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ABSTRACT

First we present the covariantly quantized space-time supersymmetric
superstring. The main ingredients are additional auxiliary variables and
their corresponding auxiliary gauge symmetries. They allow a Lorentz co-
variant gauge fixed lagrangian path integral which has the form of a free
2-dimensional conformal field theory with a finiie number of 2-dimensional
world-sheet fields and ghosts. Next we show that the path integral is
anomaly free in 10 space-time dimensions. Then, by a canonical (operator)
quantization we obtain in the point-particle limit the covariant equations
[ of motion of the D=10 Super-Yang-Mills (SYM) theory.
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1. Introduction

The manifestly space-time supersymmetric string theory (the Green-
Schwarz (GS) superstring [1]), is important both theoretically (for the very
consistency of the theory) and phenomenologically (the direct use of the
superstring field action might improve the study of the the "low” energy
spectrum and dynamics by systematic generation of a superfield effective
action for the low-energy states).

Until recently the covariant quantization procedure for the GS super-
string could not be carried out without violating the explicit geometrical
invariances characterizing the superspace. In particular there existed no
super-Poincare covariant quantization of the superspace particle and, con-
sequently, no covariant superfield action for the relevant supersymmetric
field theories { N=1 D=10 SYM, N=4 D=4 SYM, N=2 D=10 SUGRA,
N=8 D=4 SUGRA etc.).

In a series of papers [2-7] we have performed the super-Poincare co-
variant quantization of the (extended) superparticles and superstrings and
in fact constructed [6,7] (in the point-particle limit) through the BFV-
BRST procedure {8] the relevant off-shell unconstrained superfield actions.

The deduction [6,7] of the relevant supersymmetric field theories from
the covariantly quantized superstring theory is a crucial test for any cor-
rect covariant quantization procedure.

The main tool we introduced in [2-7] was a set of pure gauge auxil-
lary variables carrying Lorentz-spinor and Lorentz-vector indices which
served as ”bridges” reducing the D=10 Lorentz group SO(1,9) to an in-
ternal SO(8) x SO(1,1). This allowed us to recast the crucial fermionic
"kappa”-gauge symmetry [9,1] of the GS superstring action into a function-
ally independent (BFV-irreducible) way which directly lead to a manifestly
covariant quantization avoiding the need of an infinite tower of ghost-for-
ghost fields [10].

In our initial papers on the subject, we employed the canonical op-
erator quantization method. There, relying on the previous experience
with off-shell superspace formulations of extended SUSY field theories
[11], it was natural to restrict the space of superfield wave functions to
be ” harmonic superfields” of a form which explicitly displays part of the
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local symmetries of the auxiliary variables. Moreover, the canonical oper-
ator quantization was essential to get a8 BRST superspace action for D=10
SYM in terms of unconstrained off-shell superfields [6,7].

Recently [12], we extended our formalism to a form appropriate for
covariant path-integral quantization of the GS superstring. For the path
integral it is necessary to have all the local symmetries expressed dynam-
ically rather than through kinematical conditions on the wave function.
Consequently, we had to reexpress the information encoded in the form of
the harmonic superfields into the form of additional gauge invariances. For
this purpose it proved useful to further reduce the internal SO(8) gauge
symmetry for the auxiliary variables to an internal SO(7) one.

We start in section 2 with a review of our [12] covariant BFV hamilto-
nian (phase-space) form [8] of the path integral (2.30).

In section 3 we deduce from it the covariant gauge-fixed lagrangian
path integral (3.25) through functional integration over the canonical mo-
menta. The covariant lagrangian gauge-fixed action (3.26) represents a
free 2-dimensional conformal field theory with a finite number of fields and
ghosts.

The deduction of the path integral from a well structured hamiltonian
formalism is essential in two ways. First, systems with variable structure
”constants” in the constraints algebra present certain ambiguities in the
measure of the lagrangian path integral [13] which can be resolved sys-
tematically by using the hamiltonian techniques. In the absence of such
a systematic technical framework, the lagrangian path integral formalism
may lead to incorrect results as suggested in [13] and exhibited in detail in
[14]". Second, the well structured algebraic set of constraints (the hamil-
tonian analog of the gauge invariances of the lagrangian formalism) allows
us to have detailed control on the (in)dependency of the gauge invariances
and to make sure that they are really eliminating all the auxiliary variables

in the covariant path integral*".

