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ABSTRACT 

By further study of the geometry of the harmonic superspace con­

straints we make explicit the relation between the operator and path inte­

gral approaches to the manifestly covariant harmonic superstring. 

In particular we find the correct complete set of functionally inde­

pendent gauge symmetries for the auxiliary variables and identify the 

ones corresponding to the harmonic superfield postulate in the operator 

formalism. 

Then, we' deduce in a systematic way the lagrangian path integral 

from the well defined covariant hamiltonian formulation of the GS super-

string. 
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1. 

1. Introduction 
In a series of papers [1-4] we performed the super-Poincare covariant 

canonical (operator) quantization of the D=10 Brink-Schwarz (BS) super-
particle [5] and the Green-Schwarz (GS) superstring [6,7]. Furthermore 
we succeeded to construct, using the BFV-BRST ghost formalism [8], 
the relevant off-shell unconstrained superfield action for the point-particle 
limit of the GS superstring, i.e. the D=10 Super-Yang-Mills (SYM) the­
ory [9,10]. 

The main tool was the introduction of auxiliary bosonic Lorentz-
vector and Lorentz-spinor variables (uj, va *) called "harmonics" since 
they form a homogenous space related to the "moving-light-cone" ho­
mogenous space S0(1,9)/SO(8) x SO(l , l ) [11]. 

In such an approach it is natural to construct the quantum theory by 
restricting the wave functions to be harmonic superfields [12] of a form 
which explicitly displays certain local harmonic symmetries of the ex­
tended superspace. Therefore it was very convenient (and in fact essential 
for getting the BRST (super)-field theory action [9,10] ) to work within 
the operator quantization formalism. 

However, much of our intuition about the string theory is comming 
from the path integral formulation which allows the use of the powerful 
2-dimensional confonnal field theory techniques. 

In the present letter we reexpress the information codified in the 
structure of the "Hilbert space" of superfield wave functions ( the space 
of harmonic superfields [1,10]) in the form of harmonic gauge symmetries 
which are handy for the the deduction of a covariant path-integral repre­
sentation of the GS superstring. 

The deduction of the path integral from a well structured hamilto-
nian formalism is essential in two ways. First, at the conceptual level , 
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systems with variable structure "constants" in the constraint's algebra 
present certain ambiguities in the measure of the path integral [13] which 
can be resolved systematically only by using the hamiltonian techniques. 

Second, the well structured algebraic set of constraints allows us to 
have complete control on the functional independence (BFV-irreducibility 
[8] ) of the gauge invariances and to make sure that they really are elimi­
nating all the auxiliary variables (see sect. 2). 

In section 2 we reexpress in a convenient way our harmonic su-
perspace geometry and identify the relation between certain harmonic 
gauge invariances and the form of the harmonic supernelds composing the 
"Hilbert space" of superfield wave functions. 

In section 3, starting from the well defined hamiltonian path inte­
gral we deduce the corresponding manifestly covariant lagrangian path 
integral for the GS superstring by integrating over the canonical string 
momenta. 

3 



2. 

2. Harmonic superspace geometry 
The auxiliary variables (u", va *) needed for the covariant quanti­

zation of the GS superstring were introduced in [1,2] as follows. The in­

dices ft and a transform as vector and Majorana-Weyl spinor under the 

global Lorentz SO(l,9), respectively, while the indices a ,±± transform re­

spectively under the internal local SO(8) and SO(l,l). Due to the triality 

properties of SO(8) the indices a = 1, ...,8 can be chosen to transform 

under any of the fundamental (s), (c), (v) representations of SO(8). 

(u°,va ') were taken in [1,2] to satisfy the following kinematical con­

straints: 

ulub» - Cab = 0, 

u°(v±ia»v:ki) = 0 (2.1) 

{v+iallv
+i){v-icr'iv-i) + 1 = 0 

Here Cab denotes the invariant metric tensor in the relevant SO(8) repre­
sentation space. 

Due to the remarkable D=10 Fierz identities (see e.g. [7] ) the fol­
lowing composite Lorentz vectors: 

uj = (v^a^i) (2.2) 

are identically light-like. 

