and satisfies the canonical system of Dirac con­
straint equations (4.31). 

Now, after establishing the equivalence between the BFV-BRST 
quantization scheme (eqs. (4.27),(4.28)) and the canonical Dirac formal­
ism (eq. (4.31)), we can write down a field theory action principle yield­
ing the whole overdetermined set of Dirac constraint equations (4.31) 
as equations of motion. To this end it is sufficient to construct an ac­
tion which to generate (4.27) as variation equation and to possess ghost-
haunted gauge invariance under the transformation (4.28). The action, we 
are lo.-'-ung for, reads: 

So = i J dzdr,H<k(z, ij)Oo#(*, V) (4-40) 

Here H is a linear operator fulfilling the properties ("T" denotes operator 
transposition) 

HT = H , Q%H = HQ0. (4.41) 

Now, (4.41) together with the nilpotency of Q0 (4.10) assure the invari­
ance of S0 (4.40) under the gauge transformation (4.28). Taking into ac­
count the explicit expression of Qa (4.5)-(4.9) we find the following form 
of H for the case of interest - second quantized N=l BS superparticle or, 
equivalently, free D=10 N=l SYM: 

0 i(A'2 + /r2
r) . 

where Ki$ act on the arguments of the corresponding functions 
y+ia(z,t}) and B°(z,>?) from (4.11) as follows: 

i t 1 :Va —• XlUo a 

c-> -c 

Tlia - -V±a, 

H = (4.42) 
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*,:«?*-±*£* (443) 

Xo. - » ~ X a -

Thus, formula (4.40) is the superspace action for the linearized D=10 
SYM in terms of unconstrained (off-shell) superfields which possesses a 
Witten's type [21] BFV gauge invariance (4.28). 

The off-shell superspace action for the linearized D=10 SYM previ­
ously proposed in ref. [12] can be regarded as a gauge-flxad action with 
respect to (4.28). 

In the next section we shall derive an appropriate nonlinear gener­
alization of the Dirac constraint equations (3.26)-(3.29) which will be 
shown to be equivalent to the Nilsson constraints for D=10 SYM and 
thus, will provide complete on-shell description of the interacting D=10 
SYM theory. In section 6, a general action principle for arbitrary consis­
tent overdetermined systems of nonlinear field equations will be devel­
oped, which will enable us to derive the full nonlinear generalization of 
the superspace action (4.40) and the BFV gauge invariance (4.28) of the 
linearized D=10 SYM theory. 
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5. 

5. Harmonic Superfield Representation for the Nilsson SYM 
Constraints 

As we have already discussed in section 1, the complete on-shell de­
scription of D=10 N=l SYM theory is given by the Nilsson constraint 
equations [23,6,24,25]: 

Fa0 = i({VQ , V3} - 2i /7al3) = 0 (5.1) 

We use the standard notations: 

v-rr + giA",.} 

V = d" + ig[A», . ] 

F"" = DaA" + id"Aa + g[Aa, A"], 

F*" = d»A" - d"A* + ig[A", A"]. (5.2) 

The fundamental fields in the above equations are Ati(x, 8) - the vector 
superfield gauge potential and Aa(x,9) - the superfield Majorana-Weyl 
spinor gauge potential, g denotes the coupling constant. 
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The Biancchi identities for V, V are in fact the consistency condi­
tions for the overdetermined nonlinear system (5.1). Multiple application 
of these identities yields as a consequence of (5.1) the following additional 
equations for Aa

1A'' [24,25]: 

F a " - (a"W)a = 0 (5.3) 

V F ' " = ( ( c ^ V - a"V)W)a (5.4) 

V«W„ = -±{e>")fiaF^ (5.5) 

V J ^ „ = gWavW (5.6) 

PW = 0 (5.7) 

where Wa is a Majorana-Weyl spinor denned by (5.3). 
Our aim now is to transform the nonlinear system (5.1),(5.3)-(5.7) 

into an equivalent system of nonlinear equations in terms of harmonic 
superfields such that the linearized form of the latter to coincide exactly 
with the system of Dirac constraint equations (3.26)-(3.29) for the wave 
function of the covariantly quantized D=10 N=l BS superparticle. This 
will provide the complete proof that the covariantly quantized D=10 N=l 
harmonic BS superparticle (2.63)-(2.65) describes on-shell the (linearized) 
D=10 SYM multiplet. 

To this end we regard Aa, A* in (5.1),(5.3)-(5.7) as harmonic su­
perfields (2.28)-(2.29), i.e. as functions on the extended superspace 
z = (x",8a,u°,v£*) [10-15] identically satisfying 

(Da\D~+) 
A"(z) 

A"(z) 
= 0 (5.8) 

In order to insure the on-shell independence of Aa, A11 on the auxiliary 
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harmonic variables (u,v) we add the harmonic differential equations: 

D±a '*•(*)" 

.*'<*). 
= 0 (5.9) 

(cf. the discussion in section 2 leading to eqs. (2.36),(2.37); the harmonic 
differential operators Dab, D~+,D*a appearing in (5.8),(5.9) are *he same 
as in (2.24)-(2.26)). 

Now, let us consider the following nonlinear field transformation: 

A"(z) 

A"(z) • • ( * ) = 

Y+i"(z) 

B"(z) 
(5.10) 

Y+i°(z) = Uv+io°<r~)ad
+[n-1(z)Aa(z)n(z) + -Q~1(z)DaU(z)] 

2 g 

Ba(z) = ua
u[Q-1(z)A'l(z)il(z) - -Q-^zWUiz)] 

9 

(5.11) 

(5.12) 

(here 0+ = u+3"). The superfield fl(z) in (5.11),(5.12x takes values in 

the YM gauge group and it is a functional of ytM(z), solving the equation 

(u+ V ) f i = 0: 

X 

Q{z) = Pexp{-ig f u+A»(x(y-;u,v),8,u,v)dy-} (5.13) 

* - = «-*" , x»(y-\u,v) = (t)>"' + u+''u-'')xl,-u
+>'y-. 

Now, eqs. (5.10)-(5.13) are easily recognized as the nonlinear (non-
abelian) analogue of eqs. (3.37)-(3.40) related with the superfield wave 
function of the D=10 N=l BS superparticle. 
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Let us now derive the nonlinear equations satisfied by Y+l"(z) 
(5.11), B"(z) (5.12), which are implied by the (nonlinear) system (5.1), 
(5.3)-(5.9). First of all we get: 

(Dab,L>-+) 
Y+ic(z) 

B%z) 
= 0 (5.14) 

where 

t)ab = Dab + 
Sab 0 

0 Vab 

£>-+ = D~ h 0 
0 0 

(5.15) 

with Sab,Vb the same as in (3.16),(3.17). Therefore, *(*) (5.10) is itself 
harmonic superfield with external overall SO(8) x SO(l, 1) indices belong­
ing to the space W (3.37) 

Further, acting with Dia on both sides of eqs. (5.11),(5.12) and us­
ing eqs. (5.9),(5.13),(5.3),(5.6) together with the formulae from appendix 
B, we obtain the following equations for *(z) (5.10) with explicitly sepa­
rated linear and nonlinear parts: 