» [14] show in a particular case that the path integral obtained through the lagrangian
[? Jism gives a nc jtary S-matrix while the hamiltonian formalism produces the

correct one.
s« E.g. , it was found by the analysis in [12] that part of the gauge invariances proposed
in {15] for the auxiliary variables introduced in {2-7] were functionally dependent.
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In addition to the basic result (3.25),(3.26), the presen: report con-
tains the following new material.

A) Since the auxiliary variables are chiral world-sheet scalars, it is
necessary to prove that the auxiliary gauge symmetries are not plagued
by quantum anomalies. It is shown in detail in section 3 that actually the
potential anomalies cancel ((3.27)-(3.29)).

B) The relation between the path-integral and the canonical opera-
tor formalism is explicitly exhibited in section 4 where we derive from the
point-particle limit of the covariantly quantized GS superstring the covari-
ant equations of motion of D=10 SYM ((4.25),(4.28))". As a by-product,
we show explicitly that the present formalism [12] is physically equivalent
to the initial "harmonic superfield” one [2-7] ((4.15),(4.16)).

As stressed above, we consider the derivation of D=10 SYM a crucial
check for the correctness of any GS superstring covariant quantization pro-

cedure.

2. Hamiltonian Covariant Path Integral

The usual heterotic GS action in the lagrangian form is [1}:

Sheterotic _ / drd.g,/—_g[_%gm"a,,.x#a,.x,, — 2(P™™ 8, X*)(00,8.)

+ %gm"(oa,.a,.o)(oaﬂama)] +5
(2.1)
where §' is the action for the left-moving fields describing the internal
string degrees of freedom. The precise form of S’ does not have any effect
on the present analysis, therefore it will be supressed. )
The variables appearing in (2.1) have the following meaning.
gmn (m,n = 0,1) denotes the D=2 dimensional world-sheet metric. The
string bosonic coordinates X# |, u = 0,...,9, transform as D=10 vec-
tors and D=2 world-sheet scalars. The anticommuting string variables
bs , @ = 1,...,16, transform as a left-handed Majorana-Weyl (MW)

» For the analog supersymmetric interacting result in the "harmonic superfield” ap-
proach see {6,7).




S0(1,9) spinor and as D=2 world-sheet scalats.
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PPn= (g™ % (2.2)

L]

are the D=2 chiral projectors.

In the canonical hamiltonian formalism, the local invariances of the
lagrangian-form action (2.1) are expressed as constraints ( Tg,Tg, D* )
which appear in the hamiltonian-form action multiplied by Lagrange multi-

pliers (AL, Ar, Ag) :
Shegerotic = / drd€[Pu0,; X" + p§ 0,84 ~ ALTL — ARTR — A.D*]  (2.3)
In Eq.(2.3) T1,r are the left (right-) reparametrization (Virasoro) con-

straints (primes indicate differentiation with respect to the string param-

eter £ ):

Ty = (P - X,)? (2.4)
Tg = 1% — 4i¢/, D° (2.5)

where
II# = PA 4 X'¥ 4 2ifa"9’ (2.6)

The spinorial fermionic constraints D® appearing in (2.3) are:
@ = —ip§ — (P* + X' + i6oh0')(0,0)* @7)

The Poisson brackets (PB) of these constraints form a singular 16 x 16 ma-
trix whose rank on the constraints shell is 8, i.e. (2.7) contains a mixture
of first-class and second-class constraints. The quantization procedure of a
system is straightforward only if the constraints are functionally indepen-
dent and are separated into sets whose PB matrix is either zero (first class)
or invertible (second class) on the constraint surface.

To separate covariantly the first and second class parts of D* , one

introduces the auxiliary variables [2-7]:



i) seven SO(1,9) vectors:
uf,p=1,..,7,p =0,..,9
ii) two SO(1,9) MW spinors

vf* ,a=1 .16

In the sequel the following objects and notations will be useful :

uﬁ = \/i(v"'*a,,v"' *)

ul = vtho vt

u; = v'*a,,v'%
uf = (uf,u}), a=(p,8)

At = At A% = At

ghrba = glhgna gpal

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

In (2.14), A* is an arbitrary SO(1,9) Lorentz vector. The indices p, ﬂ:%

in (2.8)(2.9) transform as a SO(T)-vector and SO(1,1) charge +3 respec-
tively, where SO(7) x SO(1,1) is an internal symmetry group. The index
a in (2.13),(2.14) is short-hand for the pair of indices (p, 8) which trans-

form as a SO(8) vector.