Now we are going to present a simplified set of auxiliary variables 
with more transparent geometrical meaning of the associated gauge in-
variances rendering these auxiliary variables pure-gauge. 

First, we observe that due to the D=10 Fierz identities: 

(v+iallv-±)(v+i<T»v-i) = -2(v+l<rltv
+i)(v-i<T'lv-i) (2.3) 

Eqs. (2.3) and (2.1) tell us that we can take the following composite 
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space-like vector: 

u* = y/2(v+i<r„v-i) (2.4) 

as one of the eight uj entering (2.1) . 

The identification (2.4) reduces simultaneously the internal SO(8) 

to an internal SO(7) which will act on the indices p = 1,..., 7 of the re­

maining seven space-like vectors u£. This amounts to splitting the SO[8) 

indices a = (p, 8) into SO(7)-vector and SO(7) singlet ones. 

Thus, the simplified set (uj, va *) of auxiliary variables now obeys 

the following kinematical constraints: 

uj««" - 6™ = 0 

up
uV2(v+ia"v~i) = 0 

A ..i (2-5) 
ugfr**^**) = 0 
( u + ^ v + i J ^ - i a ^ u - i ) + 1 = 0 

Next, we introduce a set of hamiltonian first class constraints describ­
ing the pure gauge dynamics of (u{|,«« ) (2.5) (summation over Lorentz-
inaices /i, a is supressed): 

Dfi = -UPTTJ + u«^S - l u + i o - 1 " ^ * - jt;-i<7*«7ri"* (2.6) 

£>8" = -u8;rP - iv+J^f f ' j r r* - | t r * < 7 < W + * (2.7) 

D~+ = - ^ ( 1 ; + * ^ * - w-*»rj*) (2.8) 

* Actually, since {"£} form a space-like frame on the surface (2.5), we can always 
rotate this frame by local SO(8) rotations such that one of the frame vectors, e.g. 
u", will coincide with the space-like unit vector V2(v+tollv~i). 
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D ± P = _ U ± ^ P _ Iv^^a'nt* (2.9) 
2 

£>±a = -Iv****^*?* (2 10) 

£><"> = - ! » + V a " ^ * + i t rVo-PTrJ* (2.11) 

Here (jrjf*)Q, (fi"2),, denote canonical momenta conjugated to va
 3 ,uJ : 

{(*?*)a(0. «£*(?)}«» = -«?*« - V), 

{«UO,<(n)}pB = - * " » w ^ - r,), (2.12) 

( | , >/ denote the string world-sheet parameter at fixed world-
sheet time T; in most cases they will be supressed for brevity), 
u®, u j are the same as in (2.2), (2.4), 

aP,...P„ = < 7 [ P l ( T P 3 . . . < r P N ] 
(2.13) 

Comparing (2.6)-(2.10) with the set of constraints Dab,D-+,D±a 

used previously in [1-4,10] we immediately see that: 
(i) Dab spanning 50(8) algebra coincide with the subset (Dvq,Dip) (2.6), 
(2.7), where Drq span the 5(5(7) subalgebra and D8' correspond to the 
coset SO(8)/SO(7); 

(ii) D±a spanning the coset 5(5(1,9)/50(8) x 5(5(1,1) coincide with the 
subset (ZJ^.i?*8) (2.0),(2.10); 
(iii) D~+ (the generator of the local SO(l, 1)) is the same in both ver-
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The meaning and the properties of the constraints D8p (2.11) are as 
follows. First, we observe that the number of independent components 
of (va *, uj), accounting for the kinematical constraints (2.5), is 52 which 
exactly coincides with the number of hamiltonian constraints (2.6)-(2.11). 
Next, we find: 

{D8p, {Dqr, D8p, £>-+, Z>±», D±B)}PB = 0 (2.14) 

{D**(0, £>8*W}PB = 7">r(0D*.(S)6(S - r,) (2.15) 

7p«r = V2(v-iaP9rv+i) 

{ J D 8 P , ( U ± , U * , « * ) } P B = 0 (2.16) 

In deriving (2.15) we used the identities: 

V5(»_*ffp«pw+*)i(t;**ff8ffP>r?*) = ±\{V^<TP"^ *) (2.17) 

which follow from (2.5) and the D=10 Fierz identities. 
From (2.14)-(2.16) we notice that the subset of constraints D8p 

(2.11) form a closed subalgebra commuting with the ,50(1,9) algebra of 
the constraints (2.6)-(2.10) (introduced in our previous papers [1-4,10] ) 
and, moreover, D8p leaves invariant the frame («J ,u 8 , u£) (cf. (2.16)). 