£>+«*(«) = 0 (5.16) 

D-«(*) + 
rc-(40](n 

[V(o|*)](B) 
= 0 (5.17) 

In (5.17), the linear operator D~a is the same as in (3.29) (i.e. £>~a is the 
modified D~" operator due to the harmonic "spin" part of Dab and the 
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non-zero 50(1,1) charge matrix of D~+ in (5.15). The nonlinear parts in 
(5.17) read: 

[Vr(*\z)](Y»=ig[Y^>>,±;B°} 

.•£_Lrv+** na + i + i f ^ rP^** . B "] + i9{Sac)bd-^[YP, Bc] 
(5.18) 

[V7°(*|*))(fl)fc = gCab^({Y+^, 1?*} - i[Be, 9
+Bc]) + ig[Bb, JL-B«] 

(5.19) 
In the course of derivation of eqs. (5.17) and below the following useful 
relation is used: 

K+i°(z) = (v+iaa)aSl-1(z)W0(z)Q(z) (5.20) 

which is a consequence bom (5.3) and (5.11). 
The next step is to operate with D" on both sides of eqs. 

(5.10),(5.12) and use eqs. (5.3)-(5.5) and (5.13),(5.20) to obtain (disen­
tangling again linear and nonlinear parts): 

"[Via(40] (y ) 

[V?{*\z))W 
Da*(z) + = 0 (5.21) 

where Da is the linear operator defined in (3.27) and 

[V,Q(*|2)]<
V> =2ig(v+iab)a{±;Y+KY+t°} - l(v+i(T-o*)a[Bh,Bc] 

-ig{v+l<j°r±;({Y+lc,Yc
+i} - i[Bc,d+B<]) 

(5.22) 

[V1°Wz)fB*=2ig(v+*oh)'>±[±Yf*,&*B'] 
a + °+ (5.23) 

- i s ( v + i a V < 7 T ^ [ B c , y 6
+ ± ] 

Finally, from eqs. (5.7) and (5.6) and substituting eqs. (5.11),(5.12), 
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(5.20) we get: 

o = iv+to*rn-lpa/,wwyn (5 24) 
= ( - a 2 ) F + i ° W + [Vo(*|^)](V')'1; 

0 = -KQ-^V^F"" - gWa"W)U 

= (-d*)B°(z) + lV0(<P\z)]W°; 

where the nonlinear parts read: 

[V0(*|z)] (v> = - ig(db[Bbl Y+i°] + [Bb, V'bY+i°] + [8+Bb, ±-V">Y+i°]) 

+ 2igd+[j±p(V'cd+B° - g{Y+i<,Yc
+l}),Y+i°) 

- 2ig[d+Bc, (S
cdrb~V'dYb

+'] - ig[F^d, (S*)-*Y?*); 

(5.26) 

[V0(»\z)]Wa = dtiVB") - d+V'°j±y{V'cd+Bc - g{Y+ic, Y+*}) 

+ « f f [ ^ W - B c - g{Y+^,Y?*}),d+B«] 

+ ig[Bb,F'ab] + 2g(S'")bd{±:V'cY
+ib,Y+id}-g{±:V"'Y+i°,Yc

+i} 

(5.27) 
with the following notations: 

V'° = 8" + ig{Ba, . ] 

F'ab s daBb - 3*B° + ig[Ba, Bb] 

and (Sab)cd as in (3.17). 
Thus, the nonlinear system (5.1),(5.3)-(5.7) of the Nilsson constraint 

equations and their consequences from the Biancchi identities together 
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with (5.8),(5.9) implying the on-shell independence of Aa(x,6,u,v), 
A"(x, 0, u, v) on the auxiliary harmonic variables (u, v) is reduced via 
the nonlinear field transformation (5.10)-(5.13) to the nonlinear system 
(5.16),(5.17),(5.21),(5,24),(5.25) for the harmonic superfields *(z) (5.10): 

£>+"*(z) = 0 

D-a*(z) = 0 

Da<t>{z) + V1
a(<P\z) = 0 

(-d2)<P(z) + Vo(0\z) = O 

(5.28) 

(5.29) 

(5.30) 

(3.31) 

with the nonlinear parts defined in (5.18),(5.19),(5.22), (5.23),(5.26), 
(5.27). (Since 0{z) (5.10) are harmonic superfields, (5.14) are identically 
satisfied). 

Now we shall establish the inverse statement, namely, starting from 
the nonlinear system (5.28)-(5.31) for the harmonic superfields <P(z) 

(5.10), we can exactly recover the original system (5.1),(5.3)-(5.7) in 
terms of the ordinary superfields Aa(x,0), A,i(x,B). To this end we con­
sider the following nonlinear field transformation 

>+*"(*)] \A°(z) 
Ba(z) ~* A»(z) * ( * ) - (5.32) 

Aa(z) = 2t(v+*oQn(z)(-Lya
f*(*))n-1(*) - -Dan(z).u-1(z) (5.33) 

A"(z) = fKzWB'WCr^z) 

-u^h^[V'cd*B'(z)-g{Y^(z),Yc
+Hz)}}fl-1(z) + ^n(z).Cl-1(z) 

(5.34) 

where the harmonic superfield fi(z) takes values in the YM gauge group 
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and it is functional of Ba(z) defined by the equations: 

D+afl = 0 (5.35) 

trlD~'{l = -ig-izB 
a+ (5.36) 

Note, that eqs. (5.17) (together with (5.19)) are the integrability condi­
tions for the overdetermined system (5.36). 

From the explicit form of (5.33),(5.34) it is seen that the new fieldr 
A"(z), A"(z) are harmonic superfields (cf. (2.28),(2.29)), i.e. the equa­
tions: 

'Aa{z) 
(Dab,D~+) 

*{*) 
= 0 (5.37) 

axe identically fulfilled. 
First, applying the harmonic operators D±a (2.26) on Aa(z), Ai'(z) 

as defined by (5.33)-(5.36) and using (5.28),(5.29) and (5.19) we easily 
obtain: 

\A"(z) 
D±a 

A"{z) 
= 0 (5.38) 

which together with the identically fulfilled (5.37) yields the on-shell inde­
pendence of Aa{z), A^iz) on (u,v): 

Aa = Aa(x,e) , A» = A',(x,9) 

As a second step we consider the following expression: 

J({V°,V«} - X F'b) m -±(<r„)<*»F* - ^.^.^P"-

(5.39) 

32(5!) 
(5.40) 

where the covariant derivatives V" = D"+g[Aa, . }, V = d^+iglA", . ], 
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are defined with the supergauge potentials from (5.33),(5.34). The coeffi­

cients of the (T-matrix expansion in (5.40) are (cf. [11] and appendix A): 

F" = (<7")a0(D
aAff + D0Aa + g{Aa, A13}) - 32A" (5.41) 

F"1 -"'> = (<7"' -"«)ap(DaA0 + D0Aa + g{Aa,A^}) (5.42) 

with A", A" from (5.33),(5.34). 
According to (5.39) F" (5.41) and i " " •••'"> (5.42) do not depend on 

the auxiliary harmonic variables (u,v), i.e.: 