With the help of the auxiliary variables (2.8),(2.9), the fermionic con-
straints (2.7) can be separated covariantly into independent first-class part
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(kappa-gauge symmetries):
Dty =ytie? ID , a=1,.,8 (2.15)
where JI = H,0* (with 1, being defined in (2.6)), and second-class part :
Gt = %v-%aﬁp ,a=1,.,8 (2.16)

The auxiliary variables (2.8)(2.9) are introduced on the string world sheet
as reparametrization scalars. Their dynamics is governed by a hamilto-
nian which contains only a linear combination of independent first-class
constraints equal in number with the number (=102) of the auxiliary vari-
ables, thus insuring that the latter carry no dynamical degrees of freedom
at least classically. However, after quantization anomalies might appear in
the local symmetries generated by these constraints. That this is not the
case is proved in the next section. This insures that the introduction of the
auxiliary variables does not affect the physical content of the theory.

The resulting action, physically equivalent to the original one, but eas-
ier to quantize covariantly, reads :

S éast"o“c + Saucitiary (2.17)

where

Shegerotic = / drd€[P,0, X" + p§ 0.0
GS [ # 4 o (2.18)

—ALTy ~ AT — A7 ED+ia _ Mo 3G+
where now the left Virasoro constraint 77 acquires contribution from the
auxiliary variables:

Ty = (P~ X.,)? - 4(nbul, + 7y 3 (v3)) (2.19)

and A; *, M. denote the Lagrange multipliers for the covariantly dis-
entangled fermionic constraints (2.15),(2.16) . Note the second term in
Ty (2.19) which says that the auxiliary variables (u, v) transform under
reparametrizations as left-moving world-sheet scalars.

L d
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The auxiliary part of the action (2.17) is:

Sauzitiary = / drdé(xr1o,v%% + 750, up — Apgn DMY — Map¥45] (2.20)

In (2.19),(2.20) (u'.:,k *)", (72)# denote the canonical momenta conjugate to

¥ R
va*,uf‘.

{(xF)2(6), vi3 () p = ~636(¢ ~ ),

{(=D)u(@), wl(m)}ps = —6P 0, é(¢ — ),

(¢, 1 denote the string world-sheet parameter at fixed world-sheet time

7; in most cases they will be supressed for brevity). Aysn, Map are La-
grange multipliers corresponding to the constraints on the auxiliary vari-
ables DMN WAB_ The latter have the following geometrical meaning . The
50 orthonormality constraints WAB:

T""Euﬁu“‘—&”:O
\I'PBEuf‘us"=0
Pt — Pt
YPE = uly™t =0

W s w4120

(2.21)

(with u3,u# as in (2.10)-(2.12)) imply that the auxiliary variables form
on-shell an orthonormal frame of ten SO(1,9) vectors (the "missing” or-
thonormality conditions are authomatically fulfilled off-skell by construc-
tion, due to the D=10 Fierz identities {12]).

The 52 constraints DM¥ imply that the physics is invariant under lo-
cal SO(1,9) rotations of the orthonormal frame (w?, 4%, «*,u™) and under
transformations of the v's which leave this frame invariant (the last gauge
invariance is expressed by the constraints [%r):

1 '3
DF = —uPri + 7P — Egvi*ﬂpqﬂuﬂ 222



D = —ual — %.,.2_ v*ho8oPaTh (2.23)

D= -% ?; stho—+aTh (2.24)
D¥* = —utad - %?_‘: vibgtraTh (2.25)
DP=—uwa- -;-2_‘: i (2.26)

D= -% 2_“: L (2.27)

D®= —% ; vio=8,F) (2.28)

[ = —% g_:(:t)v*ia%?* (2.;9)

Let us stress that all constraints in (2.18),(2.20) except G+4¢ (2.16)
are first-class.