Now the geometric meaning of (2.6)-(2.11) becomes extremely trans­
parent . First, with the help of (2.6)-(2.10) (subset of constraints spac­
ing the 50(1,9) algebra) we can always rotate the frame (MJ ,UJ ,U | J ) to 
any fixed orientation in space time. Second, with the help of (2.11) which 
do not move anymore the frame (cf.(2.16)), we can fix completely the re­
maining freedom in the Lorentz spinors va entering (2.2) , (2.4). 
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This is the geometric manifestation of the pure-gauge property of our 
auxiliary variables (uj, va *). 

In order to make contact with the covariant canonical (operator) 
quantization of the GS superstring and its point-particle Umit - the BS 
superparticle - performed in [1-4,10], let us point out that the space 
of harmonic superfield wave functions for the BS superparticle used in 
[1,3,10]: 

*(p, 6, u, v) = £ ( ^ - ) - ( p - ) - < . . - « ; , . . . ^ " " H " ^ (p, 6) (2.18) 

( p ± s « J p , = t i ^ i ) 

is nothing but the space of general solutions of the following Dirac con­

straint equations entering the covariant first-quantization formalism: 

Z?PV = 0, 

DSp<t> = 0, 
(2.19) 

D8p<t> = 0 

where £>p«, ...,DSP denote the quantized versions of (2.6)-(2.8), (2.11). 
Thus, now it is not needed to postulate that the wave functions 

belong to the space (2.18) of harmonic superfields where all the inter­
nal SG(8) x 50(1,1) indices are saturated among the u's and v's and 
the coefficients in the expansion are ordinary superfields which do not 
carry internal indices. We just take completely arbitrary wave functions 
<l>(p,6,u,v) with an arbitrary dependence on (u,v) tvnd arrive systemati­
cally at the form (2.18) after solving the Dirac constraint eqs. (2.19). 
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To conclude this section let us comment on the recent papers by 

Kallosh and Rahmanov (KR) [14] where a modification of our covariant 

quantization procedure for the GS superstring was proposed using es­

sentially the same auxiliary variables (u, v) and almost the same set of 

hamiltonian constraints for them as those introduced previously in [1,2]. 

There is, however, an essential difference. The set of constraints in 

[14] does not include D~" (2.9), (2.10), but rather introduces constraints 

of the form. (a,b =1,...,8): 

Kab s £ i ; + W * (2.20) 

Now, recalling the identity (2.17), we find that (2.20) are actually func­
tionally dependent (p,q,r=l,...,7): 

Kpq _ 7PirK
ar = 0 (2.21) 

(actually, the r.h.s. of (2.21) is proportional to the kinematical con­

straints (2.5)). Therefore, in spite of the fact that the constraints in the 

KR version [14] are equal in number with the auxiliary variables (u, v), 

they are insufficient, in '.dew of the functional dependence (2.21), to ren­

der all (M, V) pure-gauge. 

The break-down of the pure-gauge nature of (u, v) in the KR ver­

sion is manifested on the first-quantized level through the fact that in the 

superparticle limit one obtains, using the constraints of [14], an infinite 

number of unphysical supermultiplets instead of the D=10 SYM multiplet 

[15]. 
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3. 

3. From Hamiltonian to Lagrangian Pa th integral formula­

t ion 

In this section we briefly sketch the systematic derivation of the func­

tional integral representation of the covariantly quantized heterotic GS 

superstring. The correct treatment, especially in the case of field depen­

dent structure "constants" of the algebra of gauge symmetries, starts 

from the hamiltonian (phase space form) of the functional integral [16,8]. 