F" = F»(x,0) , F " - W = F">-"s(a;,e) (5.43) 

Now, using the nonlinear definitions (5.33),(5.34) for A", A* and the 
obvious relation 

{Da,Dl3} = 2i j9ab 

one can easily show that 

ft-1(*)(u+f*(x,tf))fl(») = 0, 

fl-1(*)(uj"1....uj',tt+!!*"-"(*,«))«(*) = 0 

Since the harmonic coefficients u+, «°1
]....u^uj|'(| in (5.44) are arbitrary 

and since F11, F' i '"" ' i s do not depend on (u,v), (5.44) actually imply: 

F" = 0, Ft"""i = 0 (5.45) 

and, therefore, inserting (5.45) into (5.40): 

F°B = -({V, V"} - 2; paB) = 0 
9 

which are exactly the original Nilsson constraint equations (5.1). 
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As a third step we introduce a harmonic superfield Wa(z) in the fol­

lowing way: 

Y+i"(z) = (v+i<7a)aU-1(z)Wa(z)n(z) (5.46) 

(i.e. Wa(z) = U{z)Ya{z)tl-1(z) in the notations (3.32)). 

Now using eqs. (5.16)-(5.18) for Y+ia(z), we easily get: 

D±aWa(z) = 0 (5.47) 

which together with the identically fulfilled (Dab, D+-)Wa(z) = 0 implies, 
that Wa does not depend on (u,v): 

Wa = Wa (x,0) (5.48) 

Inserting (5.46) into (5.33) we get a relation betveen A" and Wa: 

fi-V+WTA = i9¥(ft-1AaCl + -OrlDaCl) (5.49) 

Using u+A* = igd+fl.fl-1 (following from (5.34) by multiplying both 
sides with u+) we can rewrite (5.49) in the following form: 

d-1(z)u+[Fa"(x,9) - (a")a^W0(x,6)]Cl(z) = 0 (5.50) 

where 

Fa» = DaA" + id"Aa + g[Aa, A"] (cf. notations (5.2)) 

Thus (5.50) actually imply: 

Fat,(x,9)-(a"W)a(x,0) = O 

i.e. the original ordinary superfield eq. (5.3). 
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Now, having established properties (5.39),(5.48), i.e. the on-shell in­

dependence on (u,v) of Aa,Af, Wa defined in terms of Y+ia(z),Ba(z) 

through (5.33),(5.34) and (5.46), it is straightforward to derive the follow­

ing consequences of the nonlinear system (5.28)-(5.31) for Y+ia(z),B"(z): 

Q-1(z)u+ul[VaF>"'(x>9) - ((<7"V - CT"V)W)°(i,fl)]n(z) = 0 (5.51) 

n-^zKv+ia'flVWpix, B) + j K V J W * . *)]ft(*) = 0 (5.52) 

fl-1(z)u}[VliFi"'(x,e) - gWo"W(x,0)]tl(z) = 0 (5.53) 

n - 1 (2 ) i (v+^V)„[ (VW)«(x , 6))Q{z) 

= a+[(£»- - ig.)y+*»(j) _ ^{S")\Y*^{X)] + e+[v2-(*l*)F)6 

= 0(eq. (5.17)) 
(5.54) 

Once again, since the terms in the square brackets on the left-hand-
sides of (5.51)-(5.54) do not depend on the harmonic variables (u,u), 
these equations imply the rest (5.4)-(5.7) of the nonlinear system for the 
ordinary superfields Aa(x,0),At'(x,6). 

This finishes the proof of the equivalence between the Nilsson con­
straint equations (5.1) together with their consequences from the Biancchi 
identities (5.3)-(5.7) in terms of ordinary superfields Aa(x,0), All(x,6) 

and the nonlinear system (5.28)-(5.31) in terms of harmonic superfields 
Y+ia(z), Ba(z), where both sets of superfields are related through the 
nonlinear field transformation (5.10)-(5.13). Thus the system (5.28)-(5.31) 
provides alternatively the complete on-shell superspace description of 
D=10 N=l SYM. 
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In particular, one immediately notices that in the linearized case 
(g = 0, i.e. Vo{<t>\z),V^(t>\z\V^a{0\z) = 0) the harmonic superfield 
system (5.28)-(5.31) precisely reduces to the system of Dirac constraint 
equations (3.26)-(3.29) for the wave function <t>(z) of the super-Poincare 
covariantly quantized D=10 N=l BS superparticle. 

In the next section we shall derive a superspace action in terms of 
unconstrained off-shell (ghost-haunted harmonic) superfields (a nonlinear 
generalization of the superspace action (4.40)) which will produce (5.28)-
(5.31) and, therefore, (5.1) and (5.3)-(5.7) as equations of motion. 



) l 

6. 

6. Off-Shell Superspace Act ion for D = 1 0 S Y M 

In this section we shall review our general construction of action 

principle for arbitrary consistent overdetermined systems of nonlinear 

field equations [20] and, subsequently, shall apply it to derive a super-

space action for D=10 SYM in terms of unconstrained (off-shell) super-

fields (cf. also [20]). 

Let us consider the following general overdetermined system of 

A/" > 1 nonlinear equations: 

CA(t>\z) = LAt>(z) + VA(<t>\z) = 0, A = l,...,/S (6.1) 

VA{<t.\z) = Y, fdz1...dzn+2VA
n+2)(z;z1,...,zn+2)<t>(z1)...<t(zn+2) (6.2) 

n>0 - ' 

In (6.1) the function <P(z) is defined on a (graded) linear space H and it 

takes values in another (graded) vector space U, i.e. has a vector index 

<t> = (<f(z)). Also, <P(z) is taken to be real. LA are (graded) linear oper­

ators with at most second order derivatives and are, correspondingly, ma­

trices (LA = (La
A

b)) in the vector space U. Clearly, VA(<S>\z) = ([V,4(<J>|z)]a) 

are also vectors in U. In the general discussion of this section the vector 

indices a, 6 will be suppressed for brevity. 

Comparing (6.1) with (4.29) we see that the system (6.1) may be 

considered, from the point of view of second quantization as nonlinear 

generalization of the Dirac constraint equations for a first-quantized sys­

tem with first-class Dirac constraints {•£/»}, 4 = l,...Af. Therefore the 

system (6.1) represents the nonlinear field equations of motion to be de­

rived from an underlying field theory action which has to be a nonlinear 

generalization of (4.29) 
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The necessary conditions for consistency of the overdetermined sys­

tem (6.1) are obtained by multiple application of antisymmetrized prod­

ucts of the linear operators LB on CA(<S>\Z) (6.1) and by requiring the re­

sult to vanish when eqs. (6.1) are fulfilled. The first consistency condition 

LACBW*) + {-l)tA<B+lLBCA{*\z) = 0 

yields for the linear and nonlinear parts respectively: 

[LA,LB} = LALB + (-1Y^B+1LBLA = fc
ABLc (6.3) 

(cf. (4.25)); 

LAVB{*\Z) + (-iy*eB+lLBVA(0\z) - f$BVc(<P\z) 

=I^W?^^+^B+I6-W?CB(*{Z')] (6-4) 
(= 0 on the surface of equations (6.1)) 

In (6.3),(6.4) f%B are in general linear operators and e.4, eB are the Grass-

mann parities of LA, LB correspondingly. In Eq. (6.4) the operators LA 

act on VB{<t>\z) defined in eq. (6.2) as on functions of z. 