Consequently, the gauge-fixed path integral will contain the following
elements:

a) the functional integration over the canonical variables X#,0,, u, v
and their conjugated momenta Py, pg, 7y, 7y;

b) the functional integration over the Lagrange multipliers
Ap, Ap, A~¥, M~3% Apn, Mas;

¢) delta functions imposing the gauge fixings x for the first-class con-
straints Ty, Tr (rep) , D+¥ (kappa), DMY (rot) , ¥AE {norm);

d) the determinants App of the matrices formed by the PB of first-

class constraints with their gauge-fixing conditions;
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€) the inverse square root of the determinant of the PB of the
fermionic second-class constraints G+3* (= det—4[H*]) "),

The gauge fixing for the (kappa) invariance is represented in the path
integral by a factor:

(™)) = §(v+¥o%0)

which implies a (local) determinant:
AL = det~8[11+).
The hamiltonian path integral result is therefore of the form [12]:

Z = /DX“DG,DuDv

DP*Dp§ Dy Dz,
DALDARDA~Y¥DM~YDApsn DMap

ezp{i§) (2.30)
6(x("p))6(v+ b-auo)&(x(ro:))ts(x(norm))

AL det= S+ AL ARr™)

det~4[IT*]

The correctness of the gauge fixings §(x("*")é(x("*"™)) and the determi-
nants AZ2), AL™ for the auxiliary constraints depend on the lack of
anomalies. We will siudy them below explicitly in the lagrangian frame-

work.

x) Tt = u}TI# = vt4 Motd, of. notations (2.14).
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3. Lagrangian Covariant Path Integral
Integration over the momenta P#,pg and the fermionic Lagrange mul-

tipliers A—4e, M-4a ;n (2.30) leads to the lagrangian gauge-fixed covariant
path integral:

Z= / DX¥ DB DuDvD(1y ) D(1y ) Dgmn DAMYN DMAB

ezp{isvlayrangian} (31)
B(XT PSS ™) s(v+Ea20)

t
APALAGE™ M

where

Slagrangian - Sé?"o“c + Slagranqmn (3.2)

auziliary

Sheterotic ig the same as (2.1) while:

auziliary

glagrangion _ / drdey/=gl(xT FIn Prm O vt L + ()0 PE" O (33)

_ A'IEINP_TnDrI’t‘IN - MABWAB]
In going to the lagrangian path integral the fcllowing notations were used:

{ V6™ = —[2(As + AR),
V=99" = (Ar = AL)(AL + AR) 7Y, (3.4)
V- gu 8ALAR(AL + AR) 1

mt = VEgPI (w7 = VTGP () (3.5)

Similarly, DMV have exactly the same form as the hamiltonian constraints
DMV (2.22)-(2.29) with all canonical momenta ;- L nd substituted with
(5 )y (#8)n-
: As usual, we take x("¢P) to be the conformal gauge for the world-sheet
e metric gmn (3.4), D= 2 light-cone vector components are denoted as usual
b4 g 0:,05 = —;—(31 F &)= %(01 F #07) in euclidean space).

B

-
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Although in (3.3) the Lagrange multiplier A~ and the momenta
(=2h),, (7{)r, become D=2 world-sheet vectors, only one independent
component A¥N, (wf *),, (7%); actually enters due to the D=2 self-duality
projectors PP" (2.2).

Ajoeat in (3.1) is a local determinant factor of the form :

B = [ DxAoesn(i [ drdey/=gle4*pni(1 = porc Prmon X4t}
(3.6)

~%4 are world-sheet spinor bosonic ghosts and p,, ps denote the

where x

world-sheet Dirac matrices. In the conformai gauge:
Alocal = det"[(@;X")u:] (37)

The orthonormality constraints ¥4# in the auxiliary action contain
only u, v and no morrenta, vherefore, they cannot be anomalous. Thus it is
correct to introduce in the path integral the delta functions appropriate for

ther fixing:
6(X("°"")) = 6(QAB)

where
2 u k)

(Ao hoh*h), (a)E(Botomd), 2wt 4+ ot h))
(3.8)
The FP determinant corresponding to Q4% is constant on the surface
¥AB = g (2.21). .
The rotation part of auxiliary action (3.3) (in the conformal gauge for
gmn), upon inserting the explicit form of the constraints (2.22)-(2.29), has
the form:

/ drd&{nP[0sup + 24,00 + O(u, v)] + w.:f%[a,—v*% + O(u, v)]} (3.9)

The terms collectively denoted in (3.9) and below as O(u, v) dc not affect
the path integral due to the following argument.
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The path integral has the follcving general form:
Z= / DuD(x,)Dyezp{i / drdf xu{L{y)u + V(u,y)) + Wu,g]} (3.10)

where u stands for (u, v);
¥ denotes the rest of the path integral variables;
L(y) is a linear differential operator;
V(u,y) is a polynomial in u containing only terms higher than linear;
W(u,y] is an arbitray functional of u. In the present specific case, W{u, y]
is the sum of the logarithms of the ghost determinants plus the fermionic
part of the string action (see {3.12)-(3.19),(3.22),(3.23) below).

