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ABSTRACT

We construct a gauge invariant superspace action in terms of uncon-
strained off-shell superfields for the D=10 Supersymmetric Yang-Mills
(SYM) theory. We use to this effect:
(i) the point particle limit of the BRST charge of the covariantly quan-
tized harmonic Green-Schwarz superstring,
(ii} a general covariant action principle for overdetermined systems of
nonlinear field equations of motion.
One obtains gauge and super-Poincare invariant equations of motion
equivalent to the Nilsson’s constraints for D=10 SYM.

In the previous approaches (light-cone-gauge, component-fields) one
would have to sacrifice either explicit Lorentz invariance or explicit super-

symmetry while in the present approach they are both manifest.
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1. Introduction

It is hoped that a relativistic quantum theory of supersymmetric
strings [1] can describe in a consistent way the quantum theory of space-
time i.e. quantum gravity [2]. Unfortunately the proof (or disproof) of
this conjecture was not completed to this date [3] because it was impossi-
ble until recently to express the quantum theory of superstrings in a form
which displays explicitly the super-Poincare invariance.

In fact the form of the theory which forsakes the space-time super-
symmetry (SUSY) - the Ramond-Neveu-Schwarz (RNS) formalism [4], is
also very awkward in expressing the super-Yang-Mills (SYM) and super-
gravity (SUGRA) field theories in the massless sector of the superstring.

Indeed, the zero-mass bosons, described by these theories are in fact
appearing in the RNS formulation as string-excitations and are recognized
as the physical (degenerate) string ground states only after the GSO [5}
truncation which eliminates the Fock-space ground state together with
half of the spectrum.

It is strange that these gauge particles should appear at the excited
string level while in fact describing infrared properties of the model and
string ground states.

This way of appearance of the SUGRA and SYM gauge particles
greatly obscures their relation with the geometry of supersymmetric
space-time which is believed to be the physical fundamental reason be-
hind their. very existence [6].

This relation of the superstring with the supersymmetric space-time
geometry is more naturaily expressed within the the explicitly space-time
supersymmetric formalisms of the Green-Schwarz (GS) superstring [7]
and its point-particle limit- the Brink-Schwarz (BS) superparticle [8).
However, until recently, it seemed impassible [9] to quantize the GS and
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BS systems while preserving the manifest super-Poincare invariance.

In a series of papers [10-15] this obstacle was overcome through the
introduction of appropriate ”spinorial vielbein” variables called "harmonic
variables”.

It becomes now appropriate to address the question of how the SYM
and SUGRA theories do appear in our explicitly covariant quantum su-
perstring formalism, i.e in which sense is the GS superstring theory a gen-
eralization of the SYM and SUGRA theories. After all, the very purpose
of the superstring theory is to provide a generalization of these theories
which is finite through the regularizing effect of its infinite tower of ex-
cited modes.

The space-time SUSY and YM gauge invariance, are important also
technically,as tools in finiteness proofs [16]. For the superstring theory
such a proof is necessary for the very consistency of the theory. In the
RNS formalism there is little hope that such a proof can be performed as
the quantum perturbation expansion in higher than two loops is plagued
presently by severe complications [17].

The explicit space-time supersymmetric superfield approach is also a
very desirable tool in string phenomenology. Some successes were already
obtained in the study of the spontaneous symmetry breaking mechanisms
which govern the "low” energy spectrum and dynamics of the string the-
ory using a supertield effective action for to the low-energy states. [18].
The direct use of the superstring field action might improve these studies
solving in particular the problems of CP violation, cosmological constant
etc. One may hope to explain some of the "miracles” appearing in the
RNS formalism [19).

In ref. {15) it was shown how to describe the interactions of the co-
variant quantum GS superstring in terms of explicitly supercovariant
dual-mode! massless vertices.

The long range objective of the string-field theory approach is the



systematic study of the nonperturbative quantum ground state of space-
time in a way quite similar to the study of the ground state of any other
theory (QCD, electro-week, etc). The practical use of the second quan-
tized formalism requires that we describe interactions also in the frame-
work of the resulting super-string-field-theory.

Since in the GS formalism there is no GSO truncation, the field theo-
ries characterizing the zero-mass sector are expected to appear in a natu-
ral way already at the point-limit level.

Therefore, before attacking the issue of the super-Poincare invariant
superstring field theory it is appropriate to study its massless limit.

In the present paper we use the BRST charge of the super-Poincare
covariant first quantized GS superstring with N=1 space-time SUSY com-
puted in [15] to construct the gauge and super-Poincare covariant field
theory corresponding to its zero-mass sector (i.e. the D=10 SYM) in
terms of unconstrained (off-shell) superfields.

To this end we employ (and review below) the general covariant ac-
tion principle for arbitrary consistent overdetermined systems of nonlinear
field equations proposed in our preceding paper [20].

The actions obtained this way resemble the Siegel-Zwiebach-Witten-
Neveu-West [21] construction of (super)string field actions but do not in-
volve the peculiarities (star products, Chern-Simons forms etc.) specific
to the field theory of RNS strings. The main tool on which our covariant
action principle is based is the BFV-BRST ghost formalism [22] . -

The use of this actiop principle to derive the superspace aci:ion~ for
D=10 SYM in terms of unconstrained superfields is inevitable since, as we
show in section 5, the D=10 SYM on shell squations (the so-called Nils-
son constraints [23], see equations (1.9) and (5.1),(5.3-7) below), can be
reformulated with the help of the auxiliary harmoni: variables [10-15] as
a consistent overdetermined system of nonlinear superfield equations
meeting all the requirements for application of our covariant action princi-



ple.

The D=10 SYM is a fascinating system in his own right [23,24,6,25]
as it has deep connections with integrable systems (i.e. admitting Lax
representation), super-twistors, light-like geometry of space-time etc. By
dimensional reduction to D=4 it yields the N=4 SYM which has the re-
markable property to be a finite quantum field theory. The supersymmet-
ric D=10 SYM field theory was discovered in the component formalism
by [5,26) and has an on-shell supersymmetry due to the celebrated Fierz
identity for D=10 o-matrices:

(0")ap(0p)+5 + (0%)5+(Tu)as + (0¥)va(ou)ss = 0 1.1

It is this identity (and its analog in D=3,4,6) that is responsible for the
manifest {classical) SUSY of the GS superstring (7). (1.1) stands behind
many beautiful mathematical constructions (division :lgebras, triality re-
lations, etc.) which are accumulating more and more evidence to be in
deep connection with D=3,4,6 and 10 SUSY {27].

Unfortunately, in the form in which it was discovered, the SYM La-
grangian:

- L) - e =

was not explicitly supersymmetric. In (1.2)w, is a left handed Majorana-
Weyl D=10 spinor while 7, and v, are gauge covariant expressions in
terms of a gauge vector field a,(z):

19f = [94, 9] (1.3)

Vu = Ou +1glay, ] (1.4

We use here lower case characters a, v, f, w, ¢ etc... in order to emphasize

that the respective expressions are ordinary fields and not superfields as
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we will use in the rest of the paper and denote by capitais: A,V,F, W, ¢.
Later we will also introduce ghost-haunted superfields which we wii! de-
note by 4, 7, W, ® etc.

The field equations of motion which this field action generates by
varying with respect to a and respectively w are: generalizations of the
Maxwell

Hf = g(a,)aﬂ{w,,,wﬁ} (1.5)

and respectively Dirac
fw=(0°)Pv,w5 =0 (1.6)

equations.

The lack of off-shell superspace formulation of (1.2)hampered its
study and the extension of its successes to other models (may be even
superstrings).

In order to obtain an explicitly supersymmetric theory it was tried to
formulate the theory in terms of superfields:

18

o(z,60) = 8(z) + 3 %o.,, B ™0 (z) .7)
r=1""

These attempts to formulate the theory in superspace lead to more
tantalizing discoveries. The general 1-form gauge superfield in the D=10
=1 superspace:

A(z,0) = dz* A (z, 8) + d0. A%(z, 0) (1.8)

describes too many degrees of freedom and in order to describe just the
on-shell SYM it has to be submitted to certain constraints (the Nilsson



constraints) [23]:

gF*f = {V*,VP)} - 2i(c*)*?V, =0 (1.9)
where:
Y, =0, +ig[A,, ] (1.10)
Ve = D* 4 g[A%, )} (111)
D= a_g; + i(0*)*PG,8, (1.12)

The structure of the constraints which the superfield ha: to fulfill iz order
to describe on shell the SYM spectrum turned out to have deep geomet-
rical meaning in the sense that it can be interpreted as the integrability
conditions [6] for certain systems of linear partial differential equations.
In fact in the case of SYM, these partial differential equations express the
pure gauge character of the field along arbitrary light-like superspace di-

rections A¥:

T = Zh 4 W — (o), 80¢°

Oy = 02 + /\“aa‘ge[’

where (zg,8°) parametrize the offset of an arbitrary super-light -like ray
while (t,e*) parametrize the position within the super-ray.

This pure gauge character of some of the field-theoretic degrees of
freedom is in turn related to the fermionic x-gauge invariance [28] essen-
tial for the consistency of the GS superstring [7]. On the other hand the
integrability conditions (1.9)together with their consequences from the
Biancchi identities for the covariant derivatives (1.10),(1.11) can be shown
to be equivalent to the ordinary field equations of motion obtained from

the (1.2)Lagrangian [6,24,25].



The great puzzle was the fact that it was still impossible to find an
explicitly super-Poincare invariant action from which the Nilsson’s con-
straints (1.9) would appear as field equations of motion when the action
is varied with respect to the superfields. This impossibility was codified
in the statement [29)] that it is impossible (within certain assumptions)
to write a D=10 SYM action in terms of unconstrained superfields (i.e.
sup=rfields which vary freely off-shell and the only constraints appear
on-shell as a result of the free variation of the action). The existence of
a covariant unconstrained superfield action is the necessary basis for a
quantum field theory which explicitly displays all the super-space-time
invariances of the model.

Similar properties are shared by N=2 type B D=10 supergravity [30]
and of course, at least in some sense, by the superstrings.

The harmonic ”spinor-vielbein-like” variables avoid the above no-
go theorems [10-15]. This is not completely unexpected in view of simi-
lar successes obtained by the harmonic superspace approach in different
contexts [31]. Moreover the apparent relation of certain ”vielbein-like”
auxiliary variables with supertwistors [32,33,34] renders natural their use-
fulness in describing massless systems [6,25].

In the present paper we show explicitly that our gauge and super-
Poincare invariant unconstrained superfield action based on the point-
particle limit of the BRST charge @ prst of the Super-Poincare covariant
GS superstring gives on-shell the Nilsson constraint equations of >=10
SYM.

The plan of the paper is as follows.

In section 2 we review pedagogically the develop:nents [10-15] which
lead us to the super-Poincare covariant @ grsr of the GS superstring.

In particular we explain the origin of the auxiliary variables and of the
additional gauge invariances. Also the statement in the recent paper by
Kallosh and Rahmanov [35] claiming " nonunitarity” of our formalism is



shown to be incorrect.

In section 3 we describe the super-Poincare covariant first quantiza-
tion of the N=1 BS superparticle (the zero-mode of the GS superstring)
in the Dirac canonical formalism.

Section 4 is devoted to the covariant first- and second- quantization
of the D=10, N=1 BS superparticle in the BFV-BRST formalism.

In section 5 we derive a harmonic superfield representation of the
Nilsson constraints for D=10 N=1 SYM and prove its equivalence to the
original Nilsson constraints. In particular, the linearized form of these
harmonic superfield equations is shown to exactly coincide with the Dirac
constraint equations for the superfield wave function of the covariantly
quantized D=10 N=1 BS superparticle.

In section 6 we review our general covariant action principle for ar-
bitrary overdetermined systems of nonlinear field equations and apply it
to construct a superspace action for D=10 N=1 SYM in terms of uncon-
strained (off-shell) superfields.

In section 7 we discuss the implications of the present results and the
directions for further developments. Appendix A summarizes the spinor
conventions while appendix B describes a remarkable Lorentz-SO(1,9)-
invariant SO(8) algebra. Appendix C supplies the general proof of the
pure gauge nature of the auxiliary harmonic variables, needed to perform
super-Poincare covariant quantization.



2.

2. The Super-Poincare covariant quantization of the GS su-
perstring

The present work constructs the unconstrained superfield action of
the D=10 SYM making use crucially of the point-particle limit of the ex-
plicitly super-Poincare invariant BRST charge of the GS superstring.

Such a BRST construction was possible as a consequence of the har-
monic superstring program for a manifestly super-Poincare covariant
quantization of the GS superstring which we developed during the last
year [10-15].

In order to make the structure and the origin of the BRST charge
construction clear, we will describe in this section in a sketchy but hope-
fully pedagogical way the main ideas and concepts of the harmonic super-
string program.

The GS superstring is formulated as a superspace generalization of
the bosonic string.

Indeed, it substitutes in the bosonic string action

1
SB =/d1'd£\/—g{—§g""' mX“auXM} (2'1)
in place of 3, X*# the superspace expression
O X" + i(60%3,,0) (2.2)

The resulting GS action [7] in the Lagrangian form is:

h 1 .
Sas= [dr [ dey=gi-Jom AT, — ie™ T8 S(-1) 4040208
x A

— €™"(810,9,181)(020% 3,62}
2.3)
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where

M4 =0n X +i Y (040*0mba) (24)
A=1,2

Here gmmn(7,&) ( m,n=0,1) is the 2-D world-sheet metric and X#(7,£),
04(7,€), (A = 1,2) are the superstring coordinates which are world-
sheet scalars. 64 are anticommuting (grassmanian) D=10 Majorana-Weyl
(MW) spinors. The last term in the superspace action (2.3)is crucial for
the correct physical content of the theory. Classically Sgs (2.3) exists in
D=3,4,6 and 10, however, after quantization, due to quantum anomalies
it is consistent only in D=10 [7]. From now on we shall always work in
the critical space-time dimension D=10.

The superspace formulation of the theory has very important poten-
tial advantages in the study of the conceptual foundations of the theory
and of its implications.

Unfortunately, these advantages could not be exploited until recently
because of severe problems in quantizing this theory.

indeed, the conditions for the application of the covariant Faddeev-
Popov procedure in the Lagrangian formalism do not hold for the GS su-
perstring since its local symmetries do not form a Lie group. Thus, one
has to return to the techniques of canonical Hamiltonian quantization.

The heart of the passage to the Hamiltonian formulation consists in
the introduction of conjugate momenta to the coordinates parametrizing

the Lagrangian L(q, ¢):

_ 6L{gi, gs)
pi = —_&ji (2.5)

For nonsingular systems, one can then eliminate the variables ¢; by
expressing them as functions of g;, p; from the system (2.5).

11



However, if the system (2.5)is singular [36] i.e.:

(as the GS superstring happens to be) this elimination cannot be effec-
tuated and two types of situations can arise which can be epitomized by
their simplest cases:

casel : p;=0 for some i in (2.3) (2.6)
case 2 : p;~g; for some i in (2.5) ; with p and § grassmanian.
27

In both cases, since ¢; does not appear, it cannot be ¢liminated. The
equations (2.6)and (2.7)are the simplest examples of first and respectively
second class constraints [36]. Given a constraint system, the precise defi-
nitions are:

1) A subset of constraints is first class if their Poisson brackets (PB) with
any constraint of the system are 0 modulo the constraints of the system
\i.e. "on the constraints shell”).