The next consistency condition 

[Lc(-l)CB+€cLAVB(l>\z)]<lntiavmmiA,B,c) 

= 0 on the surface of eqs. (6.1) 

gives using (6.3),(6.4): 

[f{ABCDE{-^YDfADUu,Vmm (A,B,C)VG{<t>\z) = 0 
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(2\ DE 
where the operator fAgC is denned by: 

JABC E ~ (6.5) 

DE 

( ( - l ) t D + < B + 1 {(- l ) £ D £ C [ / f f l , ic ] + / & / & } ) « « . , » « (ABC) 

and antisymmetrization means the same as in (4.37): 

M...BA... = (-l)^+1)l'B+1)M...AB... 

For most interesting systems it turns out that: 

f>l DE 

file =0 (6.6) 

Let us immediately note, that if the set of operators LA is viewed as a 
first-quantized system of Dirac first class hamiltonian constraints (cf. 

fn\ DE 

(6.3) and (4.25)), then f\^>BC defined by (6.5) is precisely the so called 
second order BFV structure function [22]. Its vanishing (6.6) means that 
the corresponding hamiltonian system is first-rank, i.e. the corresponding 
BRST charge does not possess higher order ghost terms, as in (4.26). 

Our general construction of an action principle for the system (6.1) 
works under the following general assumptions: 

(i) The number TV), of bosonic operators LA in (6.1) (i.e. with eA = 
0) has to be odd; 

(ii) The linear operators LA must be functionally independent; 
(iii) Condition (6.6) holds. 
Condition (iii) means that the only nontrivial consistency conditions 

for the system (6.1) are given by (6.3),(6.4). 
From the point of view of second quantization, conditions (ii) and 

(iii) mean that the underlying first-quantized system of Dirac first-class 
constraints {LA} is BFV-irreducible and first-rank. 
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Since the system (6.1) comprises M = Nb + Nf > 1 matrix equations 
it is of course impossible to find an action functional S = S[<P], depending 
on <P(z) alone, such that (6.1) would arise as equations of motion 

Our general construction of an action principle for the overdeter-
mined system (6.1) proceeds in the following series of steps. 

The first step is to rewrite the overdetermined set (6.1) of AT (ma­
trix) equations as a single (matrix) equation in terms of a (vector valued) 
field $(Z,TJ) depending on auxiliary variables collectively denoted by TJ. 
The original field *(z) from (6.1) enters as: 

»(*,•») «#(*) + »(*,ij) (6.7) 

To this end we take: 

n = (lA) = (ci,Xa) i=l,...,Nb,a=l,...,Nf,A=l,...,Ar=Nf + Nb 

(6.8) 
to be the ghost variables associated with LA, i.e. having opposite Grass-
mann parity e(riA) = eA + 1. Since *(z) was taken to be real, the ghost-
haunted field $(z, rj) is likewise real. 

Then (6.7) is exactly the ghost-haunted wave function (4.22) entering 
the BFV-BRST quantization (4.27)-(4.28). 

The new single (matrix) equation for $(z,»j) replacing the system 
(6.1) is of the following general form: 

Q(i\z,r,) • Q0$(z,v) + V(# |* , IJ) = 0 (6.9) 
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V($|Z, V) = X ] / rfzld»?l-dzn+2rf'?n+2 X 
n>0 - ' 

V(n+2)(z, r;; 2 l , r/!,..., zn+2, r]„+2)i(zi, i7i)...$(zn+2, Vn+2) 
(6.10) 

The linear operator Q0 entering (6.9) is the BRST charge [22] correspond­
ing to the algebra (6.3): 

Qo = r,ALA + l{-l)"Wf*BJL (6.11) 

and V($, z, 77) possesses the properties (6(r)) = ITi4_1 6(T)A)): 

IdTi6(T))V($\z,v) = 0 (6.12a) 

Jdn6(t,)JLvWz,n)=*VA(4z) (6.126) 

Eqs. (6.11),(6.12b) ensure that the single equation (6.9) for $(z,r?) 
contains the original nonlinear system (6.1): 

0 = J'*J*(l,)g2jQ(*|*, 7,) = LA*(Z) + VA{*\Z) 

Let us point out that in each ghost integral first the integration over the 
fermionic ghosts c' (6.8) is performed: 

J'*,*•(!,) = j'dX[jW(C,IJ)] (6.13) 

fdcci'...ciM =6MNte
i'-'Nt 

Clearly, (6.11) tells us that (6.9) is precisely the appropriate nonlin­
ear generalization of the BFV-equation (4.27)- i.e. the BFV physical state 
condition. 
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The second s tep is to find the gauge invariance exhibited by the 

new single equation (6.9) such that the equations of motion implied by 

(6.9) for the "non-physical" part $(*,»7) of the ghost-haunted field $(2,77) 

(6.7) should have pure-gauge solutions, whereas eqs (6.1) for the original 

field *(z) should be gauge-invariant. This gauge symmetry must yield the 

appropriate nonlinear generalizations of (4.28),(4.32),(4,34),(4.36). 

The required gauge invariance has the form: 

(6.14) 

= QoA(z,,) + Jdz'dr,>A(zW)^$ 

and the gauge invariance of (6.9) under (6.14) implies: 

/ * * « • , * * 0 ^ $ - O (6.15) 

Inserting in (6.15) the expansion (6.9) for Q($\z', t]') one gets: 

(i.e. Q0 is a nilpotent operator which is true by construction, see eqs. 

(6.11),(6.6)), 

• ID fact, due to (6.15), the gauge parameter \(z,vi) in (6.14) is denned itself only 
modulo nonlinear transformations 

A(«.,)~A<*,*)+ [dz'dj\-{z;n')sffi"'y 
J «*(*',»?') 
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and 

<?oV(*|*, V) + Jdz'dV'[Q0i(z', rf) + V(#|*', ' ? ' ) l ^ | y )
) = 0. (6.16) 

Therefore, it is natural to call eq. (6.15) the nonlinear nilpotency condi­
tion. 

Also note, that due to (6.12a), the original field <P(z) is inert under 

the gauge transformation (6.14): 

*A«(*) = JdV6(r,)6^(z,r,) 

= Jdz'd^\(z',r,')^L-^[Jdr,6(r,)Q($\z,V)] = 0 

exactly as in the linear case (4.32). 

The third step is to derive the the action, invariant under (6.14) 
and producing (6.9) as equation of motion. It is easily found to be: 

5 = IdzdT,H$(z,r,)Qm*,r>) 

i f . r . ( 6-1 7 ) 

= -J dzdr,H*(z,T,)Q0($\z,r,) + J rf«fcjJrt(*,irtP(»|*,ij) 

with notations explained as follows. The linear operator H is defined to 
fulfill ("T"-denotes operator transposition): 

HT = H 
(6-18) 

QlH = HQ0. 