Now, it is straightforward to show that:

2= [ DuDyblL(s)u + V(w,9esp(iWlu, i)
= det™'[L(y)]ezp{iW [0, 4]} (3.11)
= / DuD(7,)Dyezp{i / drdén, L(y)u}ezp{W[0,3]}

i.e. the functional integral does not depend on V(u,y) and W(u,y) —
W (0,y) which can be disregsrded for any practical purpose. We will keep
indicating their presence in the intermediate results (by the collective no-
tation O(u,v)) only to make easier for the reader to follow the algebra. In
the final results (3.25), (3.26), we will appropriatelly invoque (3.11) and
supress the O(u, v) terms.

Given the fact that only the derivatives sandwiched between P and
u? become covariantized by the appearence of the Lagrange multipliers
Ap, as "gauge fields” in (3.9), the only auxiliary gauge invariances liable
with anomalies are the ones corresponding to SO(7) rotations DP? (2.22).
The invariances corresponding to the internal orthonormal frame rotations
D, D-+ Dir DE8 DFp (2.23)-(2.29) can be fixed with no further wor-
ries. They contribute the factors:

5(A®P)det[D:5P1 + 2AP1) (3.12)
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§(A%?)det?[0;6” + O(w, v)] (3.13)

S(A¥=)5(AZ8)5(A%)det [ By) (3.14)

The (conformal gauge) lagrangian path integral can now be rewritten

as:
7= / DX*D¢* DuDvD(xy); D(x,); DA DMA®
ezp{is}allr
6(9””)6(x5°(7) )Af‘gﬂ) (3.15)
det[(V1)700 + O(u, v)|det?[0; + O(u, v)]det %[ds]
where

S=-~2 / drdg[8, X85 X, +i(¥aVih) + T Map¥A?
+ (71,0t + O(u, 9) + (x2):(Brv® + 2AP4u, + O(u, v)))]
(3.16)

The covariant derivatives entering (3.15),(3.16) are defined as follows:

(V)70 = VB9 = 8#90; + 2%, (3.17)

where p,¢ transform as SO(7)-vector indices, and:

Ve = 68, + T2 — (Or X*uS)(0: X" u}) ' TH(5%)ea (3.18)

re= u:(?,u"" +v- oo, Y,
T =ufou, (3.19)
(5)eq = -;-v‘ Yo, 0%t}

(the latter are precisely the matrices of the SO(8) generators in the har-
monic (¢)-spinor representation [5,7]). All indices a,b,¢,d in (3.18),(3.19)
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and elsewhere transform as internal SO(8) ones (recall (2.13)). In (3.15)
we used the change of variables:

0 — 04 = (vE1006) (3.20)
with a subsequent rescaling:
040 — g = —2(8; X4 ut) g~ 42 (3.21)

Note that the Jacobian of the rescaling (3.21) precisely cancels Ajoeqs (3.7).

Now, it is useful to pass from the gauge QA = 0 (3.8) for the or-
thonormality constraints WAP (2.21) to another gauge MAB = ( which
significantly simplify subsequent calculations. This passage is effectuated
in the standard way by introducing the usual FP "unit”. (Recall that ¥48
(2.21) form an abelian gauge algebra which acts only on 7y, 7, but leaves
u,v invariant. The Lagrange multipliers MA® are, of course, the corre-
sponding gauge fields).

Thus, one obtains in the path integral (3.15) the term

§(MMPN)det[(V5) 500 +O0(u,v)|det®3[d; + Olu,v)]  (3.22)

symm,traceless

in place of §(QM¥). Here:

(V) = VB =676 99 4 2(AR 89 4 ALC 50)p)

symm,traceless

(3.23)
— (trace — parts),

is the SO(7)-covariant derivative in the symmetric traceless tensor repre-
sentation with p, ¢, r, s transforming as SO(7)-vector indices.
Ignoring for a moment the possibility of SO(7) anomalies, let us

choose the gauge fixing for the internal SO(7) rotations to be A:;‘O(T) =0
which implies the path integral contribution
§(xSOM)AFE") = §(A5)det? [05] (3.24).