2) A subset of constraints is second class if the matrix formed by the
Poisson brackets among its elements is nousingular on the constraints
shell. )

It turns out that any set of constraints can be reduced to the form
(2.6)and /or (2.7)by appropriate canonical coordinate transformations
(which however break in general the space-time locality and the global
symmetries of the problem).

The GS superstring has constraints of both classes.

In order to concentrate on the essentials we will explain this on the
example of the D=10, N=1 BS superparticle [8] where the formulae are

simpler.

12



The BS action in the Hamiltonian formalism is:

S+ / dr [puBra* + p3d,6a — Hr (28)

Hy = )p? + A D° (2.9)
In (2.8) , 8, is a left-handed D=10 MW spinor”, A and ), are Lagrange
multipliers, and the fermionic constraint D reads:
D® = —ipg— P, (2.10)
The system (2.5)is therefore:
pg =i ™0 (2.11)
with
p’=0 (2.12)

In a particular frame: p = (p*,0,0,p~ = 0), and using a noncovariazt
separation of the D=10 MW spinors 8, (and also p§) into two SO(8) (s)
and (c) spinors 8}, 67, (2.11)reduces indeed to a mixture of equations of

the form (2.6)and (2.7):

i [”‘E] = [‘/ip+ g] [z+] (2.13)
Pg B
—i [Z{] - [ﬁ’(’:0+} (2.14)
(]

+ see Appendix A for our spiner conventions.
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which on components reads:

—ip} = V2ptet (2.15)

The first line is now explicitly of class 2 (cf. eq. (2.7)) while the second
line is explicitly of class 1 (cf. (2.6)).

In order to carry out the quantization procedure, one has to deal
separately with the first and second class constraints. In the technical jar-
gon the system of constraints has to be reduced to a covariant, first class
and BFV-irreducible one [22].

However, since (2.10)is an irreducible Lorentz expression (a MW
spinor), any separation of the type (2.15)-(2.16)has to break the Lorentz
invariaunce.

This was for years the puzzle of covariant quantization of the GS su-
perstring (and the BS superparticle): the spinor objects relevant for the
quantization procedure are too small to fit into a spinor representation
of the Lorentz group. In fact the structure of the constraints requires ob-
jects which transform under the group SO(8) x SO(1,1).

The solution of the problem lies in an analogy with the vielbein for-
malism of general relativity. Using vielbein-like objects we reduced the
GS superstring to a system whose constraints were covariant, first class,
and BFV-irreducible [13-15]. The covariant BFV-BRST quantization of
the system is then straightforward.

Let us now comment on the importance of BF V-irreducibility
[22] requirement which was often underestimated. Indeed, the BFV-
irreducibility is crucial [37,38,39] for the success of the super-Poincare
covariant BFV quantization of the GS and BS systems. The BFV-
irreducibility means the functional independence of the constraints. 'I'he

14



entire puzzle of the covariant quantization of the GS and BS systems can
be formulated as a clash between the concept of irreducibility of Lorentz
group representations and the concept of BFV-irreducibility of constraint
systems. If part of the constraints of a system are dependent, the BFV
procedure requires the introduction of additional ghosts. In particular, it
was repeatedly tried [40,38] to quantize the system by expressing the 8
first class constraints (2.16)covariantly in terms of a 16 component MW
spinor. This lead into trouble because 8 of the 16 components have to be
dependent. Then, the correct quantization procedure requires the intro-
duction of 8 (second generation) ghosts which will again raise the problem
of expressing covariantly 8 component objects. One can again try to do it
by introducing 16 (second generation) ghosts related by 16 (second gen-
eration) constraints out of which only 8 constraints are independent.
However the other 8 (dependent) constraints will again require 8 (third
generation) ghosts and so on. The procedure never <nds unless at some
stage one imposes directly and irreducibly 8 independent constraints [38}
which however are bound to break Lorentz invariance. In [38] the Lorentz
invariance is broken through the introduction of two fixed light-like vec-
tors N and M which are not dynamical variables. Even though it can be
formally shown that the physics does not depend of the direction of the
two fixed vectors N, M, their presence is no less a breaking of the explicit
Lorentz invariance than the imposition of the light-cone gauge.There too
one can show formally that the physics remains Lorentz invariant in criti-
cal dimensions.

Let us now return to our fundamental vielbein-like constyuction.
To better understand it, let us first see what is the role of the vielbein
variables in general relativity and then we will explain the role of the
vielbein-like variables in our formalism. In general relativity, the viel-
beins are introduced to solve the following problem (see e.g. [41] ). One
cannot introduce spinors as representations of tke general coordinate
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reparametrization group. The relevant objects (vector fields etc.) trans-

form as:

Vﬂ(z)-.v'"(z')—— V"( ) (2.17)

where the matrix $&- B’ — belongs to the GL(N, R) group. The GL(N, R)
group (2.17)does not have spinor representations.

However, spinors are representations of the SO(N) group which is a
subgroup of GL(N, R).

In order to express objects transforming under SO(N) without
breaking the GL(N, R) invariance, ore introduces some auxiliary vari-
ables: the vielbeins.

As by-product of conceptual value, the vielbeins constitute an ex-
plicit realization of the principle of equivalence which is the underly-
ing feature of the general relativity. Indeed, introducing the vielbeins
is in fact defining at each point in space time an arbitrary orthonormal
Lorentz frame. The equivalence principle requires that the physics is
independent of the particular orientation of the Lorentz-frame in each
point.

This requirement is realized by choosing the appearance of the viel-
beins in the Lagrangian in such a way that the physics is not modified.

Mathematically, these properties are expressed as follows: The viel-
beins have N-valued GL(N, R).indices ¢ which identify them as space-
time vectors and N-valued indices a which index them as the elements of
a basis. The fact that the basis is orthonormal is expressed by:

euue"b = 7ab (2.18)
(where 7g = diag(—, +...+)).
The principle of equivalence is realized by requiring that the physical

quantities are invariant under the rotations of the local orthonormal ba-
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sis. In other words, the theory possesses a local SO(N) invariance acting
on the internal indices a.

The presence of the vielbeins allows now to express objects covariant
under SO(N) but not under GL(N, R) in a way in which GL(N, R) is
not broken.

For instance a spinor transforms as:

#(z) — A(z)¥(z)

where A is an SO(IN) matrix written in the spinor representation. Also a
GL(N, R) vector can be expressed in terms of N GL(N, R) scalars orga-
nized as an SO(N) vector:

Ve =iV (2.19)

Let us now see how these ideas apply to our case. We want to be
able to express objects transforming as spinors of SO(8) without breaking
the SO(1,9) Lorentz symmetry of the system .

To this end we introduce the auxiliary variables [10-15]:

ul,vit (2.20)

where the indices y, a transform as vector and MW-spinor under the
global Lorentz SO(1,9) respectively, while the indices a,+1 transform
respectively under the internal groups SO(8) and SO(1,1). These aux-
iliary variables will act as "spinorial vielbeins” hridging covariantly be-
tween SO(1,9) and SO(8) spinor objects. Due to the remarkable triality
properties of SO(8), the indices a can be chosen to transform in any of
the fundamental (s),(c),(v) representations of SO(8).

17



The orthogonality relations analogous to (2.18)are:

u:ubu = Cab
w2} (o#)PuEtug = 0 (2.21)

[va ¥ (o*)®8u} o7 (0,) 7005 3 = -1

In the first line of (2.21) C% denotes the invariant metric tensor in the

relevant SO(8) representation space (see appendix A).
In the sequel the following two light-like vectors ujf will appear,

which are composite variables built out of the elementary variables v 3,
uf = v:*(a,,)"ﬁv:* (2.22)

This construction automatically encodes the light-like geometrical charac-
ter of u¥ which is due to the D=10 Fierz identity (1.1). There are indica-
tions that this fact has deep relations with the twistor light-like geometry
of space-time [42,33,34]. Henceforth , we shall use the shorthand nota-

tions:
uf as in (2.22)
A% = u"fA“ = v**/‘l v}
f=ug At otiir = u:'l...u;":a[“'...a""] (2.23)

for any Lorentz vector A#. Let us particularly stress that A% A° are
Torentz scalars and they should not be confused with the vector compo-
nents of A* which appear in the non-covariant light-cone formalism.

18



The gauge invariances insuring that the introduction of the vielbein-
like variables u, v does not affect the physics are expressed in the Hamil-
tonian formalism by the first class constraints:

Dot = u“i _ub i + %(v""}a’“b—a— + v"}aaba;%) (2.24)

"‘au,, "o av"‘%
1 a -1 0
D+ = (it -zt 2.25
e (2.5
a 1 a
ta — , + it 3 O )
D** =y Bun + zV7 050 571 (2.26)

They express the fact (analogous to the principle of equivalence) that the
physics is invariant under arbitrary rotations of the ”vielbein-like” frame
(u,u¥). The operators (2.24)-(2.26)represent indeed the SO(1,9) alge-

bra under commutation:

[Dab’ Dcd] = CbcDad - CacDbd + CadDbc - deDnc

[D%, D%¢] = CbeDxe _ Coep*b . [D%, D=+ =0
[D—+‘Di:a] = 4 D*e (227)

[D+a’D—~b] = CubD—+ + Dab

From (2.27)one immediately recognizes D, D~* as generators of

50(8) x SO(1,1) whereas D** are recognized as the coset generators
. SO(1,9

corresponding to AR TAIT
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The second important requirement is the requirement about the
specific dependence of the wave functions ¢(z, 8, u,v) on the auxiliary
variables uf, v.f ¥ The representation space Hp of the quantum algebra
(2.27)is spanned by definition by functions of the following general form
(here ¢ is taken in the momentum space representation with respect to

z):

o(p,0,u,v) = By By Uiy oMY g 2.28
(P’ o v) E ( + )m(p"' )(p— )(p—) kel (P’ ,u,u) ( . )
Or}

(recall p* = v} pv*1), where ¢{}*? are defined by the following
specific expansion in the auxiliary variables u,v (recall (2.22)):

¢,{j}{"}(p, 0,u,v) = Z [uft - uizlsoes) singterti, - ud ug, ug,
{sH~x}
x o’{‘;\n}i‘"}{u}{ﬂ}(p’ 9)
(2.29)

The expansion (2.29)is characterized by the fact that each term is a
monomial in the auxiliary variables in which all the S0O(8) x SO(1,1)
indices are saturated among the uj;’s and the uf,t %’s only, whereas the
coefficients ¢,£?3.£"}{” Hel (p, 6) are arbitrary ordinary superfields inert
under the SO(8) x SO(1,1) internal group, i.e. they do not carry any
SO(8) x SO(1,1) indices. In order to have the terms of the expansion
(2.28)all independent, the coefficient superfields have to be symmetric in

the indices {\} and {v} :

0,{c}"'\"'"'\"""{"}(p. 6,u,0) = 0,{‘;..,\,»...,\.-....}{9} (2,0, , v)

oi;\}{...ui...v,-....}(p’ 9,u, ‘U) = o’{‘;\}{...uj...v.'....}(p, 0’ u, v) (2.30)
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the homogenous space mﬁ instead of being a function on the
original space £ defined by the kinematical constraints (2.21)on vf %, u.
Hence the functions of the form {2.28)will be called harmonic super-
fields whereas the functions (2.29)will be called analytic harmonic su-
perfields (because of their analytic dependence on ua , ). This also
justifies the name "harmonic” for the auxiliary variables v %, uf; which
effectively enter the present formalism through W)TLSD?TTTT' Analytic
harmonic superfields were first introduced in a different context in [31].

Let us point out, that the harmonic superfields (2.28)(2.29) are also
characterized by the fact that they do not carry external overall SO(8) x
S0(1,1) indices (hence the subscript o in the notation Hy of their space).
In section 3 we shall introduce more general harmonic superfields bearing
external SO(8) x SO(1,1) indices which are simply expressed in terms of
the fields (2.28),(2.29)(see also Appendix C).

Now, one can easily deduce (cf. [11]), that the Dirac constraint equa-
tions:

(D, D~+, pte D*)e =0 (2.36)
on the space Hy (2.28),(2.29)imply (in the notations of (2.28),(2.29)):

®g000(p, 8) = arbitrary,

237
SN g, 00 0| (k1mym) £ (0,0,0,0) o0

i.e. the Dirac first-class constraints (2.24)-(2.26)together with the spec-
ification (2.28),(2.29)of the representation space My imply that uf, uE i
are pure gauge degrees of freedom. A simple explanation of this property
is that the harmonic superfields from Hy (2.28),(2.29) depend on.ly on 45
independent combinations of harmonic variables: ug, u¥ = v¥ig, vt

* The 100 h ic combinati ”,uf are subject to 55 kinematical constraints
(cf. [46]): ulubt = Co, udu®s =0, (u*)? =0, ufu=# = -1
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v & - W

which exactly matches the number of equations (2.36).
The restriction of the quantum states of the harmonic formalism
o(p, 6, u,v) to the form (2.28),(2.29), i.e. to the space Hy is crucial. It
is this restriction which substitutes within the harmonic formalism for the
"missing”
14 gauge invariances =
59 (the number of independent uz,v‘f% from (2.21) )
— 45 (the number of D%, D~+, D*9)

which would be necessary to gauge away completely all the u$’s and the
vf *’s if the wave functions ¢ were allowed to depend arbitrarily on the
u2’s and the vids:

/] bl "

Parbitrary(D, 0,1, v) = E ugl.ugn v;',*...v:,év;l*...v;f
{sH{aHB} (2.38)
(m—~

x 0:-1,(:-" ky{uH{aHB} (,0) .

Overlooking the crucial difference between the naive wave func-

tions (2.38)and the relevant space Hy of quantum states defined by
(2.28),(2.29)lead to a statement in a recent paper by Kallosh and Rah-
manov [35] claiming the "non-unitarity” of our formalism. The above
explanation, and the discussion in Appendix C below, shows that their

claim is not correct.
From the constraint algebra (2.27)one easily deduces the action de-

scribing the pure-gauge "dynamics” of of the system of harmonic vari-

ables ug, vf i:

Sharmenic = -/.d'rwaa"'“: + p;%oa,-u:% + Ptioarv;% (2.39)

—AapD® — At—D~t _A7D** — AF D™

Because of the kinematical constraints on (u,v) (2.21), their respec-
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tive conjugate momenta are similarly kinematically constrained:
P u =0
p“ u*%‘a’“v*% = (2.40)
+§ + v—lpt ia =0

In (2.39)A4s, ..., AT denote Lagrange multipliers for the correspond-
ing first-class constraints D%, ..., D=9 which are the classical counterparts
of the harmonic differential operators (2.24)-(2.26)and, therefore all con-
straints are first class.

The classical analog of the requirements (2.28),(2.29)on the repre-
sentation space H, of quantum states is the requirement on the form of
the classical “observables” [11]. The latter are not arbitrary functions of
(u,v) and their conjugate momenta (p,,p,), but are given as expansions
in (4, v; pu, pv) where all internal SO(8) x SO(1,1) are saturated among
U, ¥, Py, Pv and, therefore the corresponding coefficients do not carry any
S0(8) x SO(1,1) indices.

The BRST charge corresponding to (2.24)-(2.26)reads:

] 7]
Qharmomc = ”7¢b[Dab + ,7+a 17+b
3775 aﬂu
- K- + a 3 ]
n a’h, n a_ ’lda’ld ﬂdaqd
e 8 - (2.41)
+in*t=[D ++'I§';97’3:—'Ia EE]
+ing D*e
a i) - 8
+inf[D™% + 97 5 ek
where
fabs 0t 7,0+, p70 (2.42)
24
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are the ghosts corresponding to the constraints
Dab, D_+,D—",D+“- (2.43)

Let us now see how the presence of the auxiliary variables allows us
to express separately the first and second class constraints [11).