A typical form of H is 

H9(z,r)) = Ri(piz,p2z) 

where ii is a matrix acting on the vector-valued field, pi$ are numbers 
taking the values ± l , ± i (cf. (4.42),(4.43)). Let us recall that, since 
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$(z,q) is real, the free part of the action (6.17) is bilinear (instead of her-
mitean) form in $. The functional Q($\z,rj) is defined through the rela­
tion: 

[l + J dz>dV'*(z', tft-fjL—ww,, r,) = Q(*\z, n) (6.19) 

which simply means: 

0(*l*. v) = | Q O « ( * , V) + ?(*|*. 1) (6-20) 

where V($|z, r/) is given by a series of the same form as for V($|z, v) 

(6.10) with additional multiplication of each V(n+21 by the factor 

(n + 3)-»: 

V($|z,»?) = J2 z m / dz1dr)1...dzn+2dr)n+2 x 
^ n + 3 - / (6.21) 

V (n+2)(z, rj; zi, i/i..., zn+2)7?„+2)$(zi, »7i)....$(zn+2, »7„+2) 

Since Q($\z,rj) (6.20)-(6.21) enters the action functional (6.17) where one 
can freely symmetrize the fields $(z, rj) entering in the various terms, we 
immediately find that Q (6.20) or, equivalently, Q (6.9) should satisfy the 
antisymmetry condition: 

6HQ(i\z,r,) _ 6HQ{<J\z',r,') 
S9(Z',T,') ~ M(z,ri) K ' 

The minus sign in (6.22) is due to the anticommutativity of the ghost 
measures (recall Nt 5 number of c' = odd) 

I dxdcj dx'dc' = - fdx'dc' f d\dc 

Now, it is straightforward to show that the action (6.17) is indeed invari­
ant under the gauge transformation (6.14) provided the nonlinear nilpo-
tency (6.15) and the antisymmetry condition (6.22) hold. 
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Clearly the action (6.17) is precisely the nonlinear generalization of 

the free BFV-BRST action (4.40). 

The final s t e p is to derive the explicit expression of V($\Z,TJ) (6.10) 

such that (6.15) , (6.22) and (6.12) are satisfied. Using (6.11) and the 

consistency conditions (6.4) and inserting them into eq. (6.16) we find: 

V(i\z,ti) = ifVA(9(.,Vi)\x) 

= £ fdz1...dzn+in
Avin+'i{z;*l,...,zn+2)*(zl,ti)..M*n+a,n) ( 6 " 2 3 ) 

n>0*' 

and similarly: 

P(*M) 
= E ^ fdz1...dzn+2r,AVA

n+2\z;zi * n + a )# (« 1 , f | ) . . . # (^ + 2 , i / ) 
n>0 " + a J 

(6.24) 

where the kernels VA ' are exactly the same as in (6.2). 

Eqs. (6.23)(6.24) are the principal result in the present general con­

struction since now each object Q0(6.11), V(6.21), (and similarly V(6.10)) 

entering the action (6.17) is explicitly expressed in terms of objects 

{LA}, {VA '} entering the original nonlinear system (6.1)(6.2). 

Let us now apply our general action principle to construct an off-

shell superspace action for D=10 SYM. 

From the mathematical point of view, the system (5.1),(5.3)-(5.7) 

(the Nilsson constraints plus their consequences from the Biancchi identi­

ties for V ° , V (5.2)), which provides the complete on-shell description of 

D=10 SYM [6,24,25], is a consisted* overdetermined system of nonlinear 

equations for the supergauge pot t , j ls Aa(x,6), A"(x,0). However, one 

can easily show that it cannot be written in the form (6.1) with Lorentz-

covariant and independent linear operators LA, and, moreover, the condi­

tion (6.6) is not satisfied (i.e. the system is of higher rank). 
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On the other hand, it was shown in detail in section 5, that the non­
linear system (5.1),(5.3)-(5.7) is equivalent to the nonlinear system (5.28)-
(5.31) in terms of the harmonic superfield 

*) = 
Y+ia(z) 

B°(z) 

which is related to Aa, A* from (5.1),(5.3)-(5.7) through the nonlinear 
field transformation (5.10)-(5.13). Therefore, the harmonic superfield rep­
resentation (5.28)-(5.31) of the D=10 SYM on-shell equations (5.1),(5.3)-
(5.7) is a consistent overdetermined system of nonlinear field equations 
fulfilling all conditions (i),(ii),(iii) above for our action principle to work. 
Indeed: 

(i) The number of bosonic operators LA- (—d)2,D+a, D~a from 
(5.28)-(5.31) is odd (=17); 

(ii) All linear operators {LA} = {(-d)2, D", D+a, D~a} in (5.28)-
(5.31) are BFV-irreducible, i.e. functionally independent; 

(iii) The set of {LA} is first-rank, i.e. the second order BFV struc­
ture function vanishes (6.6). 

Thus our action principle (eq. (6.17)) yields the following superspace 
action in terms of off-shell unconstrained superfields for D=10 SYM: 

SSYM = ±[dzdT,H<i(z,T,)Q0$(z,Ti) 

+ JdzdT,M(z, fj)[cV0(»(., 1)\*) + X. V,Q($(., IJ)|») + t,+ Va-(*(., IJ)|*)] 

(6.25) 

with the notations: 

z = (x",ea,ul,v^), 

80 



dz = (d10i")(d16eQ)(rf80^)(d32t;^) 

J[6{u^u1"' - Cab)Y[S(ulv±ia'iv:l:i)6((v+ialiv
+i)(v-'a>'v-^) + iy, 

a,6 a,± 

(6.26) 

i j s ^ J s ^ X a . i r 1 " ) 

*jsdc(rf«x.)(rf"i/+')(rfB«?-); 

$(2,»/) = 
«5B"(*,f/) 

(6.27) 

(6.28) 

where 3>a(z, »?)i ^(• J i v) are ghost haunted superfields without 
external 50(8) x SO(l, 1) indices (cf. (4.11),(4.15),(4.16)) 
and the functionals V0(i(.,ri)\z), Vf(*(.,t})\z) , Vjf "(*(., «?)|*) 
in the interacting part of SSYM (6.25) are exactly the same as 
(5.26),(5.27),(5.22),(5.23),(5.18),(5.19), where the usual real harmonic 
superfields Y+t"(z), B"{z) are substituted with the corresponding real 
ghost-haunted harmonic superfields y+ia(z,Tj),B"(z,7]) (6.28). 