Now, accounting for (3.12)-/3.14) and (3.24) we can straightforwardly inte-
grate over the lagrange muitipliers. Then, (disposing of the O(u, v) terms

15



cof. (3.11)) we obtain the quadratic covariant gauge fixed path integral in
terms of a finite number of conformal fields and ghosts:

zZ= / DX* Dy® DuDvD(#,), D(x, ).
Db Dc,; Db Dieyx (3.25)

D, D{Dij. D¢
exp{iShilinear 4 ig'}

SgEmer = -2 / drd€[0, X*0: Xy + iV°0; 0

+(xF 4),0;,0%% + (n2),07u, (3.26)
+ MV onpn + (2P0:¢an
+ bzaz‘ctz + sz_azéz'i

where i, , 5, (, ,  are the ghosts for the rotation- (D) and orthonor-
mality (¥4F) gauge symmetries and b, ¢ are the reparametrization ghosts.

Eqgs. (3.25),(3.26) are the basic starting point for computations of GS
superstring amplitudes upon inserting in (3.25) the appropriate covariant
vertex operators (which, in general, will depend also on the auxiliary vari-
ables (u,v), of . {5]).

To prove the legitimacy of the SO(7) gauge fixing (3.24) and of the
subsequent integration over the Lagrange multiplier A2 which which lead
us to (3.26), we will show now that the corresponding SO(7) gauge invari-
ance in (3.15),(3.16) is not anomalous.

The integration in (3.15)(3.16) over the auxiliary variables u, v and
the momenta =, m, (cf. (3.10),(3.11)) provides the factor:

det™10[(V) 7o ldet=>%(s]

16
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in the functional integral which consequently becomes:
Z= / DX Dy* DA}t
exp(2i [ dralO.XPB1X, + i0*0utel} 3.27)

Ag;p)6(xso(7)) Af‘?’m
det](Vs)5oom Jdet=0((V )0 )det®[61]

symm traceless

The terms in (3.27) containing Vy are estimated by observing that [16):
In det[(V5)507) = ex(repr)W[A; O]

with W[A] denoting the standard Wess-Zumino action and ¢a(repr) indi-
cating the value of the second Casimir of the corresponding gauge group
(SO(7)) representation.
Since [17):

ca(21) = ﬁ =9

c2(D) 6
where 27,7 denote the symmetric traceless tensor and the fundamental
representation of SO(7), respectively, one obtains precise cancellation of
the dependence on ASP(") = A} in the quantum effective action:

det[(V)500) ldet=%((Vs);ons|det*S[0;] = det=2"-5+1%(3;]. (3.28)

symm,traceless

and, therefore, no anomalies associated with th= auxiliary gauge invari-

ances.
Substituting (3.24) and (3.28) into (3.27) one obtains:

Z= / Dx*Dy* AL
(3.29)
ezp{~2 / drd€]d, X85 X, + i%°0,va]).

The covariant functional integral (3.29) coincides formally with the non-
covariant expression which was shown in [18] to be free of conformal

avomalies. In particular, (3.29) shows that the introduction of the auxil-
iary variables u,v does not contribute to the conformal anomalies at all.
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4. Massless Field Theory Limit

In [6] we have shown that given a furctionally independent covari-
ant first-class system of constraints, one can construct by a BFV-BRST
procedure a field theory action whose equations of motion are the partial
differential equations obtained by Dirac quantizing these constraints.

Let us show here that the Dirac constraints corresponding to our sys-
tem describe on-shell, in the point-particle limit, the D=10 Super-Yang-
Mills (SYM) theory. For simplicity we will prove here the equivalence with
the component-field equations. A proof of the equivalence with the su-
perfield equations of motion was given in [7]. Of course, both proofs are
equivalent because of the well known equivalence between the component-
and superfield formulations of D=10 N=1 SYM [19] (and D=4 N=3,4
SYM [20]). However, it is instructive to see both.

The general procedure of canonical (operator) quantization [21] in-
structs us to perform the following steps:

i) Go from Poisson brackets (PB) to Dirac brackets (DB) for the
canonical variables accounting for the presence of the second class con-
straints G+¥° = 0 (2.16) and of the pairs formed by the first-class con-
straints D3¢ = vtho® pD = 07 (2.15), ¥A8 = 0 (2.21) together with
their associate gauge-fixing conditions x(*) +4¢ = y+4g99 = 0" Q4B =0
(3.8).

ii) All remaining first-class constraints:

.. . N ~8p
P, D% D+, 0¥ D (4.1)

are imposed as operators annihilating the wave function of the superparti-
cle. (Recall that a,b are SO(8) indices unifying SO(7) vector- and SO(7)
singlet- indices , cf. (2.13)).