Given the constraints (2.10), and using the vielbein-like harmonic
variables (2.21) we can express the 16-component 10 D MW spinor con-
straint (2.10):

D® = —ip§— p°°6,

in terms of 2 sets of 8 Lorentz scalars (organized as two SO(8) spinors):

G = Lutz ()% (04 )y DY (2.44)

DHe = 2yt i(an)of ps DY (2.45)

The projectors in front of D7 are chosen such that the Lorentz indices are
saturated. In particular one sees that without the v’s it is impossible to
saturate the Lorentz-spinor indices. However v 5 together with (o#)?
can convert a spinor index g into a vector index # which is then saturated
with an ug. The role of o+ (cf. (2.23), + is an internal SO(1,1) index
which is inert under Lorentz transformations) in (2.44)is to appropriately
rise a spinor index. The role of g in (2.45)is to make D+ first class.

It turns out that indeed G*+%2 constitute 8 second class constraints

(i.e. the matrix of their Poisson brackets
{GHie, g4 pp = iptC®® (2.46)
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is nonsingular) while (2.45)are first class (i.e.:
{D*3%, D) pp = —2i(pt)p? ( = 0 modulo constraints)).  (2.47)
In turn D® can be reconstructed out of Dy ¥ and G’:%:
D = (p*)" (ot h)e Dt 4 (p*) N (potatvHyeGHE (2.48)

Once the covariant separation of the constraints is effectuated, one can
use a trick invented in [43,44] to transform the second class constraints
G+3e (2.44) into first class constraints G*3° without changing the physi-
cal content of the constrained system” by introducing auxiliary dynamical
real fermionic variables ¥* [13,14] with transformation properties*” and
Poisson Brackets similar to the second class constraints which they con-

vert into first class ones:

Gtic =Gtio 4 \/ptus (2.49)
{2, ¥} pp = —iC*® (2.50)

One can then use the decomposition (2.48)to reconstruct [13,14] the
Lorentz MW-spinor first-class constraint D* out of the first class con-

straints D+#¢ (2.45) and G+i2 (2.49):
D= ()7 et Df 4+ o) poret et
= D° + (p*)~H(pototv-t)eu, )

The introduction of the auxiliary fermionic variables ¥ (2.50) into
{2.51) necessitates the simuitaneous modification of the harmonic first

+ In some special cases [34] the Faddeev-Shatashvili trick works even when separa-
tion is not possible. However, the auxiliary vielbein-like variables u,v are always
necessary. It turns out that they are related with certain twistor-like D=10 objects
(34]

»x The ¥’s are related to the gr odd comp ts of certain supertwistors [34]
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class constraints (2.24)- (2.26):

De _ Db = D% | Reb, (2.52)

D% o = = p~b _ If—jﬁ"b, (2.53)
with D=+, D** remaining the same, where:

Rt = %(sub) e (2.54)

(§%%)ca = % 34 a = %v‘%acaa"a*'adv_% (2.55)

The 8x8 matrices $° (2.55)are precisely the D=10 Lorentz-invariant
generators of the harmonic SO(8) (c)-spinor representation (see Appendix
B).

Also one can easily check, using the explicit expression (2.54)and the
anticommutation (upon quantization) relations (2.50), that:

[R*®, Re] = CY*Red — C*°Rb 4 C4Rb — CPeRee (2.56)

(D, R =0 (2.57)

Thus, both parts D% (2.24)and R%® (2.54)in the modified first-class con-
straint De® (2.52)(generating once again the SO(8) algebra (2.27)under
commutation) may be interpreted as harmonic "orbital” and harmonic
"spin” SO(8) rotations respectively. The implications of these will be
elab rated upon in Section 3 (see also Appendix C).
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The modifications (2.52), (2.53)are needed in order to preserve the
first-class property of the new system of covariant and irreducible con-

straints:

p?, D*(2.51), D*4(2.52), D-*, D*?, D~*(2.53),

0, 0)pn = 21

{ﬁ—a, Dﬁ}PB = [—%(P+)_*(G’+0’abv-*)a\l’blp2

i{D+",.b'°}p3 = cetp-+ + Db

all remaining PB relations being unaltered.
Thus we arrive at the harmonic BS action [14]:

Sauperparﬁcle = SBS + Sharmonl'c

Sps= f dr[pu0, 2% + p§d0, + i¥°8, ¥, — Ap® — AaD")

S‘hurmam'c = /dT[Pﬁ,aru: +P;%a 'rv:% +p:*aarv;*
— AgpD® — At—D™t — A7 D*e — A D9

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

The new action (2.63)-(2.65)is physically equivalent to the original BS ac-
tion (2.8), however, it possesses the decisive advantage of having super-

Poincare covariant and irreducible first-class constraints only (2.58)-

(2.62). Thus, the super-Poincare covariant canonical quantization of the
BS superparticle (either @ la Dirac or in the BFV-BRST formalism) is

now straightforward (see Sections 3 and 4).
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Let us particularly stress, that all first-class constraints (2.58) and
the auxiliary fermionic variables ¥, (2.50) are all real. Therefore, the
harmonic BS-action (2.63)-(2.65) is real too. The harmonic BS and GS
actions in [13-15,34] are also real. This is to be contrasted with our ini-
tial choice of a set of BFV-irreducible first-class constraints in the very
first paper on the harmonic superstring program [11]. There, we have
used the special constraint structure of the N=2 BS superparticle to form
holomorphic (rather then real) first-class combinations” out of the two
available fermionic constraints D§, A = 1,2. Thereby we escaped the
necessity to introduce the auxiliary fermionic variables ¥4 [13-15] through
the Faddeev-Shatashvili trick [43).

The harmonic super-string action in the hamiltonian formulation is a
generalization of the above harmonic BS action (2.63)-(2.65) [13-15):

S' = SIGS + ghur‘manic (2-66)

Sos = fdffd{[P 0. X%+ Y (P§a0r0n0 +i¥50-¥ a)
A=12 (2.67)

- Z (AATA +AA¢.D )]
A=1,2
The main characteristics of this harmonic superstring action
(2.66)(2.67)are:
1) it contains the harmonic space variables vf l, ug;
2) it contains new fermionic string variables U5 (£);

+ In references [12,35] the action is also not real because the constraints E+/ in
[12] (identical with F/+ in [35]) are holomorphic and their complex conjugates E—7
were not included in the action. Howcver, this is not a drawback of refs. [11,12,35]
since it is perfectly consistent to quantize in the canonical Dirac formalism systems
with holomorphic (instead of real) first-class constraints (see [50] and appendix C
of [11]). The corresponding procedure is called the Gupta-Bleuler quantization.
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3) all its constraints are first class and irreducible;

4) the space-time supersymmetry is realized linearly;

5) it possesses a larger set of gauge invariances and it reduces,in a partic-
ular gauge, to the original GS action.

The term Sparmonic in (2.66)has precisely the same form as
Sharmonic (2.39)with the constraints D**, D~* appropriately modified due
to the introduction of ¥%(£) (cf (2.52)(2.53)). Accordingly, the new first
class, independent and covariant system of constraints is more compli-
cated [15]. The constraints generalizing the harmonic constraints (2.24)-
(2.26)are:

-+ = _ —_
D 2(v¢. 73 e 6v;}) (2.68)
D+ = ur 2 +zvioto® (2.69)
= g — i
Dt=Dt+%" / dERD, (2.70)
A lx
D—=p—-%" / de(TT%) ' 4 RE
Ay
(2.71)

T
=3 0* [ @y R o oart 8,
A -

where (cf. (2.54)):

R = 2(8%%)a TS T, 2.72)

[ Rt

{2 A(€), ¥5(n)} pB = —i648C*°6(E — 1) (cf. (2.50)), (2.73)

and §° is the same as in (2.55)(cf. appendix B). The bosonic constraints
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generalizing p? are:
Ta(§) =10, — 4i(—1)40, D5 + 2i(-1)A¥5 ()00 (6), (2.79)
with the notation:
% = P* 4 (—1)A[X"* + 2i0,40"8",] . (2.75)
The fermionic constraints (2.51)are generalized by:

D3(€) = D5(6) — i(-1)A(I15) " (0%°0* 0))* Rase

2.76
+ (M) H (M0t otvh)ew,, (276)

where D9 is the mixture of first and second class constraints appearing in
the original GS formmlation [7):

D = —ip§4 — [P* + (—~1)A(X"" + i0,40"0')](0,04)™ -

The PB algebra of these covariant, first class, BFV-irreducible constraints
(2.68)-(2.71),(2.73),(2.75) is:

{74(0), Ta(m}es = 8(- DA645(TAOF (€ ~ 1) + FTHEOE - s 2.77)

{Ta(€), Dg(m}pB = 4~1)*648D5(£)8 (€ — ) ; (2.78)

{D5(€), DB(M}pe = 8a80(E — n)(o)*P(IL5(E) Q) (2.79)

—ifD=e, s = Y [demh RSN (280)
Ay
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i{ D%, D~} pp = CO D~ — .Cacﬁ—la
i{D“b, btd}l’B = Cbcbud — CacDbd + Cudﬁbc - deDac’
i{D®, D} pp = C*D*e — C*D**, {D*, D *}pp=0;  (2381)
i{D_+7D+a}PB = 4+D*e,
iD=+, D%} pp=-D"% (2.82)
i{D*%, D%} pg = C*®*D~* + D°®; (2.83)

(D=, D3O} ps = —5MEE) Ho o™ ) Lan(©R4(0),  (289)
where the following notation is used:
Qa = T + 4(-1)404.D% (2.85)

The information of the constraint algebra (2.77)-(2.84) is encoded in
the BRST charge [15):

QBBST = Qharmom’c + Qatring ) (2‘86)
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A N 7 8
rmonsc = : a Ddb o b
Qharmonic = inas[D*® + 9 p A
—a 3 -5 9 0 9 o
5

+in '[D it — e g -]+maD+“

o 3
+ind (D™ 497 s e -t By

ot

+3% / GE(ITE)H R — (T (xa0 0w H)E)

(—+41,( 1)*‘0,4,,66 yovng)|
(2.87)
v iy = di(=1)A(y = 4 oo 2
Qnrmp—zA:__[dE{cA[TA 4i(-1) (C’AécA +XA°5XAu)]
+ XaaDF + () (a0 xa)l s + 4i(-1)pa 1}
(2.88)

The ghosts appearing in (2.87)-(2.88)correspond to the following con-

straints:
ghost  constraint ]

ca(€) Ta(€)
X4a(£) 2A(3)

Tab Deb (2.89)
g+- D+
n—a D+a

A ’7+n b—a J

In [15] it was shown that using the harmonic superstring formula-
tion ja the dual model framework, one obtains covariant vertices for the
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emission of massless states which represent the D=10 SYM multiplet:

Va(( k) = Ca(R)g2 (P, ©)[Ps — :—:Pﬂe‘*x : (2.90)

Ve(F; ) = —i(P*)~H(Ra(ra) “F g (P D)[Py - £LP+]eHX,

(2.91)
with the notations:
”, 1 - in,
PHE) = PHE) — XM = —= ng_jmaﬁe ¢, (2.92)
gp = cosh(M1),
gr = (M~ H)sinh(M1); (2.93)
where M = (M*¥) is a matrix with elements:
Mnb = 2k+(P+)_1R“b,
M= = 2(PH)- 1Rk, = —M~*°, (2.94)

Using these vertices we have shown that one recovers in a covariant way
the four-point scattering amplitudes:

A4 = Kinematical fador ((l 3 kl; (27 k2; (3’ kai (4, kl)harmonic scalar
N(-$)N(=3)
x .
FT-§-9)
(2.95)
These vertices were computed in a Lorentz-covariant gauge in which the
supersymmetry is explicit but partly nonlinear. Loop computations and
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vertices with linearly realized supersymmetry will be presented elsewhere.
In the the sequel it is the field-theory formalism which will occupy our
attention,

We conclude this section with the following remarks concerning the
extension [35] of the harmonic superstring program [10-15)] to the the la-
grangian formalism. This important development might allow for the ap-
plication of the powerful methods of the two dimensional conformal field
theory to the covariantly quantized GS superstring.

Since in the present formalism the harmonic variables u3, vf % 4o not
depend on the string world-sheet coordinate £, the action .§‘h,,r,,,,,,.,-c in
(2.66)does not possess manifest reparametrization invariance.

However, as already explained in refs. [10-12], the harmonics vf *, uy,
whose dynamics is described by the action Skarmenic (2.39), are pure-
gauge degrees of freedom and, therefore, their independence on the world-
sheet parameter £ does not spoil the reparametrization invariance of the
physical superstring dynamics described by (2.67). In fact, in the hamil-
tonian framework (in which we always work) the reparametrization invari-
ance is accounted for by the presence of the first-class constraints T4 (€)
(2.74), satisfying the correct Virasoro algebra (2.77). Therefore, there

is no breaking of reparametrization invariance in the present canonical
hamiltonian formalism.

Moreover, as stressed in [15,34] nothing prevents us from taking the
harmonic auxiliary variables v, u to depend also on £ by a straightforward
generalization of (2.39),(2.68)-(2.71). In the latter case, however, the ex-
pressions for the modified superstring constraints T (2.74), Dg (2.76)and
the PB aigebra (2.77)-(2.84)become more complicated.

Actually, if we delete the fermionic string variables ¥4 from the har-
monic GS action {2.66),(2.67) and work instead {as in our original ref.
[10] ) with the covariantly disentangled first class
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DI*“ = v+%a"‘ lIADA

and second class

G = %v'*a"a"‘D,@

constraints, then it is possible to rewrite Sharmonic (2-39)in a manifestly
reparametrization invariant form by promoting vf *, uy; to depend also on
€ [35].

The set of auxiliary variables used in ref. [35] exactly corresponds to
the harmonic variables (2.21)introduced in [10-15] while the constraints in
[35] are identical to a subset of the harmonic constraints in [12]°.

Actually, using the auxiliary variables v4,, ¥4 introduced in {37), one
can construct a simpler manifestly reparametrization invariant harmonic
GS action. Here the symbols

A=(a,d) , B=(bb) , abab=1,..8

label pairs of Lorentz-invariant internal SO(8) (s) and (c) -spinor indices.
The explicit form of Squzitiary entering the modified GS action

SIGS = Sgs’ (eq. (2.3)) + Sauziliary (2‘96)

+ The harmonic variables used by Kallosh and Rahmanov in [35] v, *, uk u , (kk

= 1,...,4) correspond to the harmonic variables Uf*,u w,':,w,, (%, k= 1,..,4) of
ref. {12] through the relation u" = w“u‘:, ' u“ = 111" ufi. The sets of harmonic con-
straints {H}, {F}, {K} in [35] correspond to {D- +(eq (2.25)above), E!7, E+~1,

{D*a(eq.(2.26)), EH1}, {(lv*‘}a’“b—-—;) part of D%(eq.(2.24))} of (12]. Here
E!J E+—, E+I are the "second generation” harmonic copstraints involving wk, ok
which helped us in {12] to reduce covariantly SO(8) to SU(4) x U(1).
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reads:
Sauzih'ary = /dfdfv —9[(55):3501.‘ + (Pg)za!ﬁx

(2.97)
- pAPU up - ME(D4p).
where U 45 and D4p [37):
U 4p(7,£) = v4al7,£)05(7,€) —6ap =0 (2.98)
(DaB): = v4a(PF): ~ 73(PBa): (2.99)

are 2 x 256 Lorentz-covariant and functionally independent Dirac first-
class constraints, responsible for the pure-gauge nature of the 2 x 256
auxiliary variables vq,¥§.