For the case at hand we have: 

- / 
DX<iDOaDuDvDP'iDp'$DiruDnv 

DALDARDA-iaDM-iaDAabDA+-DAfDA8
p (3 ^ 

exp{iS}6(x^ep))A(Z°P
p)6(x(harm)W&rm) 

det-12\n+]6(v+iffa0)6(VAB)6(nAB) 

In eq. (3.1) the following notations are used. S denotes the hamiltonian 
form of the heterotic GS action [2-4] (in what follows we are supressing 
the internal string degrees of freedom corresponding to the left-moving 
sector): 

S = JdTdt[PlldrXf'+p%dTOa - AtTL - ARTR - A^D+t" - M^G+i" 

+ «t>dTv*i + TrrdTup - AabD
ah - A+-.D-+ - A*D±a - As

pD
9'] 

Each SO(8) index a appearing in (3.1) (3.2) and below is short 

hand for a = (p, 8) (pair of SO(7) vector and SO(7) singlet indices). 

Dab,D-+,D±a,DBf are the same as in (2.6)-(2.11). TL,R are the left 

(right-) reparametrization (Vkasoro) constraints (primes indicate differ-
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entiation w.r.t. string parameter £ ): 

TL = (P„ - X'rf - 4 « u ' p + *?*(»**)') (3.3) 

TR = n 2 - 4<£>or (3.4) 

where 

Note the second term in TL (3.3) which says that the auxiliary variables 

(u, v) transform under reparametrizations as left-moving world-sheet 

scalars. Similarly, the harmonic constraints (2.6)-(2.11) transform as con-

formal spin one left moving world-sheet fields: 

{TL(0,D^>(r,)}PB = -4£>**(0*'(£ - V), 

{TK{O,D*>(v)}PB=0, etc. 

D+ia and G+ia denote the covariantly disentangled [2-4] Srst-class part 
and second-class part of the fermionic string constraints Da: 

Da = -ipf - (P" + X'" + i 0 c " 0 ' ) K T (3.5) 

D+ia=V+i(TaflD (3.6) 

G+i" = lv-iaaa+D (3.7) 

Ax,, A/j,..., A* denote Lagrange multipliers for the corresponding con­

straints. Let us stress that all constraints in S (3.2) except G+i" (3.7) 

are first-class. The Faddeev-Popov (FP) measure in (3.1) consists of fac­

tors corresponding to: 

n 



(i) fixing x^rep^ = 0 of the reparametrization invariance; 
(ii) fixing ^C"»Pm) = 0 of the harmonic gauge invariances Dab,..., D8'; 
(iii) covariant fixing v+icra0 = 0 of the fermionic «-gauge invariance 

(generated by D+i" (3.6)) with FP factor der-8[n+]<5(v+i<Ta0) where 

(iv) factor det-i[{G+ia,G+ia}PB] •= det-4[n+] corresponding to 
the second class constraints (3.7); 

(v) fixing QAB = 0 of the first-class kinematical constraints (2.5) col­

lectively denoted by iSAB. The explicit form of QAB reads [1,2]: 

_ (3-8) 

The FP determinant corresponding to QAB is constant on the surface 
9AB = 0 (2.5). 

Now, it is straightforward to perform explicitly the integrations 
over p%, A - J ° , M~ia , P*. Indeed, integrating over pf one gets the 6-

function: 

60a+4ARe'a + i(v+ta" fl)aAa$ + ^(v-ia'a+UM^) 

Integrating then over Al~ *, Ma 2 yields a gaussian integral over P* which, 
in turn, is easy performed. The resulting functional integral can be easily 
rewritten in a manifestly reparametrization invariant form by introducing 
the world sheet metric as: 

V=99Q1 = (A* - AL)(AL + A*)"1 , (3.9) 

V^g'^SA^RiAL + AR)-1 
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One obtains : 

Z = JDX»D0aDuDvD(*u)mD(nv)mDgmnD\*?NDMAB 

exp{i5}*(x(rep))A(/;' '^(x( '" , rm))A(/;rm)5(t;+i<T^)«(n'**)A,<)c(1, 
(3.10) 