») In the point-particlelimit: T;,Tp — p? , D* — —ipd — p*Pég.

»s) Actually, we may choose not to impose classically the covariant s-gauge fixing con-
ditions x{*®) t49 = yt3499 = 0 but to add the quantized first-class constraint
D39 to the set (4.1). The corresponding Dirac constraint equation, of the form
Dthad= (pt -—7:; 4 p36*$2)® = 0, would simply imply that on-shell & does not

o8,

depend on 8142 23.18).
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One easily gets the following nontrivial DB for 6§~ ¥ (3.18):
{o-4e,0-P}pp = —i(ap*)-16% (4.2)
which implies, after rescaling (cf. (3.19)):
o740 w0 = 2\ /fpro-bo (4.3)
the following quantum anticommutation relations:
{9, 9%} = 6. (4.4)

As shown in [5,7] , the SO(8) Clifford-algebra (4.4) can be represented
in terms of 16 x 16 matrices Ffs) constructed entirely out of the auxiliary

variables u, v and the D = 10 o-matrices:

1 0 J (7a)bc
e = I8 = vz 45
Wk [ﬁ(-r-)bc 0 J (48

(*)e = (%) = V2vtiooo.vs (4.6)

As a result of the matrix representation of the quantum variables ¥° (4.4)-
(4.6), the wave function of the system becomes a 16-component spinor:

Y"'i‘i"(p, u, u)] 47)

u,v) =
¥p, u,v) [ B(p,u,1)
with a fermionic upper half and a bosonic lower half. The assignement of
(+%) S0(1,1) charge to Y is a matter of convenience.

Taking into account the representation (4.5)-(4.7), and performing a
suitable similarity transformation (involving the «’s and the v’s ) on the
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operators (4.1), we first solve the following constraint equations:

. Doty +ie 4 (sa.)cdy-;-gd
ab P = = .
D [ Dat ge + (Vab)chd 0 (4 8)
D to= (D7 - l)y+ e =0 4
D-+pe B (4.9)
. Doy +hs — (Sor)aryth :
= D g =0 (4.10)

The notations used in (4.8)-(4.10) are as follows (cf. (2.22)-(2.24),(2.29)):

5}

D= uﬁau” —uf— S + 2(v+%awa‘i% + v-%arvav‘r”_%) (4.110)
D% :uﬁaa“ + ( + “-‘Pav% + u-%aﬂrav:) (4.11b)

= _( +%av§% _ v;%_j:_%) (4.12)

D% = g(othotr S - v"”iasﬂ’av“i o) (4.13)

(5%%)cq is the same as in (3.17) and (V ®*).4, (5%*)cq denote the generators
of the SO(8) (v) and (s) representations [5,7):

( Vub)cd - 6ac6bd - 6ad6bd

(8N = %u“'*a‘ca“ba”a’dv‘% (4.14)
Solving the equations (4.8)-(4.10) one is lead to the general solutions (in
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momentum space):

Bd(p, u, v) -— u: E ( ) (ukl) u u;l"_Bl‘{l){A}{’}{f}(p)

+
HeHn PP
(4.15)
(recall p* = v} potl),
YHop,u0) = (i) T (R A ("*‘)
’ n ﬂ
=HAHeHn P (4.16)
yjnl{»\){p){f)(p)

The coefficient fields in the expansions (4.15),(4.16) satisfy certain al-
gebraic conditions of symmetry and tracelessness with respect to their
Lorentz indices described in [7].

Actually, in our older works [2-7)", the form (4.15),(4.16) displaying a
specific dependence on the auxiliary variables™” was input as a definition of
the space of wave functions (”harmonic superfields” "'). Now, it becomes
clear that the space of D=10 harmonic superficlds used in [2-7] is nothing
but the space of general solutions of the equations (4.8)-(4.10). Therefore
our present formalism [12] is physically equivalent to our original harmonic
one [2-7].

Solving now the equations

=0 (4.17)

. oy +ha
Dtep= [D Y }

Dtapge

= As opposed to the new formalism in [12).

»x The specific form (4.15)(4.16) is characterized by the complete saturation of the
internal SO(8) x SO(1,1) indices among the u's and the v's. This, in turn means
that the coefficient fields in the expansion carry only Lorentz-indices but not internal
S0O(8) x SO(1,1) indices.