The way the supergauge potentials Aa(x,0), A^ix, 9) of D=10 
SYM enter in the action (6.25) is given by the following nonlinear ghost-
haunted superfield transformation: 

y+i°(z,7,) 

B°(z,V) 
(eg. (6.28) -

A°(z,r,) 

-4"(*,IJ) 
(6.29) 

*(*,»») H 

i(v+iaa<T-)ad+[n-l(z,r])Aa(z,r,)i}(z,ri) + ^-1<,z,V)Dan(z,r,)] 

«;[ «_1(*.ri)A"{z,rj)a(z,r,) - i/?-1 (z, V)d"n{z,r,) ] 
(6.30) 

where U(z, i}) is a functional of A'1(z,rt) taking values in the YM gauge 
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group and it is defined in complete analogy with (5.13): 

X -

Q(z) = Pexp{-ig J u+A»{x(y-;u,v),e,u,v;rj)dy-} (6.31) 

x- = u - i " , x*(y-;u,v) = (r)"" + u+liu-v)xv - u+"y-. Thus, the 
zeroth order term in the ghost expansion of $(z, rj) (6.29)-(6.31) exactly 
coincides with the harmonic SYM superfield <t>(z) (5.10)-(5.13) and, there­
fore, the usual SYM supergauge potentials Aa(x,ff),A>l{x, ff) are identified 
as the harmonic (u, v) independent parts of the zeroth order terms in 
the ghost expansions (4.23) of Aa(z, rj) All(z, rj) from (6.30) exactly as in 
the linearized case (section 4). 

As a final remark, let us stress that the superspace action (6.25) is 
also manifestly invariant under the superspace YM gauge transformation 
of the ghost-haunted superfields A^^z, rj), Aa{z, rj): 

A"(z,V) - ( * T ( * , I J ) = w'Cr.ij) (A"(z,r,) - ! * • ) «(* , , ) 

Aa(z, V) - M")0(*, i?) = " _ 1 ( * , V) (Aa(z, i») + ~gD
a) OJ(Z, t,) (6.32) 

This is because the action (6.25) depends on Aa(z,rj), A''(z,rj) only 
through the ghost-haunted superfield expression $(z,rj) (6.30) which is 
itself invariant under (6.32). 

Let us recapitulate the results of this section. We described here a 
general construction [20] of an off-shell action principle for arbitrary con­
sistent overdetermiued systems of nonlinear field equations. 

The main tool is tbe BFV-BRST ghost formalism [22]. The action 
(6.17) resembles the Siegel-Zwiebach-Witten-Neveu-West [21] construc­
tion of (super)string field actions but does not involve the peculiarities 
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(star products, Chern-Simons forms etc.) specific to the field theory of 

the Ramond-Neveu-Schwarz (RNS) (sup »)string. 

The main application presented here is the construction of a super-

space action (6.25) for D=10 N = l SYM in terms of unconstrained (off-

shell) superfields. This action contains both cubic and quartic interaction 

terms. The corresponding superfields (6.28) depend besides on the ordi­

nary superspace coordinates (x1*, 6a) also on the auxiliary (harmonic-like) 

bosonic variables (u, v) (eq. (2.21)) [10-15] and on a number of BFV-

BRST ghost variables r)A (6.27). Thus, these generalized superfields con­

tain an infinite number of pure-gauge and auxiliary fields which are elim­

inated through the Witten-type nonlinear BFV gauge invariance (6.14) 

and through the usual superspace YM gauge invariance (6.33) of our su­

perspace action. 

Let us particularly stress that , in our formalism, the YM gauge in­

variance (6.33) is not a part of the Witten-type gauge invariance (6.14) 

but it is an independent symmetry of our action (6.25). This phenomenon 

is most easily understood in the context of the heterotic GS superstring. 

Already its zero-mode (point-particle) limit contains the gauge invari­

ant SYM whereas in the RNS formalism the YM gauge invariance arises 

from the Witten's gauge invariance at the first excited string level in the 

NS sector. 
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7. 

7. Conclusions and outlook 

The main objectives of the present paper may be summarized as fol­

lows. 

(1) 

We describe in a pedagogical way the main ideas and concepts in the 

harmonic superstring program aimed at a consistent manifestly super-

Poincare covariant quantization of space-time supersymmetric strings (the 

GS superstrings). 

The first crucial step is introduction of auxiliary harmonic variables 

allowing covariant disentangling of local fermionic gauge-invariances of 

the superstring. The next crucial step is the introduction of additional 

fermionic string coordinates enabling us to convert the set of mixed first-

and second- class Dirac hamiltonian constraints of the GS superstring 

into a set of super-Poincare covariant, functionally independent (BFV-

irreducible) first-class constraints only. 

This is inevitable in order to preserve manifest supersymmetry 

(Dirac brackets due to second-class constraints would ruin the superspace 

geometry by causing the superstring coordinates x^^a not to commute 

among themselves). 

The introduction of the auxiliary harmonic and fermionic string vari­

ables is accompanied by introduction of appropriate additional gauge in-

variances beyond those of the GS superstring such that the new system 

(called harmonic GS superstring) is physically equivalent to the original 

GS model. We also made contact with a more recent formulation [35] ex­

tending the harmonic superstring program from the canonical Hamilto­

nian formalism to the Lagrangian functional-integral quantization formal­

ism. 
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(2) 

The effectiveness of the harmonic superstring program was further 

explicitly demonstrated by providing the full first-quantization analysis 

of the zero-mode (point particle) limit of the GS-superstring - the D=10 

( N = l ) BS superparticle. The main result here is the derivation of the 

linearized Nilsson curvature constraints for D=10 SYM from and estab­

lishing their equivalence t o the manifestly super-Poincare covariant Dirac 

constraint equations for the D=10 N = l BS superparticle. 

(3) 

The preceding result was further generalized to the full nonlinear 

case by deriving a harmonic superfleld representation of the nonlinear 

Nilsson constraints of D=10 SYM reducing in the the linearized case to 

the system of Dirac constraint equations for the D=10 N = l BS superpar­

ticle. 

(4) 

We described the main steps of our construction of a covariant action 

principle for a very broad class of consistent overdetermined systems of 

nonlinear field equations. The only conditions for their structure are the 

following: 

The linear parts of the equations are identified as a system of quan­

tized Dirac first-class constraints belonging to an underlying particle-like 

(or string-like) system which are BFV-irreducible and first rank (i.e. the 

second and higher BFV structure functions vanish and the corresponding 

BRST charge does not exhibit neither higher ghost terms nor ghosts for 

ghosts). 

In particular, a system of consistency equations on the interacting 

parts of the above nonlinear equations was formulated (eq. (6.4)) which 

allows in principle to find interacting (nonlinear) modifications of Dirac 

constraint equations for particle-like and string-like systems, i.e. to find 

the corresponding interacting field theoretic equations of motion 
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(5) 
Our general action principle for overdetermined systems of nonlinear 

field equations was applied to derive a superspace action for D=10 SYM 
in terms of unconstrained off-shell superfields, starting from the harmonic 
superfield representation of the Nilsson curvature constraints for D=10 
SYM. Thus, a solution was found to the long standing problem of aa off-
shell superspace formulation of D=10 SYM. The same formalism can be 
applied to D=4 N=4 SYM and similar supersymmetric gauge theories 
which are formulated in terms of geometrical constraints on some of the 
relevant curvatures. 

Although the D=10 SYM action (6.25) is manifestly off-shell super-
symmetric, this is at the price of having covariant nonlocal factors (d+)~1 

(recall d+ = v+i ftv+i). One may hope that by combining the present 
approach of section 6 with the formalism developed in [51] one will be 
able by further appropriate nonlinear field transformations of $(2, rj) 
(6.28) to eliminate the nonlocality ( 9 + ) - 1 factors. 