S = Sag "t" & harmonic (3-11) 

Sharmonic = J dT<Hyf^[{^)nPlmdmV±h + (*Z)nP2mdmU, 

- AMNP™D%N - MAB*AB] 

Aj0(;a/ i s a local determinant factor of the form : 

t 1 ' i ( 3 J 2 ) 

exp{ij dTdiV=g\X-i'pn-(l - Ps)x:']P2mdmX^u+} 

where x -*'0 are world-sheet spinor bosonic ghosts and pn,ps denote the 

world-sheet Dirac matrices. 

In eqs. (3.11) and (3.12) the following notations are used. P£n are 

the D—2 (anti-) self-duality projectors: 

^ " = ^ " " • ± 1 = ) 

The canonical momenta of (u, v) enter (3.11) as: 

»?* = >/=giT(**kU . < = V^giTWU (3.13) 

Similarly, D%[N have exactly the same form as the hamiltonian con­
straints DMN (2.6)-(2.11) with all canonical momenta JT**', 7r« substi-
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tuted with (ir**)m, (**)„,. The first term in the r.h.s. of (3.11) is pre­

cisely the usual heterotic GS action [7]: 

(3.14) 
Further simplifications in (3.10) are achieved by changing variables [2]: 

8a - , 0±i« = {v^aa0) (3.15) 

with subsequent rescaling (in the conformal gauge for gmn) : 

0-i' -»V8 = -2(djX"u+)i0-i f f l (3.16) 

such that the corresponding Jacobian will exactly cancell A;oc<Ij (3.12). 

The final simplification is achieved by changing the gauge-fixing con­

dition nAB = 0 (3.8) into a new one - MAB = 0 by just inserting the 

standard FP unity: 

1 = LFp f DUAB6{MAB{U)) (3.17) 

where the integration is over the abelian group generated by the kinemat-

ical constraints &AB (2.5). The explicit fermionic ghost representation of 

A F P reads: 

AFP = JD<;nDCexp{jdrdiy/=gQAB P2mdmUB} (3.18) 

Choosing the harmonic gauge-fixing conditions in the form ^(harm) = 

ŷ A.A? _ Q̂  t n e corresponding FP determinant has exactly the same form 

as (3.18) with ghosts ijjjfN, TJMN-
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Thus, we arrive at the following manifestly covenant functional inte­

gral : 

Z = JDXt'Dil>aDuDvD{it»)zD(Kv)tDCliDC.Di)xDiiexp{iS}^Pf) 

(3.19) 

s = 2 j dTds[-dxx»d,x„ - a>a v ; V* - K)z0*» + ^)xdsu 

with the following notations : 

v;» = sabdx + r;6 - (dlx>,ui)(diX,'u+)-1rtd(S''b)cd (3.21) 

r+- = «+az«^, (3.22) 

(Sab)cd = ^v-ioca
aba+adv-t 

(the latter are precisely the matrices of the SO(8) generators in the har­

monic (c)-spinor representation [4,10]). 

Now it is straightforward to see the absence of the conformal anoma­

lies. Indeed, integrating in (3.19) over w, v, TTU, irv,Q,Ci Vz, Vi o n e 8 e t s : 

Z= fDXt'D4>a^fpp)exp{i2 fdTd^(-dzXi1dsXti-ixpaV
a
z
bi/>b)} (3.23) 

Eq.(3.23) is similar to the non-covariant expression in [17]. It was shown 

there (see also [18]) that careful computation of the integral over i/>a 

(which is jJ-difFerential) yields complete cancellation of the conformal 

anomalies. 
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A very interesting problem is to compare the functional integral rep­
resentation (3.19) or (3.10) of the covariantly quantized heterotic GS su-
perstring with the functional integral representation found in [19] where 
a specific form of the moving frame (u*, u®, «J) is used, namely, u* are 
expressed in terms of the tangent vectors dmX^ to the string world sheet, 
whereas (u*, «J) are chosen to span the normal frame w.r.t. the world-
sheet. 
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