In (2.97)(2.99)z, Z denote (anti)self-dual world-sheet indices defined
through the 2 dimensional world-sheet (anti)self-duality projectors ( e.g.

)

MM e
P

[T
~—~

em
mn : —_ pfpom
i _g)—ezes

=

nm — l(gmn —q enm

- V-9

-T2
where e? ; are world-sheet zweibeins corresponding to the world-sheet

)= eger

metric grmy,. Then:

(#F2): = €2(P2)n » €F(PR)n =0
MEB =2 B | enaif =0,

and similarly for p. s.
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With the help of the auxiliary dynamical variables (v4, 55), we can
now express the fermionic x-gauge invariance of § (2.96)in a Lorentz-
covariant and irreducible way:

6x0a = i Mlz)apBins (2.100)

where the gauge parameter x2 has only 8 (and therefore - independent)
Lorentz invariant components”.

One can continue covariantly the quantization procedure in the La-
grangian formalism by imposing covariant gauge-fixing condition for the
irreducible x-gauge symmetry (2.94) (cf. [45)):

Xa = 020, =0 (2.101)

The corresponding gauge fixing in the hamiltonian formalism was used in
{15] in the process of constructing the covariant vertices (2.90), (2.91).
By further imposing the gauge conditions [35]:

’\?B = I‘:EB =0

one may obtain a gauge fixed action of the form:
S‘Gsl.--..ﬁ--a = 565|spmo + Sauziliury|y=a=n + ( ghost terms) (2.102)

Let us emphasize that (2.102) is not manifestly super-Poincare in-
variant since the gauge fixing condition (2.101) appareatly breaks half of
the space-time SUSY. Consequently, the supersymmetry algebra becomes
nonlinearly realized as in the non-covariant light-cone formalism (see e.g.

(1)

+ Recall a = 1,...,8 which is the correct ber of independent x-gauge sy tries
(cf. [9]).
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Constructing systems as (2.96)-(2.99)or [35] in which the number of
new constraints equals the number of new auxiliary variables is not diffi-
cult [37,34] and it is esthetically appealing” but it is not a necessary con-
dition for the consistency of the model. This was already shown in [11)
for our case and it is well known in general from the harmonic superspace
approach [31,46). Namely, the "missing” gauge symmetries are substi-
tuted in the harmonic superspace approach by the requirement for spe-
cific dependence of the superfields on the auxiliary variables (2.28)-(2.35).
For additional details, see the appendix C.

The Lagrangian formulations of the type (2.96)are useful if one
waits to quantize coveriantly the GS superstring within the Lagrangian
functional-integral approach [47]. However, for our main objective: an ex-
plicitly space-time supersymmetric superstring quantum field theory, it is
preferable to use (as we do in the present work) the hamiltonian formal-
ism and a set of variables which are strongly confined on the harmonic
counstraint shell (2.21).

Moreover using at this stage the Lagrangian formalism might prove
treacherous since the gauge invariances of the GS superstring, even after
their covariant disentangling with the help of the auxiliary variables, still
do not form a Lie group. The corresponding Lagrangian formalism for
constrained systems with an open constraint algebra [48,49)] is not guar-
anteed to be unitary (as explained in detail in [49]), while in the hamilto-
nian BFV formalism unitarity is guaranteed by well established theorems
[22].

« Using such systems, in which the auxiliary variables are not strongly constrained
by equations of the type (2.21),(2.40), one obtained interesting relations between
supersymmetric particles, twistors and higher N SYM in 4 dimensions [34]
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3.

3. Super-Poincare Covariant Quantization a la Dirac of the
BS superparticle

Before entering in the details of the construction of our gauge covari-
ant and manifestly super-Poincare covariant field theorr for D=10 SYM,
we discuss the first quantized theory of the zero-mode (point-particle)
limit of the GS superstring, i.e. the (N=1) BS superparticle.

In the present section we describe the super-Poincare covariant first
quantization of the latter in the Dirac canonical formalism.

The resulting first quantized system will consist in a overdetermined
set of linear Dirac constraint equations which are independent and in in-
volution. This is insured by the existence of a super-Poincare covariant
nilpotent BRST charge Qp of the BS superparticle - the point particle
limit of @prst (2.86-2.89).

In section 5, we will establish the equivalence between our Dirac sys-
tem and the free D=10 SYM superfield equations (the linearized Nilsson
constraint equations).

To first quantize the system means to promote the classical variables
to quantum operators and endow them with an (anti-)commutation al-
gebra determined by the Poisson algebra of the respective classical vari-
ables.

One then finds a linear space which supports a faithful and irre-
ducible representation of this algebra. The elements of this space are in-
terpreted as the states of the quantum system.

The physical states of the D=10 N=1 BS superparticle are the ones
which fulfill the Dirac constraint equations (as it will be explained be-
low, they are matrix equations for a vector-valued ¢ in ou- representation

space)

pPo=0 (3.1

40



o= D"+ \/;p_+(,,,,+a vhle=0 (32)

" 8 9
abgy — [,.8 b
Do = [u} du b Uy au,.., (3.3)
l +4 yab a -1 __ab a Dable — ’
+2(v ? av+%+v to 6v“1)+Ra]°_0,
9 -3 0
D~to= —(v** —vat—Zye=0 3.4
vt poe @4
Dt = (uf au,,., + v"*a"’ a (3.5)
D¢ =[(u; 4 + —v +tig—go 4 )= (") pi*tle=0 (3.6)
Ul a av+% b b -
where
Rt = %(—'y“)a,wd 3.7

and the linear operators of the left hand side of (3.1)-(3.6)are the quan-
tized first class constraints (2.58).

In passing to second quantization one reinterprets the quantum
states as classical fields, and the constraint equation (3.1)-(3.6)as the free
field equations (recall that the superparticle hamiltonian is weakly zero).

There are two main ways to represent the quantum algebra associ-
ated with a Poisson-bracket algebra:

1) through matrices- in this case the states are represented by the vectors
on which the matrices act.

2) through finctions depending on a maximal set of commuting variables
on which the operators corresponding to the other variables act as dif-
terentiations. Way 2) is universally applicable while way 1) is useful for
grassman-odd variables.
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In our case we will use a matrix representation with respect to
¥ and a functional representation with respect to the other variables
z = (z¥,0q,up, vf %). It is more convenient to use the matrix representa-
tion with respect to ¥° rather than the functional one because a maximal
set of commuting combinations of ¥*’s would contain only four of them
and it would require a second generation of harmonics [12] to express it in
a SO(8) covariant way. In the following, we will call each vector of func-
tions representing a quantum state a ”wave function” for conciseness. Let
us explicitate the matrix structure of (3.1)- (3.6)following from the matrix
representation of the quantum operators corresponding to the variables
o,

The Grassman variables ¥¢ are defined in (2.64) to fulfill Poisson
Brackets relations (2.50) which at the quantum level determine the anti-
commutation relations of the corresponding operators (which we denote
also by ¥°). According to these anticommutation relations, the operators
¥* form an 8-dimensional Clifford algebra:

{®we, ¢} = C=®. (3.8)
Therefore the operators I'® can be faithfully and irreducibly represented
by 16 x 16 SO(8) Dirac [-matrices:

a _ i a
¥ = TS (3.9)

The index a of ¥* transforms under the SO(8) generators (3.3)according

to the relation:

[ﬁnb’ ‘l’c] = _(Smb)cd‘l’d- (310)

(5 = 3(74)ea = v do0 b 007 @)
Consequently, the ¢ ace in the harmonic (c)-spinor representation (B.8).
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B

R =,

See the appendix B for the construction and the properties of
the remarkable D=10 Lorentz-invariant harmonic SO(8) alge-
bra. Due to the triality properties (B.16-B.17) of the harmonic SO(8)
representations, the ¥*’s will relate states which are in the harmonic (s)
representation to states in the harmonic (v)representation. One should
be careful to the fact that the same index a might be carried by objects
transforming under different harmonic SO(8) representations; in fact A®
and F*° below are such examples (see also appendix B). Moreover, since
P¢ are grassman-odd, they will relate bosons to fermions. In conclusion,
the ¥*’s are represented by the 16 x 16 matrices:

0 1 a c
o= e [ o ARl (3.12)
2% | G O
where
(%) = V2vtioy0°a vt (3.13)
(3*)be = V2v~topo0 vt
are the Lorentz-invariant harmonic D=8 o-matrices (B.1)(B.2).
¥? act on states of the form (recall z = (z#,0,, uf, vf%):
F(2)
oz) = , (3.14)
B(z)

where F° are fermions and B® are bosons. Let us stress that the wave
function ¢(z) (3.14) is real (only in this case it will describe on shell the
D=10 SYM multiplet; see section 5).

The internal SO(8) rotation properties of these objects are obtained
by looking of how they are acted upon by the "non-orbital” Re® part in
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Db (recall (2.56-2.57)):

1/=ab 1. cd
fod = L5 apen = [(?(” a7 0 ]
4 c 1(zaby li=cd

0 (§(7*)eaz(¥°%)

(3.15)
Slab 0
1o yab
where

(Vﬂb)cd - Caccbd _ Cudcbd (3-16)

is the harmonic SO(8) (v) representation (B.9) and 5" is a representa-
tion related to the harmonic SO(8) (s) representation §°° (see (B.8)):

(8 ea = %(‘7"6).:.1 = %u"’*aca""a'adv"'* (317
through a similarity transformation U:

5% = Us*y! (3.18)

[U]% = V2r (v°)® = 2(vt¥o%0cctv— ) (vHiov ) = C%F — arord
(3.19)

where
re=vtig ot (3.20)

Note that
U'l=u=UT.

Consequently, we can now write the Dirac constraint equations (3.1)-
(3.6)defining the physical quantum states in our matrix representation.
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The harmonic constraint equations are:

. . . N . Duch+(S:ab)§Fd _
(D 50) =[(D b4 R"b)O] = [D“"B"' + (V“")EB"] =0 (3.21)
e |DTHFE
([D +0] = _D""B"] = (3.22)
'D+aFc
([D*ee)c = _D"'“B‘] = (3.23)

=0 (3.24)

[ D-afb . ﬁ(smc)bdFd]

)—a p\b — —a _ pacPe b _
(D 0) —[(D R P )O] _D_“Bb—f.f:(vnc)ded

+
In view of (3.18), in order to have F transform in the standard (s) repre-
sentation and also, in order to absorb the factor —;,F in (3.2) it is natural
to work with new superfield wave functions ¢’(z) which are obtained from
#(z) through the following linear transformation:

JEU® 0 1 be(z)] _ [Y+§a(z)

0o cof|Bya)] " Ba(;)] (3.25)

*(z) = ¢(2) = [

In terms of ¢/(z) (3.25), the Dirac constraint equations (3.1)-(3.6)
acquire the form:

~gRyy tie
(~6%)d/ = [((_6)2)3'1 ] =0 (3.26)
s, Dey+is _i( faboovtt)eB,
Ded = [ DB - e( ﬁa«abvﬂ)a}’,,**] (3.27)
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+ay +4a
Dtse' = [D Y ] =0 (3.28)
D+aBn J
. —a _ L8 \/y+ib_ & acyb y+4d
bv= [(D ;_’f;b B () ] =0 (329)
- (V) B
. D“"Y+§‘¢ + (Sub)cdy+}d
Dot = = 3.30
[ D“"B‘+(V“")°dBd ( )
. Dt — 1 Y+§-a
Dte = [( 2) ] =0 (3.31)
D—tps

where D¢, D=+, D*® are as in (2.24)-(2.26) and 3% = u}o* 9° = uldn.
Henceforth, the prime on ¢ will be omitted.

The constraint equations (3.30),(3.31) express the fact that the wave
function ¢(z) (3.25) is a harmonic SO(8) x SO(1, 1) invariant. This is nat-
ural generalization of the properties of the harmonic superfields belonging
to the space Hy defined by (2.28), (2.29).

The harmonic superfields (2.28) identically satisfied the harmonic
equations (2.35) where the harmonic "spin” part Rt (3.15) is abseut,
since (2.28) do not carry external overall SO(8) x SO(1,1) indices un-
like the case of &(z) (3.25). Therefore, it is natural to call Y+42(z), B3(z)
harmonic superflelds with external SO(8) x SO(1,1) indices (see
also appendix C). In order to see their structure, one has to actually solve
(3.30),(3.31) explicitly.

To achieve this, one expresses first the functions Y +42(z) and B%(z)
in terms of new functions Y,(z) and B#(z) which carry external Lorentz
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indices but not external SO(8) x SO(1,1) harmonic indices:

yt+is = (ytige)ey, (3.32)

B® = u; B* (3.33)

In terms of the new functions, the equations (3.30) and (3.31) reduce to
the requirement that the fields Y,,, B# are invariant under the orbital
S0(8) x S0O(1, 1) rotations of vf*,u:‘,

D+ [;’:] =0 (3.34)
Yo
Deb [B ] =0 (3.35)

i.e. Y,(2), B*(z) are general harmonic superfields (without external
S0(8) x SO(1,1) indices) belonging to the space Hy specified by
(2.28),(2.29).

The representation (3.32),(3.33) is unique because the harmonic ob-
jects uf and (v*%0°)2 have exactly the same internal” SO(8) x SO(1,1)
properties as B%(z) and Y+42(z) (recall egs. (3.30) (3.31)):

Deb(ytioe)e = —(§90)5(vt o)™ (3.36)

Dab ‘c: = _(Vab)suz

and, moreover,the objects uj, and (vt352)* are the only harmonic objects
to have the property (3.36)(and the correct SO(1,1) charges).
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From now on we shall work only on the space H of superfield wave
functions of the form given by (3.32)(3.33)

(vt4o®)aY,(z)
o(z) [ uSBH(2) ] (3.37)
Since on H (3.37) the Dirac constraint equations (3.30), (3.31) are ful-
filled identically, i.e. realized operatorially, D% and D+ can be dropped
from among the set of Dirac constraints to be imposed on the physical
states.

The remaining constraints (~82), D*, D*, D~ will be imuposed only
"weakly” as conditions on the physical states (3.26)-(3.29). In order to
analyze their implications it is useful to perform the following transforma-
tion on Y,(z) and B#(z) in (3.37):

=] L]

Ya(2) = -;—3+(a")aﬂ[.4ﬂ(z) +iD%A(z)] (3.38)
BH(z) = A(2) + 9 A(2) (3.39)

where
Mz) = — ]rntA"(x(y'; u,0),0, 4, v)dy" (3.40)

T =ugzd , H(yTiuv) = (P +utHu)z, — utbyT, 1 = ufon.
Inserting (3.38)-(3.40) into (3.37) one can easily show that the Dirac
constraint equations (3.26)-(3.29) for the covariantly quantized N=1 BS
superparticle result in the linearized Nilsson constraint equations of the
free D=10 N=1 SYM for A®, A* which become independent on (u v).
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This statement, instead of being directly proved here, will arise as a
simple consequence of the more general considerations in the section 5.
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4.