»*» The name "harmonic” came from the fact that fields of the form (4.15)(4.16) as
funcnom of (u,v) are actually functions on a ( ct} h space
3"0'(3)75%_17 where £ is the subspace spanned by the (u, u) fulfilling lhe orthonor-
mality constraints WAF (2.21). Similar constructions previously appeared in the
D=4 harmonic superspace formalism [11].
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with (cf. (2.25)(2.27)):

& 1 9
+p — ot 1y—bgt
D =y 5 +2u *a"au_*
D= Lytgrs 8 (4.18)
2 dv-}% ’

further limits the form of the general solutions (4.15)-(4.16) by eliminating
the terms containing u;:

B%(p,u,v)|prediog = (42 —p— uh) (R p,,) (= “')B"“’(p) (4.19)
{x}

y+i(p,n, v)lphq».a—(vﬂa“)“Z(p,,) (= ‘-)Yf*’(p) (4.20)
{x}

©inally, one imposes the D~2® = 0 equations:
prag < [P0 BRI - Sy (4.21)
D—aBb _ f_t—(V“)"dBd

where (cf (2.26),(2.28)):

a 1 7]
~P =y pytEe—a__~
b¥=u Bus T 3" to dutt
- 1 g 0
D 3 — 2v+¥ 8m (422)

and (V¥).q, (5%).4 are the same as in (4.14).
Let us consider first the explicit form of the second eq. (4.21) upon
inserting (4.22) and (4.19):

(p+)z[mmp —PMPVHB"(P)*'Z:}I( p"‘) (5 "')B”“"(P)]

+(u) ——u")ZZ( +2(u,. § - utud)..{ "')B"‘ﬂ () =
{x}’ i=1 p )
(4.23)

where now {x}’ labels the non-empty sets of indices (1, ..., 5).
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Comparing the expression~ in front of the different structures involv-
ing the auxiliary variables we find that:
(a) All higher order coefficient-fields in B%(p, u,v) vanish:

BHsY (p) =0 (4.24)

(b) The lowest-order field B#(p) satisfies the ordinary Maxwell equations
(going back to z-space):

8,F¥ =0, F* = 8#B* — 9" B* (4.25)

In a complete.y analogous manner, upon substituting (4.22) and (4.20), we
for the firsv eq. (4.21):

——(v+%a°a°1>)°m(p)+2( L) (e “')Y{‘}'(p)l

{l}'
ut ’
+(w*he) Y E( (W uf =~ ) (Y ) = 0
{myi=1
(4.26)

and, therefore:
(a) All higher order coefficient-fields in Y'+4%(p, u,v) vanish:

Y () =0 (4.27)

{b) The lowest-order field Y,(p) satisfies the ordinary Dirac equations:
5°PYs(p)=0 (4.28)

This concludes the results for the point-particle limit analysis
of the covariant canonically (operator-) quantized GS superstring:
The covariant Dirac constraint equations for the wave function completely
reduce to the usual Maxwell and Dirac equations for the lowest order ordi-
nary fields B#(p), Yo(p). The nonlinear supersymmetric extension of this
analysis and the construction of the corresponding D=10 SYM superfield

action were performed in [7].
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5. Conclusions

We have shown that the lagrangian path integral for the covariantly
quantized GS heterotic superstring reduces to a two dimensional free con-
formal field theory with a finite number of fields and ghosts (3.26).

We have found that this path integral is anomaly free in 10 dimen-
sions (3.29).

By performing the corresponding Dirac quantization we have shown
the equivalence of the present formulation [12] to the harmonic super-
field” formulation of [2-7] (4.15),(4.16).

We have shown that in the point-particle limit, the Dirac constraint
(partial differential) equations obtained this way lead to the covariant
componert-field D=10 SYM field equations (4.25),(4.28).

We consider the contact with the D=10 SYM theory as a decisive evi-
dence that our superstring covariant quantization procedure is correct and

tractable.

Acknowledgements: E.N. and S.P. most thankfully acknowledge the cordial
hospitality of the Einstein Center for Theoretical Physics and Y. Frishman
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Recent work on the same subject was reported at this conference by
C. Hull [22], R. Kallosh, M. Per.y, and W. Siegel [23]. 1t will be interest-
ing to see how the D=10 SYM is reproduced in the point-particle limit by
these approaches.
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