The next most ambitious task is to apply the formalism presented 
in this paper to attack the issue of a manifestly super-Poincare covariant 
field theory of the GS superstrings. The main problem here will be to 
find solutions for the field-theoretic superstring vertices coming from the 
string generalization of the consistency eqs. (6.4). 
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Appendix A. D=10 and D = 8 Spinor Conventions 
The D=10 7 - matrices and D=10 charge conjugation matrix are 

taken in the following representation: 

r" =
 / o («,")2\ 

\(*")2 0 ) 

0 C"P\ 
C)"? 0 J 

11 = r°r1....r9=P° °d) 

C l 0 = V ( - Q 

Indices of D=10 left- (right-) handed MW spinors (j>a,ij>a are raised by 
means of Cw : 

4fi = ( -C) *% 

r = <?«% 

Throughout the paper we use D=10 a - matrices with undotted indices 

only : 

K ) Q " = CQ6(<7")£ 

K W = (-C)-jK)£ 

{oOUW + K ) a > T " = -2SS.tr 

»/„„ = diag{-, +,... ,+) 
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The standard basis in the space of the D=10 7 - matrices is 

r"'-"» = ri*"r*'2 r"-1, n = o,i,. . . ,io, 

where the square brackets denote antisymmetrization with respect to the 

enclosed indices . These matrices have the following properties: 

(r">-•»•»••+> Cfo1)7" = ( - l ) T " - -""+ ,Cr 0
1 (A.l) 

« 

(c lVr" ,-- | ,»')T = (-i)r+1c1-0
1r' i-•M-

{ 1] ( 1 0 - n ) ! £ U . . ^ . - . 

fr(PMi...*i.pi/i...''m^ _ 3 2 5 n m ( - l ) M n l x 

( j?"'"- . . . . T / " » " » \ 

] 

where [n] = n for n = even and [n] = n — 1 for n = odd . 

Equations (A.l) imply for the a matrices <r''»-'J» = <r',i,...CT*'"l : 

(^....^+,)a" = (-i)rK,...^+ ,)"* ; (̂ -2) 

K-"""+')o0 = ( - i ) - + i _ J _ ^ € ^ - « , + ^ . - — K i ,, _jr)o/?, (A.3) 

K , . . . „ 3 r + , ) Q 0 = ( _ 1 ) r ^ _ ^ ^ , . . « ^ , 1 . . * . - . , ( 0 P ( ) i i _ - / ( t _ i r ) « f f . 

Accounting for (A.2),(A.3) and (A.l) any (anti-)symmetric matrix 
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A'"m(A'"vm) on the D=10 spinor space can be decomposed as follows: 

where [n] = ft, [^i.../x5] , 

Aa0 — A\n\ILlV*\a a& ' 

A — — A'Vmsra0 

A, I — ^q'yn-nfl 
^[PiMMa] — 16(3') "^ PiPiCi ' 

. .*<a • 
-4| i — * .i"'""lT°"C 

*•"' " • ' " 32(5!) 0/» "' 

Note that the coefficient J4[MI....M,J is self-dual due to (A.3) . 
Let us also list the following useful properties of the D=10 a -

matrices : 

foyVT' + {p^W + Wie^V = 0 (A.5) 

where & means that the index Vk is missing . 
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For the D=8 7 -matrices and D=8 charge conjugation matrix we use 

the following representation : 

C, 

i = ( 0 (T*)i\ 
8 \(7')a 0 ) 

_ /cab 0 \ 

/~tab __ siba 

Indices of SO(8) (s) and (c) spinors <j>a, xfra art raised as : 
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A p p e n d i x B . D = 1 0 Lorentz-Invariant Harmonic SO(8) Al­

gebra 

It is a remarkable result that with the help of the harmonic variables 

va
 2 , " J (2.21) carrying Lorentz-spinor and Lorentz-vector indices, one 

can imbed the SO(8) Clifford algebra into the S O ( l , 9 ) in a completely 

6 0 ( 1 , 9 ) invariant way. The construction (2.22), which we use throughout 

this paper, crucially depends on the existence of the D=iO Fierz identity 

( l . l ) (or (A.5)). 

Define the following 8 x 8 matrices in terms of harmonics and D=10 

(T-matrices: 

(7°)i,c = y/2v+i(Tba"acv-i, (fl . l) 

(7a)6c = V2v-iabo
a<7cv

+K (B.2) 

Here the index a labels the matrices 7° , 7°, while 6, c are 8 x 8 matrix 

indices. Since (cr**)^ = (o^pa it follows that 

(l")bc = (j'U 

Using the Fierz identity ( l . l ) i t is straightforward to compute that 

(B.1),(B.2) obey the anticommutation relations (written in a matrix 

form): 

7«y + 7»^« = 2c a 6 (B.3) 

7°7 6 + 7 t 7 a = 2C°6 

and therefore, define a representation of the 5 0 ( 8 ) Clifford algebra which 
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we call harmonic representation: 

I s = 
0 {la)bc 

(7a)6c 0 
(BA) 

Having the harmonic SO(8) Clifford algebra (B.3)(B.4) one can now con­

struct the generators of the SO(8) Lie algebra corresponding to the three 

inequivalent 8 dimensional representations (s),(c) and (v). It is natural to 

call these representations harmonic (s),(c),(v) representations. Introduc­

ing the two possible antisymmetrized products of (B.l) and (B.2): 

(i°"u a 2(7*7" - rru • :V
+i aca-aab^(T a,iv 

+i. (B.5) 

(rbU 3 J ( T V - 7*7*)* = IT W V f f W - * , (BJB) 

where the second equalities are a consequence of the Fierz identity (1.1), 

one gets the following expressions for the desired SO(8) generators: 

i) harmonic (s) spinor representation 

5°* = —7ofc (B.l) 

ii) harmonic (c) spinor representation 

b " 2 7 

iii) harmonic vector (v) representation 

i\rab\cd = syacsibd _ ftadsybc 

(B.8) 

(B.9) 

Let us stress the fact that all Lorentz invariant harmonic SO(8) indices 

a,b,c,d... appearing in the present formalism, belong to one and the same 
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fixed 8-dimensional representation of 50(8). This is to be contrasted 
with the noncovariant light-cone formalism where all types of SO(8) in­
dices ((v),(s) and (c)) do appear [1]. 