4. Covariant BFV-BRST First- and Second- Quantization of
the BS superparticle

In this section we perform the super-Poincare covariant first-
quantization of the N=1 D=10 BS superparticle in the BFV-BRST for-
malism and indicate its equivalence with the canonical Dirac quantization
of the preceding question. We also write down a superspace free-field ac-
tion for the linearized D=10 SYM in terms of unconstrained superfields
yielding as equations of motion the Dirac constraint equations (3.26)-
(3.29) for the superfield wave function ¢(z) of the N=1 BS superparticle.

From the mathematical point of view the Dirac system (3.26)-(3.29)
is an overdetermined system of 33 matrix equations (33= number A/ of
Dirac constraints (—82), D®, D*2, D~*) for only one vector-valued func-
tion ¢(z). This overdetermined system is however consistent (integrable)
since the linear operators (—82), D=, D+2, D=4 acting on #(2) (3.37) form
a closed algebra under (ant:-)commutation (cf. (2.59)-(2.62) in the classi-
cal theory):

(b2, %) = 1 o) (41)
ab
R [So V‘f,,,] (-8%) (4.2)

. . 0 U
[D~*, D= . _ i
U 0

] AT 4
(Do, D74 = C**D~* + D =0 ( on the space H (3.37)) (4.4)

the rest of the commutators being identically zero. Here, once again the
notations (3.13),(3.16),(3.17),(3.19) were used.
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The BRST charge Qo corresponding to the operator algebra (4.1)-
(4.4) precisely coincides with the zero mode (point particle) limit of
Qpast (2.86)-(2.89) of the harmonic GS superstring, where the contribu-
tions of D% and D~* are deleted (because we are working on the space
M (3.37) of harmonic superfields). We write @ in matrix form:

(YY)C.,;, (Y B)1ab
Qo= QO(BY) b l?OBB)] b (45)
@ 1* @ “'ct
Q) = o(=0) + xa D" ~ (50%) 7 (xoX) g5 + 19 D**
(4.6)
_a__laa ab ab _ +—2+aba
+inf[D 29+ B+ Frid (6 ) § ]
QPP = o(~3%) + xaD® — (20" (x* ) 2 + ins D**
dc “4.n

+ 1ﬂ [D—a - %'_Vab (a+)—2 +Vab a ]

Q7 PJeb = —i(x Botost) + K (xot ot UR)P D) (48)

V2(20+)
[Q‘”’l“"———(x Posobutt) = TEVR (ot peiy=ty(s U)“" <
o (26+) X T

(4.9)
The whole information about the algebra (4.1)-(4.4) is simply encoded in
the nilpotency property of Qo (4.5)-(4.9):
Q=0 (4.10)

In the BFV-BRST formalism Qo (4.5)-(4.9) is a linear operator acting on
the space H of ghost-haunted harmonic superfields. H consists of fields of
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the following form (cf. (3.37)):

+1a
&(z,n) = [y : (2”7)] (4.11)
B(z,n)
with the short-hand notations:
+1
z = (2%, 00, u w”"z) (4.12)

= (1) = (¢ Xa,n*?)

The property that ® (4.11) is a SO(8) x SO(1,1) harmonic invariant is
now expressed by the requirement that the ghost-haunted generators of
S0(8) x S0(1,1) annihilate §(z,7) ( these equations replace (3.30),(3.31)
which were fulfilled in the space H (3.37)):

Yy
(D~ 4 g*e ar?ﬂ n-e %) [8] =0 (4.13)

R i) 9 9 a . |¥Y
(Dab+n+aaﬂ_:__n an++n 61,—_"—"_6% [B] =0 (4.14)

The explicit form of §(z,7) satisfying (4.13),(4.14) is given (in complete
analogy with (3.32),(3.33)) as:

y+~!~a(2’ fl) = (v+~}a.a)aya(z’ 77) (4.15)
Ba(zt T]) = U"B"(Z, T’) (4.16)
Valzam)= Y ( )( Y., (B "“) N (417

i P
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B4( = ﬂ-_ .i Uiy (Mo, priAHY} 4.18
z,7) E () (SE) (2B my (20m) (4.18)
(H»} 4 4 b4 b4

Each coefficient field in the expansions (4.17),(4.18) is an arbitrary ana-
lytic harmonic ghost-haunted superfield whose formal expansion in terms
of it uf} now reads (cf. (2.29)):

X("ﬂ 7’) = E [u:: "'uf;:”.‘-b' "'7’+bm”_c' "‘7’—“']50(8) singlet
W} PHA (4.19)
X u,'fl...u:'hu;,...u;H__,X(“H"}('\}(J:,0,c, Xa)-

where X stands for any Bf‘,f:\,l)(") or y(‘:{,f;'g which appear in the right-
hand-side of the expansions (4.18),(4.17).

One can now perform a transformation of Y*4, 52 in complete
analogy with (3.38)-(3.40) and réwrite (4.11),(4.15),(4.16) in the form:

- [ytia(z,n)
Q(zyn)=[ B"(zaﬂ) J
- [%a+(v+&aaa-)nw(z,n) +iDX(z,n)]
= ug[A#(z,n) + 0¥ )(z, )]

(4.20)

where A(z,7) is a functional of .A#(z,n) defined in complete analogy with
eq. (3.40):

T

A(z) = — /uIA“(z(y"; u,v),0,u,vin)dy™ (4.21)

The original harmonic superfield ¢(z) (3.37) enters in the ghost-
haunted harmonic superfield $(z,7) (4.11) as the zeroth order term in
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the ghost expansion:

Bz,m) = o(2) + 32—ttt (2) (422)

n21

Eq. (4.20) together with (4.22) implies:

a 1 (-]
A%(z,n) = A*(2) + E ?nal...r;B"AB’_"B"(z)
n>1

AMa,m) = A%G)+ 3 PP A, 5 () (423)
n>1

where A%(z), A#(z) are the D=10 SYM supergauge potentials.

In what follows it will be very useful to employ the following con-
densed notations for the linear generators (3.26)-(3.29) and their respec-
tive ghosts:

[LA | ~5? Da Dtea i‘)—a (424)

M | ¢ xa 7% ngte

In terms of (4.24], the algebra (4.1)-(4.4) and the BRST charge
(4.5)-(4.9) are written short-hand as:

[La,Lp} = Lalp+ (=1)2#+Lgl s = f{gLc (4.25)

1 a
Qo=n4La+ 5(—1)‘5713001’336”—,4 (4.26)

In (4.25)-(4.26) €4 denote the Grassmann parity of L 4. The correspond-
ing ghosts 74 have accordingly the opposite parity e(n4) =€ + 1.
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The key ingredient of the canonical BFV-BRST formalism [22] is
that one can rewrite the consistent overdetermined system of (matrix)
Dirac constraint equations (3.26)-(3.29) for @(z) (3.37) as a single linear
matrix equation for 9§(z,7) (4.13):

Ve Q0¢(27 77) =0 (4.27)

An important property of (3.60) is that it possesses a ghost-haunted
gauge invariance as a consequence of the nilpotency of Qp (4.10)":

8a%(z, 1) = QoA(z,m) (4.28)
A fundamental result of the BFV-BRST quantization is the general the-
orem [22] about the equivalence of the BFV-BRST physical state condi-

tions (4.27),(4.28) wiih the Dirac constraint equations for the physical
wave function (using notations (4.22),(4.25),(4.26)):

Laod(z) =0, A=1,. N (4.29)

Here is a brief illustration of the above general theorem. Indeed, inserting
the ghost expansion of $(z,7) (4.22) and the similar expansion for the
gauge parameter A(z,%) in (4.28):

AGym) = Aoz + 3 oA ayan () (4.30)
n>1

into (4.27) and (4.28) and employing the condensed notations (4.24)-

« Due to nilpotency of Qo (4.10) A(z,n) is defined itself only modulo transformation
of the type (4.28): A ~ A + QoA’ for arbitrary A'(z,n)
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(4.26), one obtains:

La®(z) =0, (short hand for the Dirac system (3.26) — (3.29)) (4.31)

Sa0(z) = 0; (4.32)
Laop(z) + (-1)4®* Lpoy(z) - fpoc(z) =0 (4.33)
&a OA(Z) = LAAD(Z); (434)

[(-1) 4 Bt (L 05 g (2)
n " .
- 5(“1)(EC+EB')2’=’(€B’+1)f231 ®CB,...B. (2))antisymm (A,B,....B.) =0
(4.35)
5708, 8.8 (2) = [(—1)°® 2= =¥ N Lg Ap. 5 (2)

n—1 "
- (—i—)(—1)(‘°+‘B’)2*=’(€”"+l)fg, B,AcB;...B.(2))]antisymm (B,,....B.)

4.
for general n. Antisymmetrization in (4.35),(4.36) is defined as: .
M. ap.. = (-1)(atNeotDAL gy (4.37)
Now, using (4.25) in the equivalent form:
[(~1)eates+ (L 4 Lp - ‘;“fEBLC)]antisymm (4p) =0 (4.38)

one can easily check that the general solutions of (4.33),(4.35) are pure-
gauge ones (cf. [22]):

04(2) = 6p04(2) (eq. (4.31)) for arbitrary Ao(z) ,
®p,...5,(2) = 62 ®p,...B,(2) (eq. (4.33)) for erbitrary Ap,..p,_,(2),
(4.39)

whereas the zeroth order term @(z) in the ghost expansion (4.22) is
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gauge-invariant (4.32) and satisfies the canonical system of Dirac con-
straint equations (4.31).

Now, after establishing the equivalence between the BFV-BRST
quantization scheme (egs. (4.27),(4.28)) and the canonical Dirac formal-
ism (eq. (4.31)), we can write down a field theory action principle yield-
ing the whole cverdetermined set of Dirac constraint equations (4.31)
as equations of motion. To this end it is sufficient to construct an ac-
tion which to generate (4.27) as variation equation and to possess ghost-
haunted gauge invariance under the transformation (4.28). The action, we
are lo- king for, reads:

So=1 / dzdnH¥(z, )Qod(z, 1) (4.40)

Here H is a linear operator fulfilling the properties ("T" denotes operator
transposition)

AT=8 , QTH = HQ,. (4.42)

Now, (4.41) together with the nilpotency of Q¢ (4.10) assure the invari-
ance of Sp (4.40) under the gauge transformation (4.28). Taking into ac-
count the explicit expression of @y (4.5)-(4.9) we find the following form
of H for the case of interest - second quantized N=1 BS superparticle or,
equivalently, free D=10 N=1 SYM:

ge [-;(K1 + KT 0 ]

1.42
0 L(I, + KT) (4.42)

where K 2 act on the arguments of the corresponding functions
y+ie(z,n) and B%(z,n) from (4.11) as follows:
K, :vff* — :{:iv;f%
c— —¢C

n:l:a — _n:l:a1
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Ko :vf* — :l:ivf.t*

Xa = ~Xa-

(4.43)

Thus, formula (4.40) is the superspace action for the linearized D=10
SYM in terms of unconstrained {off-shell) superfields which possesses a
Witten’s type [21] BFV gauge invariance (4.28).

The off-shell superspace action for the linearized D=10 SYM previ-
ously proposed in ref. [12] can be regarded as a gauge-fixed action with
respect to (4.28).

In the next section we shall derive an appropriate nonlinear gener-
alization of the Dirac constraint equations (3.26)-(3.29) which will be
shown to be equivalent to the Nilsson constraints for D=10 SYM and
thus, will provide complete on-shell description of the interacting D=10
SYM theory. In section 6, a general action principle for arbitrary consis-
tent overdetermined systems of nonlinear field equations will be devel-
oped, which will enable us to derive the full nonlinear generalization of
the superspace action (4.40) and the BFV gauge invariance (4.28) of the
linearized D=10 SYM theory.
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5.

5. Harmonic Superfield Representation for the Nilsson SYM

Coustraints
As we have already discussed in section 1, the complete on-shell de-

scription of D=10 N=1 SYM theory is given by the Nilsson constraint
equations (23,6,24,25]:

Fof = %({V“, VP)} —2i Fof) =0 (5.1)
We use the standard notations:

Ve = D* 4 gl4%, . }

VE = 9 +ig[A”, | ]

o — 8 ; paf
=59:+1p 9ﬁ

PP = 9, (o)
Fok = D*A* 4 i0* A% + g[A°, 4¥),
Fev = grAY — ¥ A* + ig[A*, AY). (5.2)
The fundamental fields in the above equations are A*(x, #) - the vector

superfield gauge potential and A%(z,8) - the superfield Majorana-Weyl
spinor gauge potential. g denotes the coupling constant.
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The Biancchi identities for V=, V¥ are in fact the consistency condi-
tions for the overdetermined nonlinear system (5.1). Multiple application
of these identities yields as a consequence of (5.1) the following additional
equations for A%, A [24,25]:

Fo4 _ (ohW)= =0 (5.3)
eFs = ((oFT — gV TH)W)e (5.4)
VoW, = —%(a“")g“F,w (5.5)
VHE,, = gWo, W (5.6)

KW =0 .7

where W, is a Majorana-Weyl spinor defined by (5.3).

Our aim now is to transform the nonlinear system (5.1),(5.3)-(5.7)
into an equivalent system of nonlinear equations in terms of harmonic
superfields such that the linearized form of the latter to coincide exactly
with the system of Dirac constraint equations (3.26)-(3.29) for the wave
function of the covariantly quantized D=10 N=1 BS superparticle. This
will provide the complete proof that the covariantly quantized D=10 N=1
harmonic BS superparticle (2.63)-(2.65) describes on-shell the (linearized)
D=10 SYM multiplet. '

To this end we regard A%, A* in (5.1),(5.3)-(5.7) as harmonic su-
perfields (2.28)-(2.29), i.e. as functions on the extended superspace
z = (z#,84,u, vE *) [10-15] identically satisfying

A°(z)]

40| = 0 (5.8)

(Dct, D—+) [
In order to insure the on-shell independence of A%, A* on the auxiliary
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harmonic variables (u,v) we add the harmonic differential equations:

pre | A (5.9)
AK(z)

(cf. the discussion in section 2 leading to egs. (2.36),(2.37); the harmonic
differential operators D¢, D—+, D% appearing in (5.8),(5.9) are the same
as in (2.24)-(2.26)).

Now, let us consider the following nonlinear field transformation:

A%(z) _ Yt+ia(z)
[A“(z)] — o(2) = [ Bo(z) ] (5.10)

Y+%'=(z)=%(v+ia°a-)aa+[9-1(z)A°(z)9(z) + gﬂ“‘(z)D"Q(z)]
(5.11)

B%(2) = u[ 7 1(2)4%(2)9(z) — %n-'(z)am(z)] (5.12)

(here 8+ = u}d*). The superfield (2) in (5.11),(5.12" *akes values in
the YM gauge group and it is a functional of A#(z), solving the equation
(utver =0:

x

Q(z) = Pezp{—ig/u:'A“(:c(y';u,v),B, u,v)dy~} (5.13)

= =ugzh , P(yTiuv) = (9P + utru)z, —utey.