The triality property of the harmonic (s),(c),(v) representations 
(B.7)-(B.9) are encoded in the relations: 

yc§ab _ gab^c _ C a c 7 6 _ Qbc^a ( £ 1 Q ) 

jcS'b - 5ofc7c = Cacyb - C V (B.ll) 

(T« V » ) / = (7e).°CM - (•y'^C"' (B. 12) 

(rV"')/ = (7
c) e°CM - W).kC* (B.13) 

(VV)**, = C ' V ) 6 , - CM(7C)% (fl.14) 

(V">r)d
t = Cm", - CM(7e)% (B.15) 

Using (B.12-B-15) one can show that given two objects A" , B" trans­
forming under two different harmonic representations out of (B.7-B.9), 
then the objects 

C" = (7")6c>l6Bc (B.16) 

C" = (r)bcA
hBc (B.17) 

transform under the third one. 
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Here is a list of useful formulas, frequently used in the text: 

Dab(v+ioc)a = -(SabY<1(v
+±od)° (B.18) 

Dab(v-iac)a = -{Sab)%v-'ai)a 

Dabul = -(Vab)c
iu

d
ll 

£ r > + V ) ° = -^(7*)S(»-*Oa 

(fl.19) 

(B.20) 

(£.21) 

(fl.22) 

where S"b, Sab , Vab are the same as in (B.7)-(B.9). As a consequence 
of (B.18-B.22) we obtain the remarkable result that the harmonic 50(8) 
Clifford algebra (B.1)-(B.4) and consequently, the harmonic 50(8) al­
gebra (B.5)-(B.9) are invariant under all harmonic differential operators 
which span the 50(1,9) algebra (2.27): 

(£><•», £>"+,£)+«, Z>-a) 
voJ 

zed 

= 0. (fl.23) 
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A p p e n d i x C. General Harmonic Superfields and Pure-

Gauge nature of the harmonic variables 

In the D=4 harmonic superspace approach [31] harmonic super-

fields are defined as functions on the extended N-superspace z = 

(x^jO'^u) (i = 1,...,N) where the variables u belong to a compact ho­

mogenous space ^ . 

For N = 2 ,3 , G is the group of automorphisms of the extended 

super-Poincare algebra G = SU{N), whereas H = [Uil)]"-1 [31]. 

In the present D = ] 0 case the appropriate homogenous space 

i6(e)xSt>(i 1) ' s noncompact, since the analog of the group-space G is 

here the space C denned by the kinematical constraints (2.21) on u° , «<,*. 

H = 5 0 ( 8 ) x 5 0 ( 1 , 1 ) is the internal group of local rotations of ujj, va ' 

(2.21). The fact that our harmonic superfields *(*), z = (x»,0a,u°,Va*) 

are actually functions on S6(a)xS6(i,i) *s expressed by the property that 

they identically satisfy: 

DahO(z) = (Dab + E o t )*(2) = 0 (C.l) 

D - + * ( z ) s (ZT+ - g)*(z) = 0 (C.2) 

In (C.1),(C2) Dah,D+~ are the same as in (2.24),(2.25), i.e. they are 

"orbital" parts of the 5 0 ( 8 ) and 50 (1 ,1 ) rotations, whereas E"6 denotes 

the "spin" part of SO(8) and q denotes the SO( l , 1) charge matrix. 

Iu general, <P(z) may be a direct sum of components transforming un­

der different inequivalent representations of the "spin"-part Eafc in (C.l) 

and possessing different half-integer or integer 5 0 ( 1 , 1 ) charges in (C.2). 

This is precisely the case in the present formalism - see eqs. (3.25) 

(3.30),(3.31). Therefore, it is sufficient to analyze (C.1),(C2) for har-
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monic superfields of the form: 

*(z) = «<«){eH+i<0{-H(z) 
W W (C.3) 

{c}=(c, e,), { + l d } = ( + i d , +idm), { - l e } = ( - | « , - f e „ ) , 

with an overall 50(1,1) charge q+^(m—n) (q is integer) and whose exter­
nal SO(8) indices (ci,...,cj), (di,...,dm), (ei,...,e„) transform respectively 
under the harmonic (v),(s) and (c) representations (B.7)-(B.9): 

I m n 

[D"b + £ Vab(i) + £ Sa"ti) + £ S"\kMz) = 0 (C.4) 
i = i j = i fc=i 

[ ^ - + - ( 9 + j - f ) ] * ( ^ = 0 (C.5) 

In (C.4) Vofc(») denotes the action of Vab (B.7) on the i-th index c,: 

Vo6(t')*(z) = (y o 6 ) C i . * ( , ) ( c i ci>—c'){+|<'}{-i<:} 

and similarly for Sab(j), Sab(k). 

Now, recalling formulae (B.18)-(B.20) we find that each external 

SO(8) x S O ( l , l ) index cj, ( + | d j ) , ( -£e f c) of $(2) (C.3) can be un­

ambiguously saturated by u£S (v+i<rd')aJ, (v~icrek)Pk. On the other 

hand the integer charge g can be unambiguously saturated by g vectors 

a* = v^a^v^ (depending on the sign of q). Therefore: 

Hz) (eg. (C.3)) = H* ....«£««•....ti«}x 

(B+M0^.V*^-)"-(«-*O^->-*^-) fc<}
}$(*) 

(c.oj 

{M}3(*<I<—,Pf) . {»}S{vi,-.,»l) , 

{«)=(oi «•») • {/3}=(/Jl A.) , 
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where the cv ••fficient superfields identically satisfy: 

<!>*\2>-+)*fc}$(*) = 0 (C.7) 

i.e. they belong to the space % (2.28),(2.29) of harmonic superfields 
without any external SO(8) x SO(l,l) indices. 

Next, we observe that harmonic superfields belonging to Wo in fact 
depend on the Lorentz-spinor harmonics va * not in an arbitrary way but 
only through the light-like composites u* = v^cr^v^i (see (2.28),(2.29)). 
Therefore the field from Wo depend only on 45 independent combina­
tions of the harmonic variables u°, u j (accounting for their kinematical 
constraints), which implies that the general solution of the 45 Dirac con­
straint equations 

(£><•*,D-+,D+o,D-")0(z) = 0 , (on Wo (2.28), (2.29)) (C.8) 

is <P(z) = *(x, 0), i.e. it is constant with respect to to (u, v) (cf. (2.37)). 
The analog of the Dirac system (C.8) for the more general harmonic 

superfields (C.6) with external SO{&) x SO(l, 1) indices reads: 

(Dab,D-+,D+a,D-")*(z) = 0 (C.9) 

where Dab, D - + have "spin" parts E"6, q as in (C.4),(C5) and D~a ac­
cordingly reads (3.29): 

D-' = D-'-^q-^"' (CIO) 

Let us point out that the system (C.9) is consistent only on-shell, i.e. 
when (-d2)*^) = 0, since (recall eq. (4.2)): 

[£>-", £>"*] = (d+)-2Vb(-&) 

Now, inserting the general expression (C.6) into the system (C.9) and us­
ing the formulae (B.18)-(B.22) we get precisely eqs. (C.8) for the coefli-
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cient harmonic superfield */£w/n(z)- Therefore, the general solution of 
eqs (C.9) read: 

*(«)|on-.*«ll = «J, ••••«* ul\..:Ul\X 

(v+lodi)aK..(v+io4~)a~(v-iaeiy*l.4v-lff^)^0\£}
l$y(,x,O) 

Eqs. (C.ll) is the precise statement of the on-shell pure-gauge nature 
of the auxiliary harmonic variables (u, v) (2.21) for arbitrary harmonic 
superfields carrying external SO(8) x SO(l,l) indices. Namely, on-shell, 
the whole dependence of <P(z) on (u, v) is only through a fixed monomial 
in (u, v) carrying the external SO(8) x 50(1,1) indices of *(z) whereas 
the physical fields are contained in the ordinary superfield *{au»}(1)'')' 

Property (C.ll) exactly parallels analogous properties of D=4 har­
monic superfields in [31]. 
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