Now, eqs. (5.10)-(5.13) ave easily recognized as the nonlinear (non-
abelian) analogue of eqs. (3.37)-(3.40) related with the superfield wave
function of the D=10 N=1 BS superparticle.
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Let us now derive the nonlinear equations satisfied by Y+ie(z)
(5.11), B%(z) (5.12), which are implied by the (nonlinear) system (5.1),
(5.3)~(5.9). First of all we get:

YHe()]

B |~ 0 (5.14)

(j')ub’ b—+) [

where

g 0
fab _ nabd
bt =D +[0 an]

N L0
D+=Dt*4 [; 0} (5.15)

with §9, Vb the same as in (3.16),(3.17). Therefore, #(z) (5.10) is itself
harmonic superfield with external overall SO(8) x SO(1, 1) indices belong-
ing to the space # (3.37)

Further, acting with D*° on both sides of eqs. (5.11),(5.12) and us-
ing eqs. (5.9),(5.13),(5.3),(5.6) together with the formulae from appendix
B, we obtain the following equations for ¢(z) (5.10) with explicitly sepa-
rated linear and nonlinear parts:

. Dtoa(z) =0 (5.16)

. V% (o)1)
PR [ [T

In (5.17), the linear operator D~ is the same as in (3.29) (i.e. D-a is the
modified D~ operator due to the harmonic "spin” part of De® and the
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non-zero SO(1,1) charge matrix of D—+ in (5.15). The nonlinear parts in
(5.17) read:

Vi (ale) =igly +, B
/1 o - (5.18)
; +26 pa : ac\bd _T
+"§a—+[y ,B ]+1g(s ) a+[Yd ch]
[Vae(#]2))P¥ = gC** x5 2({}’“"' YAy - iB.,0* B + lngb B"]
(5 19)
In the course of derivation of egs. (5.17) and below the following useful

(@+)

relation is used:
Y+i8(z) = (vHi0%) Q1 (2 )WL (2)(2) (5.20)

which is a consequence from (5.3) and (5.11).

The next step is to operate with D* on both sides of egs.
(5.10),(5.12) and use egs. (5.3)-(5.5) and (5.13),(5.20) to obtain (disen-
tangling again linear and nonlinear parts):
[Vx“("IZ)](Y)]

Vir(ol)]®) (520)

Dee(2) + [

where D= is the linear operator defined in (3.27) and
[Vla(mlz)](Y)a 219(‘U+*0‘b)°{ Y;'* Y+4-u} g('u"’*d abc)a[Bb c]

—ig(vtio®) —({Y“c Al z} — i[B.,8*B°))
(5.22)
[V1°(¢|Z)](B)a _—__Zig(v"'*a’b)a—l—[—l—}’:# a+Ba]
(5.23)
- ig(v*tioto" =)°—[BC,Y+=]
Finally, from egs. (5.7) and (5.6) and substituting egs. (5.11),{5.12),
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(5.20) we get:
0= (v+1a*)"Q~! W0 FW)PQ

5.24
= (=8")Y e (2) + [Vo(ol2) .
0= —ulQ YV, F* — gWa*W)Q 5.25)
= (=0")B"(2) + [Va(@l2) ™% e
where the nonlinear parts read:
Vool = — ig(O*[Bo, Y +4+] 4 [By, V4Y +44] 4 [0* By, 79y +He))
+ 2,-ga+[(al), (Vig* B° — g{v+ie, ¥ H)), vy 4]
: cd\a 1 4 1,' 3 ' cd\a
- 2ig[6* B, (S - V¥ ] — iglFLy, (S Y, Yy,
(5.26)

[Vo(e)2))( P = 0y(V"B®) - 6+V"’(a+)=!(vza+ Be — g{y+ie vty

+ ig[(ng(V'ca* B — g{y+ie, v}, 0+ B9

+ (B, 0+ 20(8" el VY b Y+ — (o vey e v
with the following notations: (5:27)

Vla = aa +ig[B“, . ]

F'** = 3°B® - 8°B* + ig[B°, BY]
and (§9)q as in (3.17).
Thus, the nonlinear system (5.1),(5.3)-(5.7) of the Nilsson constraint

equations and their consequences from the Biancchi identities together
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with (5.8),(5.9) implying the on-shell independence of A%(z,8,u,v),
A*(z,0,u,v) on the auxiliary harmonic variables (u, v) is reduced via
the nonlinear field transformation (5.10)-(5.13) to the nonlinear system
(5.16),(5.17),(5.21),(5,24),(5.25) for the harmonic superfields #(z) (5.10):

D*9(z) =0 (5.28)
Dee(z) =0 (5.29)
Doo(z) + VP(¢]2) =0 (5.30)
(~8%)#(2) + Vo(e]z) =0 (3.31)

with the nonlinear parts defined in (5.18),(5.19),(5.22), (5.23),(5.26),
(5.27). (Since #(z) (5.10) are harmonic superfields, (5.14) are identically
satisfied).

Now we shall establish the inverse staten:ent, namely, starting from
the nonlinear system (5.28)-(5.31) for the harmonic superfields #(z)
(5.10), we can exactly recover the original system (5.1),(5.3)-(5.7) in
terms of the ordinary superfields 4%(z, 8), A#(z,8). To this end we con-
sider the following nonlinear field transformation

Y+*"(z)] [A"(z)]
= - 5.32
oz) [BG(Z) (o) (5.32)

A%(z) = 2i(u+4‘a")°ﬁ(z)(31TY.,+*(z))f)"(z) - §D°ﬁ(z).ﬁ-l(z) (5.33)

A#(z) = O(2)ulB°(2)t"(2)
.1 . f oA s
- u:’ﬂw[V28+B‘(2) — oY), Y ))01(2) + éa"n(z).n 1(2)
(5.34)
where the harmonic superfield (z) takes values in the YM gauge group
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and it is functional of B%(z) defined by the equations:

D* =0 (5.35)

Q1D = —igai+B“ (5.36)

Note, that egs. (5.17) (together with (5.19)) are the integrability condi-
tions for the overdetermined system (5.36).

From the explicit form of (5.33),(5.34) it is seen that the new fields
A%(z), A*(z) are harmonic superfields (cf. (2.28),(2.29)), i.e. the equa-
tions:
4m(a)] _

0| = (5.37)

(D, D7) [

are identically fulfilled.
First, applying the harmonic operators D** (2.26) on A%(z), A#(z)
as defined by (5.33)-(5.36) and using (5.28),(5.29) and (5.19) we easily

obtain:
pa [i:g;} =0 (5.38)

which together with the identically fulfilled (5.37) yields the on-shell inde-
pendence of A%(z), A#(2) on (u,v):

A® = A%(z,0) , A* = A¥(z,0) (5.39)
As a second step we consider the following expression:

_1_ a @B _ n; xyab =_l af n__l af pp...ps
L(9%, V%) - 2 B = (00 F* - GG ) P F
(5.40)
where the covariant derivatives V= = D +g[A%, . }, V# = 8¢ +ig[a*#, . ],
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are defined with the supergauge potentials from (5.33),(5.34). The coeffi-
cients of the o-matrix expausion in (5.40) are (cf. [11] and appendix A):

FH = (0")op(D*AP + DPA® + g{A, AP}) — 324# (5.41)

s = (q#-#8),5(D* AP + DOAC + g{ A%, 4%)) (5.42)

with A%, A# from (5.33),(5.34).
According to (5.39) F* (5.41) and F#1-#s (5.42) do not depend on
the auxiliary harmonic variables (u,v), i.e.:

F¥ = F#(z,0) , Frats = Piibs(z,9) (5.43)

Now, using the nonlinear definitions (5.33),(5.34) for A%, A¥ and the
obvious relation

{D*, D%} =2i pet
one can easily show that

Q- (2)(u} F4(2,0))2(z) = 0,
Q7 (2)(ul) ... ultuf, FAr#5(2,8))Q(z) = 0

e s

(5.44)

Since the harmonic coefficients u}}, ug}...ujiu} in (5.44) are arbitrary

and since F#, F#1-+#5 do not depend on (u,v), (5.44) actually imply:
Fe =0, Fr-#s = (5.45)
and, therefore, inserting (5.45) into {5.40):
Fof = %({v“,vf’} -2i F°F) =0
which are exactly the original Nilsson constraint equations (5.1).
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As a third step we intreduce a harmonic superfield W,(z) in the fol-
lowing way:

YHie(z) = (vti0%) 201 (2)W,o(2)(z2) (5.46)

(i-e. Wa(2) = §(2)Ya(2)0~1(2) in the notations (3.32)).
Now using egs. (5.16)-(5.18) for Y+32(z), we easily get:

DEW,(z) =0 (5.47)

which together with the identically fulfilled (D®®, D*~)W,(z) = 0 implies,
that W, does not depend on (u,v):

W, = Wa(z,6) (5.48)
Inserting (5.46) into (5.33) we get a relation betv:een A* and W,:
Q-1 (o W) = it (1 40 + gﬁ-lpaﬁ) (5.49)

Using uf A# = igd*+ Q.01 (following from (5.34) by multiplying both
sides with u}) we can rewrite (5.49) in the following form:

Q2 (2)u [Fo*(x,8) — (0*)*PWp(z,0)]0(z) = 0 (5.50)
where
Fo# = DY A¥ + 19 A% + g[A°, A¥] (cf. notations (5.2))
Thus (5.50) actually imply:
F*¥(z,0) = (a"W)*(2,0) =0
i.e. the original ordinary superfield eq. (5.3).
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Now, having established properties (5.39),(5.48), i.e. the on-shell in-
dependence on (u,v) of A, A*, W, defined in terms of ¥ +34(z), B%(2)
through (5.33),(5.34) and (5.46), it is straightforward to derive the follow-
ing consequences of the nonlinear system (5.28)-(5.31) for Y+42(z), B%(2);

O~ (2)uf ul[VOF*(z,0) — (c* V¥ — 0 V*)W)*(z,0))}(z) =0 (5.51)

1 (2) (v o)AV W(z, 8) + %(U“V)ga (2, 0(z) =0 (5.52)
O Yz)u [V, F*(z,0) — gWo W (z,0)|%(z) =0 (5.53)

07 (2)5(v*+ 00l (VW) (2, 6)}2(z)
= 0D - LY+ (a) - DS P )] + SV ()
= O(eg. (5.17))

(5.54)

Once again, since the terms in the square brackets on the left-hand-
sides of (5.51)-(5.54) do not depend on the harmonic variables (u, v),
these equations imply the rest (5.4)-(5.7) of the nonlinear system for the
ordinary superfields A%(z,8), A*(z,8).

This finishes the proof of the equivalence between the Nilsson con-
straint equations (5.1) together with their consequences from the Biancchi
identities (5.3)-(5.7) in terms of ordinary superfields A%*(z, 8), A*(z,8)
and the nonlinear system (5.28)-(5.31) in terms of harmonic superfields
Y+1s(z), B4(z), where both sets of superfields are related through the
nonlinear field transformation (5.10)-(5.13). Thus the system (5.28)-(5.31)
provides alternatively the complete on-shell superspace description of

D=10 N=1 SYM.

69



In particular, one immediately notices that in the linearized case
(g = 0, i.e. Vp(#|2),V2(@|z),V;%(#|z) = 0) the harmonic superfield
system (5.28)-(5.31) precisely reduces to the system of Dirac constraint
equations (3.26)-(3.29) for the wave function #(z) of the super-Poincare
covariantly quantized D=10 N=1 BS superparticle.

In the next section we shall derive a superspace action in terms of
unconstrained off-shell (ghost-haunted harmonic) superfields (a nonlinear
generalization of the superspace action (4.40)) which will produce (5.28)-
(5.31) and, therefore, (5.1) and (5.5)-(5.7) as equations of motion.
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6.
6. Off-Shell Superspace Action for D=10 SYM

In this section we shall review our general construction of action
principle for arbitrary consistent overdetermined systems of nonlinear
field equations [20] and, subsequently, shall apply it to derive a super-
space action for D=10 SYM in terms of unconstrained (off-shell) super-
fields (cf. also [20]).

Let us consider the following general overdetermined system of

N > 1 nonlinear equations:

La(dfz)=Lao(z) + Va(elz)=0, A=1,..N (6.1)

Va(e|z) = E/dzl...dzn“V,(‘"“)(z; 21y ey Zn42)¥(21)... &(2n42)  (6.2)
n20

In (6.1) the function @(z) is defined on a (graded) linear space R and it
takes values in another (graded) vector space U, i.e. has a vector index

¢ = (¢(z)). Also, #(z) is taken to be real. L, are (graded) linear oper-
ators with at most second order derivatives and are, correspondingly, ma-
trices (L4 = (L%)) in the vector space U. Clearly, Va(®|z) = ([Va(¢]2)]*)
are also vectors in . In the general discussion of this section the vector
indices a, b will be suppressed for brevity.

Comparing (6.1) with (4.29) we see that the system (6.1) may be
considered, from the point of view of second quantization as nonlinear
generalization of the Dirac constraint equations for a first-quantized sys-
tem with first-class Dirac constraints {L4}, 4 = 1,...N. Therefore the
system (6.1) represents the nonlinear field equations of motion to be de-
rived from an underlying field theory action which has to be a nonlinear

generalization of (4.29)
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The necessary conditions for consistency of the overdetermined sys-
tem {6.1) are obtained by multiple application of antisymmetrized prod-
ucts of the linear operators Lg on £4(®|z) (6.1) and by requiring the re-
sult to vanish when egs. (6.1) are fulfiiled. The first consistency condition

LaLp(@|z) +(—1)48F1LpL 4(0|2) =0
yields for the linear and nonlinear parts respectively:
(LasLp}=LaLlp+ (1) Ll = f{pgLe (6.3)
(cf. (4.25));

L aVa(#|z) + (—1)*4<5¥! LgVa(9l2) - f$pVe(9l2)

/ [“f.ff‘”,'f L) £atol) + (- 1)“‘”“6?2?'; Tarae)  (64)

(= 0 on the sur face of equations (6.1))

In (6.3),(6.4) f$p are in general linear operators and €4, €p are the Grass-
mann parities of L 4, L p correspondingly. In Eq. (6.4) the operators L4
act on Vg(@|z) defined in eq. (6.2) as on functions of 2.

The next consistency condition

[Lo(—1)8+<C L 4VB(®|2)lantisymm (4.8,0)
=0 on the surface of egs. (6.1)

gives using (6.3),(6.4):
Fa PF

e (=1)P fSDlantiaymm (4,8,0)Va(#]2) =0
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DE
where the operator _f%),c is defined by:
DE
fise Le= (6.5)
((—1)€D+€B+l{(_1)epcc [f/?B’ LC] + f/?.‘?fgc})anﬁaymm (ABC)

and antisymmetrization means the same as in (4.37):
M_ pa.. = (-1)atNeBIDM 5

For most interesting systems it turns out that:

DE
fBe =0 (6.6)

Let us immediately note, that if the set of operators L, is viewed as a
first-quantized system of Dirac first class hamiltonian constraints (cf.
(6.3) and (4.25)), then fff};CDE defined by (6.5) is precisely the so called
second order BFV structure function [22]. Its vanishing (6.6) means that
the corresponding hamiltonian system is first-rank, i.e. the corresponding
BRST charge does not possess higher order ghost terms, as in (4.26).

Our general construction of an action principle for the system (6.1)
works under the following general assumptions:

(i) The number N, of bosonic operators L, in (6.1) (i.e. with €4 =
0) has to be odd;

(ii) The linear operators L 4 must be functionally independent;

(iii) Condition (6.6) holds.

Condition (iii) means that the only nontrivial consistency conditions
for the system (6.1) are given by (6.3),(6.4).

From the point of view of second quantization, conditions (ii) and
(iii) mean that the underlying first-quantized system of Dirac first-class
constraints {L4} is BFV-irreducible and first-rank.
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Since the system (6.1) comprises N’ = N, + Ny > 1 matrix equations
it is of course impossible to find an action functional § = S[¢}, depending
on #(z) alone, such that (6.1) would arise as equations of motion
59 =0

Our general construction of an action principle for the overdeter-
mined system (6.1) proceeds in the following series of steps.

The first step is to rewrite the overdetermined set (6.1) of ' (ma-
trix) equations as a single (matrix) equation in terms of a (vector valued)
field §(z, ) depending on auxiliary variables collectively denoted by 7.
The original field ¢(z) from (6.1) enters as:

8(z,7m) = o(z) + &(z, ) (6.7)

= 1
Sz, =) mﬂA’-nﬂA" 04,..4.(%)
n>1

To this end we take:

=04 =("x* i=1,..,Ny,a=1,..,N;, A=1,.,N=Ns+ N,
(6.8)

to be the ghost variables associated with L4, i.e. having opposite Grass-

mann parity €(n1) = €, + 1. Since ¢(z) was taken to be real, the ghost-

haunted field #(z,7) is likewise real.
Then (6.7) is exactly the ghost-haunted wave function (4.22) entering

the BFV-BRST quantization (4.27)-(4.28).
The new single (matrix) equation for #(z,7) replacing the system
(6.1) is of the following general form:

Q(¢'zv '7) = QUQ(zv '7) + V(le» 7)) =0 (6'9)
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V(@lz,m) = Z/dzldfh Azpyodinye X
n>0

VD2 0 20,y oy Znts Tad2) 821, 1) B(2nt2s Mnta)
(6.10)

The linear operator Qo entering (6.9) is the BRST charge [22] correspond-
ing to the algebra (6.3):

A L s, B Cpa 9
Qo=1"La+5(-1)"n"n fcaw (6.11)
and V(®, z,7) possesses the properties (6(77) = Hﬁ;l 5(nt)):

/dn&(n)V(ﬂz,n) =0 (6.12a)

/ dn5(n) oz 8 V(@z,1) = Va(9l2) (6.12b)

Egs. (6.11),(6.12b) ensure that the single equation (6.9) for §(z,7)
contains the original nonlinear system (6.1):

0= [ anbn) 522 @1z, m) = Lao(:) + Va(ele)

Let us point out that in each ghost integral first the integration over the
fermionic ghosts ¢’ (6.8) is performed:

Janren = [axt f aeren) (6.13)

/dcc“...c‘“ = 6MN,,€""""5

Clearly, (6.11) tells us that (6.9) is precisely the appropriate nonlin-
ear generalization of the BFV-equation (4.27)- i.e. the BFV physical state

condition.
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The second step is to find the gauge invariance exhibited by the
new single equation (6.9) such that the equations of motion implied by
(6.9) for the "non-physical” part ti(z, n) of the ghost-haunted field §(z,7)
(6.7) should have pure-gauge solutions, whereas eqs (6.1) for the original
field @(z) should be gauge-invariant. This gauge symmetry must yield the
appropriate nonlinear generalizations of (4.28),(4.32),(4,34),(4.36).

The required gauge invariance has the form:

6Q(8z, )
56(2’, ,7/) (6.14)
@t fasin

50 8(z,m) = / de'dnf A2, 1)

and the gauge invariance of (6.9) under (6.14) implies:*

/ d2'dn'Q(8)', n’)%%%%) =0 (6.15)

Inserting in (6.15) the expansion {(6.9) for Q(®[z',n') one gets:

(i.e. Qp is a nilpotent operator which is true by construction, see egs.
(6.11),(6.6)),

+ In fact, due to (6.15), the gauge parameter A(z,%) in (6.14) is defined itself only
modulo nonlinear transformations

8Q(%1z,n)

A(Z-ﬂ)~A(Z-ﬂ)+/d='dﬂ'ﬂ'(='.ﬂ')m
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and

8V(%)z,m) _
68(z", ')

Therefore, it is natural to call eq. (6.15) the nonlinear nilpotency condi-

QoV(@|z,7) + / d2'dn'[Qod(, ) + V(8| )] 0. (6.16)

tion.
Also note, that due to (6.12a), the original field ¢(z) is inert under
the gauge transformation (6.14):

Sn0(z) = / dné(n)6a®(z,n)
= / d2'dn’ A(Z', "')56(76',17_')[ f dnb(mQ(lz,m)] =0

exactly as in the linear case (4.32).
The third step is to derive the the action, invariant under (6.14)
and producing (6.9) as equation of motion. It is easily found to be:

S= / dzdnH(z,7)Q(3lz,n) (6.17)
6.17
= 3 [ d2anf8(z,n)Qo(@lz,m) + [ dsdofrd(z, mP(@lz,n)

with notations explained as follows. The linear operator H is defined to
fulfill (" T”-denotes operator transposition):

TH - s (6.18)

A typical form of A is
A¥(z,9) = R¥(p12, p22)

where R is a matrix acting on the vector-valued field, p, 2 are numbers
taking the values 1, £i (cf. (4.42),(4.43)). Let us recall that, since
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®(z,n) is real, the free part of the action (6.17) is bilinear (instead of her-
mitean) form in ®. The functional Q($|z,7) is defined through the rela-
tion:

1+ [ aan®e ) gt s1Q@z ) = Q@) (619)
which simply means:
Q(Blz,1m) = 3Q08(z,m) + V()= 1) (6.20)

where V(®|z, 1) is given by a series of the same form as for V(®}z,7)
(6.10) with additional multiplication of each V(#+2) by the factor
(n+3)":

_ 1

V(le, 7]) = —_ /dzldnl...dzn+2dnn+2 X

nzz% n+3 (6.21)

V("+2)(2, 7 21, M s 202 Tnt2) (21 M) B(2n 42, Nt 2)
Since Q(®|z,n) (6.20)-(6.21) enters the action functional (6.17) where one
can freely symmetrize the fields §(z, ) entering in the various terms, we

immediately find that Q (6.20) or, equivalently, @ (6.9) should satisfy the
antisymmetry condition:
SHQQ@lz,m) _ _SHQ(EI, ) 622
§8(z', ") 5%(z, 1) )

The minus sign in (6.22) is due to the anticommutativity of the ghost
measures (recall N, = number of ¢’ = odd)

/ dxdc / dx'dc’ = — / dx'dc’ / dxdc

Now, it is straightforward to show that the action (6.17) is indeed invari-
ant under the gauge transformation (6.14) provided the nonlinear nilpo-
tency (6.15) and the antisymmetry condition (6.22) hold.
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Clearly the action (6.17) is precisely the nonlinear generalization of
the free BEV-BRST action (4.40).

The final step is to derive the explicit expression of V(®|z,7) (6.10)
such that (6.15) , (6.22) and (6.12) are satisfied. Using (6.11) and the
consistency conditions (6.4) and inserting them into eq. (6.16) we find:

V(¥lz, 1) = nVa(2(., n)lz)

= Z/dzl...dzn+zr)"V£"+2)(z; 21y ooy 2n42)8(21, 7)Y (2012, 1) (6.23)
n20

and similarly:
V(®lz,m)

1 R
- / 2 dznian V(31 21, oo 2ng2) (20, 1) B(2mr2 1)
s n+3

(6.24)
where the kernels V{"*? are exactly the same as in (6.2).

Eqs. (6.23)(6.24) are the principal result in the present general con-
struction since now each object @y(6.11), V(6.21), (and similarly V(6.10))
entering the action (6.17) is explicitly expressed in terms of objects
{L4},{V$**?} entering the original nonlinear system (6.1)(6.2).

Let us now apply our general action principle to construct an off-
shell superspace action for D=10 SYM.

From the mathematical point of view, the system (5.1),(5.3)-(5.7)
(the Nilsson constraints plus their consequences from the Biancchi identi-
ties for V&, V# (5.2)), which provides the complete on-shell description of
D=10 SYM [6,24,25], is a consisten* overdetermined system of nonlinear
equations for the supergauge pot.. als A*(z,8), A#*(z,8). However, one
can easily show that it cannot be written in the form (6.1) with Lorentz-
covariant and independent linear operators L 4, and, moreover, the condi-
tion (6.6) is not satisfied (i.e. the system is of higher rank).
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On the other hand, it was shown in detail in section 5, that the non-
linear system (5.1),(5.3)-(5.7) is equivalent to the nonlinear system (5.28)-
(5.31) in terms of the harmonic superfield

[ Ytia(z) :I
*(z) =
B(2)
which is related to A*, A* from (5.1),(5.3)-(5.7) through the nonlinear
field transformation (5.10)-(5.13). Therefore, the harmonic superfield rep-
resentation (5.28)-(5.31) of the D=10 SYM on-shell equations (5.1),(5.3)-
(5.7) is a consistent overdetermined system of nonlinear field equations
fulfilling all conditions (i),(ii),(iii) above for our action principle to work.
Indeed:

(i) The number of bosonic operators L,: (—8)2, D%, D~¢ from
(5.28)-(5.31) is odd (=17);

(i) Al linear operators {L4} = {(-8)?, D®, D*®, D-¢} in (5.28)-
(5.31) are BFV-irreducible, i.e. functionally independent;

(iii) The set of {La} is first-rank, i.e. the second order BFV struc-
ture function vanishes (6.6).

Thus our action principle (eq. (6.17)) yields the following superspace
action in terms of off-shell unconstrained superfields for D=10 SYM:

Ssym = %/dzdnﬁ‘l’(z,n)Qoq’(z,n)

+ / dzdnB8(z, m)cVa(®(..M)I2) + xaV(@(. )|2) + 03 Vi (B (. m)l2)]
(6.25)

with the notations:

2= (2#,00,ul, viY) |

-mpyc -
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dz = (02" )(d"%0,) (d*0u?) (@20 F)
Hé(u:ub" - %) H6(uf,v**a"v**)6((v+%a,,v+%)(v_%a"‘v_§) +1)
ab a, %

(6.26)
7= (n?) = (¢, Xa» 7*°)
dn = de(d"®xa )(d®n+ ) (d®n~°); (6.27)
_ y+§a(217’) _ (v+*6°)°ya(z,1]) X
Q(Z"’)=[ B(zum) ]=[ B (z,) ] o

where Y,(z,n), B#(z,n) are ghost haunted superfields without
external SO(8) x SO(1,1) indices (cf. (4.11),(4.15),(4.16))
and the functionals Vo(®(.,7)|z), Vi2(B(., n)|z) , Vz *($(.,n)|2)
in the interacting part of Ssy s (6.25) are exactly the same as
(5.26),(5.27),(5.22),(5.23),(5.18),(5.19), where the usual real harmonic
superfields Y +49(z), B2(z) are substituted with the corresponding real
ghost-haunted harmonic superfields Y+42(z, ), B%(z,7) (6.28).

The way the supergauge potentials A%(z, ), A#(z,8) of D=10
SYM enter in the action (6.25) is given by the following nonlinear ghost-
haunted superfield transformation:

[31**“(2,71) (6.29)

A%(z,7m)
Bz m) ] (eq. (6.28) — [ ]

A¥(z,1)

b(z,n) =
[%(v**a"a-)aaﬂn-'(z.n)Aa(z,n)n(z,n) + éﬂ“(z.n)D"ﬂ(z,n)]]

ul| 271z, n) A% (z, )Mz, n) — 107 (z,n)0*z,7) ]
(6.30)
where §2(z,7) is a functional of A#(z, n) taking values in the YM gauge
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group and it is defined in complete analogy with (5.13):

T

(2) = Pexp{—ig f uy A (2(y ™54, v),6,u,v;9)dy "} (6.31)

T = ugjzh , zH(yTiu,v) = (P + uttuv)z, — ut#y~. Thus, the
zeroth order term in the ghost expansion of ®(z,7) (6.29)-(6.31) exactly
coincides with the harmonic SYM superfield ¢(z) (5.10)-(5.13) and, there-
fore, the usual SYM supergauge potentials A%(z,#), A*#(z, #) are identified
as the harmonic (u,v) independent parts of the zeroth order terms in
the ghost expansions (4.23) of A*(z,7) A(z,7n) from (6.30) exactly as in
the linearized case (section 4).

As a final remark, let us stress that the superspace action (6.25) is
also manifestly invariant under the superspace YM gauge transformation
of the ghost-haunted superfields A*(z,7), A%(z,n):

A(z,m) = (AP (2ym) = w3, ) (A4 aym) — S0%) w(avm)

A%(2,7) = (A*)2(2,7) = w (2, 1) (A%(z,m) + gn‘*) w(zm)  (6.32)

This is because the action (6.25) depends on A%(z,7n), A*(z,n) only
through the ghost-haunted superfield expression &(z,7) (6.30) which is
itself invariant under (6.32).

Let us recapitulate the results of this section. We described here a
general construciion [20] of an off-shell action principle for arbitrary con-
sistent overdetermined systems of nonlinear field equations.

The main tool is the BFV-BRST ghost formalism [22]. The action
(6.17) resembles the Siegel-Zwiebach-Witten-Neveu-West [21] construc-
tion of (super)string field actions but does not involve the peculiarities
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(star products, Chern-Simons forms etc.) specific to the field theory of
the Ramond-Neveu-Schwarz (RNS) (sug r)string.

The main application presented here is the construction of a super-
space action (6.25) for D=10 N=1 SYM in terms of un~oustrained (off-
shell) superfields. This action contains both cubic and quartic interaction
terms. The corresponding superfields (6.28) depend besides on the ordi-
nary superspace coordinates (z*, f,) also on the auxiliary (harmonic-like)
bosomic variables (u,v) (eq. (2.21)) [10-15] and on a number of BFV-
BRST ghost variables n? (6.27). Thus, these generalized superfields con-
tain an infinite number of pure-gauge and auxiliary fields which are elim-
inated through the Witten-type nonlinear BFV gauge invariance (6.14)
and through the usual superspace YM gauge invariance (6.33) of our su-
perspace action.

Let us particularly stress that, in our formalism, the YM gauge in-
variance (6.33) is not a part of the Witten-type gauge invariance (6.14)
but it is an independent symmetry of our action (6.25). This phenomenon
is most easily understood in the context of the heterotic GS superstring.
Already its zero-mode (point-particle) limit contains the gauge invari-
ant SYM whereas in the RNS formalism the YM gauge invariance arises
from the Witten’s gauge invariance at the first excited string level in the
NS sector.
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7.

7. Conclusions and outlook

The main objectives of the present paper may be summarized as fol-
lows.

1

We describe in a pedagogical way the main ideas and concepts in the
barmonic superstring program aimed at a consistent manifestly super-
Poincare covariant quantization of space-time supersymmetric strings (the
GS superstrings).

The first crucial step is introducticn of auxiliary harmonic variables
allowing covariant disentangling of local fermionic gauge-invariances of
the superstring. The next crucial step is the introduction of additional
fermionic string coordinates enabling us to convert the set of mixed first-
and second- class Dirac hamiltonian constraints of the GS superstring
into a set of super-Poincare covariant, functionally independent (BFV-
irreducible) first-class constraints only.

This is inevitable in order to preserve manifest supersymmetry
{Dirac brackets due to second-class constraints would ruin the superspace
geometry by causing the superstring coordinates z*, 8, not to commute
among themselves).

The introduction of the auxiliary harmonic and fermionic string vari-
ables is accompanied by introduction of appropriate additional gauge in-
variances beyond those of the GS superstring such that the new system
(called harmonic GS superstring) is physically equivalent to the original
GS model. We also made contact with a more recent formulation [35] ex-
tending the harmonic superstring program from the canonical Hamilto-
nian formalism to the Lagrangian functional-integral quantization formal-

ism.
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The effectiveness of the harmonic superstring program was further
explicitly demonstrated by providing the full first-quantization analysis
of the zero-mode (point particle) limit of the GS-superstring - the D=10
(N=1) BS superparticle. The main result here is the derivation of the
linearized Nilsson curvature constraints for D=10 SYM from and estab-
lishing their equivalence to the manifestly super-Poincare covariant Dirac
constraint equations for the D=10 N=1 BS superparticle.

3)

The preceding result was further generalized to the full nonlinear
case by deriving a harmonic superfield representation of the nonlinear
Nilsson constraints of D=10 SYM reducing in the the linearized case to
the system of Dirac constraint equations for the D=10 N=1 BS superpar-
ticle.

() .

We described the main steps of our construction of a covariant action
principle for a very broad class of consistent overdetermined systems of
nonlinear field equations. The only conditions for their structure are the
following:

The linear parts of the equations are identified as a system of quan-
tized Dirac first-class constraints belonging to an underlying particle-like
(or string-like) system which are BFV-irreducible and first rank (i.e. the
second and higher BFV structure functions vanish and the corresponding
BRST charge does not exhibit neither higher ghost terms nor ghosts for
ghosts).

In particular, a system of consistency equations on the interacting
parts of the above nonlinear equations was formulated (eq. (6.4)) which
ailows in principle to find interacting (nonlinear) modifications of Dirac
constraint equations for particle-like and string-like systems, i.e. to find
the corresponding interacting field theoretic equations of motion

85



(8)

Our general action principle for overdetermined systems of nonlinear
field equations was applied to derive a superspace action for D=10 SYM
in terms of unconstrained off-shell superfields, starting from the harmonic
superfield representation of the Nilsson curvature constraints for D=10
SYM. Thus, a solution was found to the long standing problem of aa off-
shell superspace forrulation of D=10 SYM. The same formalism can be
applied to D=4 N=4 SYM and similar supersymmetric gauge theories
which are formulated in terms of geometrical constraints on some of the
relevant curvatures.

Although the D=10 SYM action (6.25) is manifestly off-shell super-
symmetric, this is at the price of having covariant nonlocal factors (8+)~!
(recall 8* = vt} Hy*+t). One may hope that by combining the present
approach of section 6 with the formalism developed in [51} one will be
able by further appropriate nonlinear field transformations of ®(z, )
(6.28) to eliminate the nonlocality (81)~! factors.

The next most ambitious task is to apply the formalism presented
in this paper to attack the issue of a manifestly super-Poincare covariant
field theory of the GS superstrings. The aain problem here will be to
find solutions for the field-theoretic superstring vertices coming from the
string generalization of the consistency egs. (6.4).
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Appendix A. D=10 and D=8 Spinor Conventions
The D=1 v - matrices and D=10 charge conjugation matrix are
taken in the following representation:

. (0 (@)%
r‘((aﬂ)ﬁ 0)

coof © cap
10 = (—=C)#8 0

M =rer.r*= ba 0
o &

Indices of D=10 left- (right-) handed MW spinors ¢,, ¥s are raised by
means of Ciq :

¢ =(-C)*¢g

=%y,
y* = Py,
Throughout the paper we use D=10 o - matrices with undotted indices
only :
(0")F = C*%(a)}
(0)ap = (~C)3}(c*)3

(0*)ar (0*)7 + (6" )aqy (0*) = 2600

ﬂuu = diag(—, +, vesy +)
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The standard basis in the space of the D=10 « - matrices is
[#bn =Tlaapwe | Tisl | =0,1,...,10,

where the square brackets denote antisymmetrization with respect to the
encloscd indices . These matrices have the following properties:

(F“""'“"’“Cﬁ,‘)T = (_1)"1"“]-~-~“2r+1 C1_01 (A.l)

(Cﬁ)lr“l-"-uzr)T = (—1)"“01'011““""“"'

I\ul....ynrll = (_I)M.z__ll 1 h1Hn¥1V10-nT

(TO:)—! V1...V10—-n

tr(F“""“'F”‘ ...u,,.) = 326""‘(-—1)%["])(

pF L phve
xdet

phnv L pheve

where [n] =n for n = even and [n] =n—1 for n = odd .
Equations (A.1) imply for the ¢ matrices g#!#» = gl#1, gkl .

(am---mf“)aﬂ = (_l)r(ou:---u:rﬂ)ﬂ& ) (4.2)
(04142 )op = (1) ¥ G e e s (49)
(oM = (1) g )

Accounting for (A.2),(A.3) and (A.1) any (anti-)symmetric matrix
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A®VY™(A%v™) on the D=10 spinor space can be decomposed as follows

A=Y Ayl
[]

where [p] = g, [pt3...25) |

aavm 14342
Ay = Alm#:mla ’

A= ——A""" af

aaym aB
A #lﬂzﬂ: ?

ALy uaus) = 16(3')

Note that the coefficient A4y, . ., is self-dual due to (A.3)
Let us also list the following useful properties of the D=10 o -

matrices :
(0u)P(0#)" + (0,)P7(0%)°® + (04)7(e*)* = 0
n
gEgWi VR = ghvieve o Z(_l)knuu.aul...k...u.
k=1

where k means that the index vi is missing .
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For the D=8 v -matrices and D=8 charge conjugation matrix we use
the following representation :

{0 (%
F""(ﬁ")z 0)

(5 o)
Cg = L.
9 (-

Cub = Cba

Indices of SO(8) (s) and (c) spinors ¢q, ¥; ard raised as :

¢° =C%¢y , P* = (-C)y;



Appendix B. D=10 Lorentz-Invariant Harmonic SO(8) Al-
gebra

It is a remarkable result that with the help of the harmonic variables
v: %, uf (2.21) carrying Lorentz-spinor and Lorentz-vector indices, one
can imbed the SO(8) Clifford algebra into the SO(1,9) in a completely
50(1,9) invariant way. The construction (2.22), which we use throughout
this paper, crucially depends on the existence of the D=10 Fierz identity
(1.1)(or (A.5)).

Define the following 8 x 8 matrices in terms of harmonics and D=10

o-matrices:
(Y")be = V2u+iaotavt, (B.1)
(3" )se = V20~ tapo®a vt (B.2)
0% = ugot

Here the index a labels the matrices 42, 4°, while b, c are 8 x 8 matrix
indices. Since (0#)og = (0#)gq it follows that

(1")bc = (5%)eb

Using the Fierz identity (1.1)it is straightforward to compute that
(B.1),(B.2) obey the anticommutation relations (written in a matrix
form):

73 + 143" = 20 (B.3)
,~7n7b + ‘-7b‘7n = 2Cﬂb
and therefore, define a representation of the SO(8) Clifford algebra which
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we call harmonic representation:

0 ("Yu)bc
g = B.
FS [ (;yu)bc 1] ] ( 4)

Having the harmonic SO(8) Clifford algebra (B.3)(B.4) one can now con-
struct the generators of the SO(8) Lie algebra corresponding to the three
inequivalent 8 dimensional representations (s),(c) and (v). It is natural to
call these representations harmonic (s),(c),(v) representations. Introduc-

ing the two possible antisymmetrized products of (B.1) and (B.2):

1, .. ca a bl -
(1°)ea = 5(1°5° = 1*7")ea = v* o020 lo 0w, (B.5)

va 1., b g - _
(7*%)ea = 5(7*7° = 77%)ea = v Yooleotlaton3, (B.6)

where the second equalities are a consequence of the Fierz identity (1.1),
one gets the following expressions for the desired SO(8) generators:
i) harmonic (s) spinor representation

§% = B.7)

4ab (B.8)
iii) harmonic vector (v) representation
(Vub)cd = Caccbd - cndcbc (B.g)

Let us stress the fact that all Lorentz invariant harmonic SO(8) indices
a,b,c,d... appearing in the present formalism, belong to one and the same
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fixed 8-dimensional representation of SO(8). This is to be contrasted
with the noncovariant light-cone formalism where all types of SO(8) in-

dices ((v),(s) and (c)) do appear [1].

The triality property of the harmonic (s),(c),(v) representations

(B.7)-(B.9) are encoded in the relations:

,ycSmb — §obae — cacab Cbc,ya

,;,csub — Smb L Cuc,;,b - Cbc,-;a

(‘y‘V“b),d = (,yc)eﬂcbd . (7c)ebcud
(:ycvab)e‘ = (‘7‘),“0“ - ("y‘),"C"‘
(Vcb,y«'.)de = Cnd(,yc)be _ Clnl(,.rt:)n¢

(Vub,-y::)de = C'd(‘.yc)be - de(,-yc)a‘

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

Using (B.12-B.15) one can show that given two objects A , B® trans-
forming under two different harmonic representations out of (B.7-B.9),

then the objects
C* = (7“)5«4"8‘
C'vn = (:Ya)bcAbBc

transform under the third one.
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Here is a list of useful formulas, frequently used in the text:

D vty = —(5°0)5(vtia?)e (B.18)
D (46> = ~(§)5(vFad)™ (B.19)

Dobys = —(Vob)gul (B.20)
D-e(uHot)” = S (v ho)” (B.21)
D¥e(utot)e = %(’i")g(v"‘ia‘)" (B.22)

where S, §ab | Vb are the same as in (B.7)-(B.9). As a consequence
of (B.18-B.22) we obtain the remarkable result that the harmonic SO(8)
Clifford algebra (B.1)-(B.4) and consequently, the harmonic SO(8) al-
gebra (B.5)-(B.9) are invariant under all harmonic differential operators
which span the SO(1,9) algebra (2.27):

2

(D*, D~*, D% D-°) =0. (B.23)

2
-2nl =2

21
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Appendix C. General Harmonic Superfields and Pure-
Gauge nature of the harmonic variables

In the D=4 harmonic superspace approach [31] harmonic super-
fields are defined as functions on the extended N-superspace z =
(z#,0L;u) . (i = 1,..., N) where the variables u belong to a compact ho-
mogenous space <.

For N = 2,3, G is the group of automorphisms of the extended
super-Poincare algebra G = SU(N), whereas H = [U(1)}"V~! (31].

In the present D=10 case the appropriate homogenous space
mv’i*b'cm is noncompact, since the analog of the group-space G is
here the space £ defined by the kinematical constraints (2.21) on uj, v .
H = SO(8) x SO(1,1) is the internal group of local rotations of u, ot
(2-21). The fact that our harmonic superfields #(z), z = (z*, 4, uj, v:%)
are actually functions on M)Tﬁsmm is expressed by the property that
they identically satisfy:

Dote(z) = (D + £ o(2) = 0 (c.1)

Dto(z)= (D™t - §)o(z) =0 (C.2)

In (C.1),(C.2) Db, D*~ are the same as in (2.24),(2.25), i.e. they are
"orbital” parts of the SO(8) and SO(1,1) rotations, whereas % denotes
the "spin” part of SO(8) and § denotes the SO(1,1) charge matrix.

Iu zeneral, @(z) may be a direct sum of components transforming un-
der different inequivalent representations of the "spin”-part £ in (C.1)
and possessing different half-integer or integer SO(1, 1) charges in (C.2).

This is precisely the case in the present formalism - see egs. (3.25)
(3.30),(3.31). Therefore, it is sufficient to analyze (C.1),(C.2) for har-
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monic superfields of the form:

o(z) = ol{cH+ %d}(—%e}(z)
(C.3)
{C}=(er )y {+3d)=(+3dryert hdm), {—he}=(~derr—den),

with an overall SO(1,1) charge g+3(m—n) (q is integer) and whose exter-
nal SO(8) indices (¢y,...,c1), (d1,...,dm), (€1, ...,€,) transform respectively
under the harmonic (v),(s) and (c) representations (B.7)-(B.9):

] m n
(D% 4+ 3 Veb(i) + 3 5%(0) + 3 S0(k)e(z) =0 (C4)
k=1

=1 j=i

_ m n
DF—(g+5 - Nz) =0 (C.5)
In (C.4) V(i) denotes the action of V2 (B.7) on the i-th index ¢;:

an(,-)¢(z) = (V“")"’c, o D(erinschrne){(+3dH— e}

and similarly for $°8(5), §ob(k).

Now, recalling formulae (B.18)-(B.20) we find that each external
S0(8) x SO(1,1) index ¢;, (+3d;), (—3ex) of #(z) (C.3) can be un-
ambiguously saturated by ug, (vtiod)as, (v=hoew)Pu, On the other
hand the integer charge ¢ can be unambiguously saturated by g vectors
u¥ = v¥io,v*} (depending on the sign of q). Therefore:

#(z) (eg. (C.3)) = u"f,....u"f‘u,‘,’l....u,’i‘,x

(o) oty ten P vl ol

{u)=(p14e0pg) » {(#}=(01400)

{a}=(a1,ciam) » {B}=(B1,-18n)
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where the c. ~ficient superfields identically satisfy:

(D*, D*)e{Md (2) =0 (cn

i.e. they belong to the space Hy (2.28),(2.29) of harmonic superfields
without any external SO(8) x SO(1,1) indices.

Next, we observe that harmonic superfields belonging to H, in fact
depend on the Lorentz-spinor harmonics v.’f t not in an arbitrary way but
only through the light-like composites u¥ = v¥ig, v} (see (2.28),(2.29)).
Therefore the field from H, depend only on 45 independent combina-
tions of the harmonic variables uj, uf (accounting for their kinematical
constraints), which implies that the general solution of the 45 Dirac con-
straint equations

(D, D~*, D%, D%)e(z) =0, (on Mo (2.28),(2.29)) (C8)

is #(z) = ®(z,0), i.e. it is constant with respect to to (u,v) (cf. (2.37)).
The analog of the Dirac system (C.8) for the more general harmonic
superfields (C.6) with external SO(8) x SO(1, 1) indices reads:

(Dab’ I)—+,D+"‘D_“)O(Z) =0 (C_g)
where D, D+ have "spin” parts £, § as in (C.4),(C.5) and D¢ ac-
cordingly reads (3.29):

H—6 — —ﬂ__a:‘_i ab
D=D-zj- 2% (C.10)

Let us point out that the system (C.9) is consistent only on-shell, i.e.
when (—8%)#(z) = 0, since (recall eq. (4.2)):

[f)‘“,b"’] - (8*)"}3"’(-8’)

Now, inserting the general expression (C.6) into the system (C.9) and us-
ing the formulae (B.18)-(B.22) we get precisely egs. (C.8) for the coeffi-
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cient harmonic superfield og:ﬁ'g(z) Therefore, the general solution of

egs (C.9) read:

¢(Z)|an—lh¢ll = ufl....uf'uf,’l....uf,:x (C 11)

(vtioh)™  (vHigtm)am(v—toe )P (v=igon)Pn o}ﬁ%{ (z,0) ’
Egs. (C.11) is the precise statement of the on-shell pure-gauge nature
of the auxiliary harmonic variables (u,v) (2.21) for arbitrary harmonic
superfields carrying external SO(8) x SO(1, 1) indices. Namely, on-shell,
the whole dependence of #(z) on (u,v) is only through a fixed monomial
in (u,v) carrying the external SO(8) x SO(1,1) indices of ®(z) whereas
the physical fields are contained in the ordinary superfield o{43{} (z,0).

Property (C.11) exactly parallels analogous properties of D=4 har-

monic superfields in [31].
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