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ABSTRACT

The proximity potential is discussed for the inelastic scattering of a

spherical nucleus on a deformed nucleus or the mutual interaction of two

deformed nuclei. It is shown that the proximity potential is, in general,

geometrically more correct than the usual centerline prescription used in

inelastic scattering analyses. For the cases where the proximity potential is

inadequate a folding model approach is advocated. Techniques to facilitate

the coupled channels analysis are presented.
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1. INTRODUCTION AND BACKGROUND

In heavy ion reactions low lying collective states of both projectile and target can be

strongly excited by Coulomb excitation over a broad range of projectile energies, and by the

nuclear interaction when the reaction occurs above the Coulomb barrier. The discussion

here will be confined to the nuclear excitation of inelastic degrees of freedom in nuclei

during heavy ion collisions. In particular, the case will be treated when one or both of the

nuclei are statically deformed. Since the interaction is strong, with multi-step processes the

norm, reaction calculations must be carried out in the framework of large sets of coupled

Schrodinger equations. This aspect of the problem will be discussed in Section 4. We will

first concentrate on the interaction that causes the inelastic transitions, namely a deformed

optical potential.

The usual treatment of the deformed optical model involves a potential which is a

function of the distance between the nuclear surfaces along a line connecting the nuclear

centers (Fig. 1) T«V»r a. spherical nucleus interacting with a deformed nucleus, such a po-

tential obviously depends on the distance between their centers as well as the orientation

of the deformed nucleus. Randrup and Vaagen1 pointed out that a more correct prox-

imity treatment of the potential involves two geometrical corrections to this center-line

prescription:

1. The point of least separation distance, at which the proximity formulation is

applied, is in general not on the line connecting the two centers2; and

2. the local curvature, which determines the strength of attraction, varies along

the surface of a deformed nucleus.

The original proximity interaction derived by Blocki et al.3 was based on consideration

of the energy density of the ion-iou system. An alternative way of thinking of the proximity

potential is as an approximation to the folding model. Since the folding model has its

greatest validity in the tail of the potential and it is just this region that is probed by the

peripheral inelastic scattering reactions, we will use the folding model as a standard for

comparison and development of the proximity model.

For simplicity, first consider spherical nuclei; the generalization to deformed nuclei will

be straightforward. We take a single folding approach in which a nucleon-projectile optical



potential is folded over the density of the target. (This is equivalent to a folding of the

densities of the two nuclei with a delta-function nucleon-nucleon interaction.) For gently

curved surfaces, one may consider the interaction energy per unit area of two parallel

surfaces at separation s.

The essential approximation of the proximity treatment is to replace the spherical

surfaces with paraboloids of the same Gaussian curvature, thus allowing the integration

to be done in a universal way. One obtains an ion-ion potential expressed in terms of the

principal radii of curvature of the two surfaces (Rij) times a "slab on slab" function of the

separation distance, eo, which is based on the density distributions of the two slabs.3

eo(s). (1.1)J
ti\x + K-2z y K-\y + &2y

Brink4 pointed out that if the densities of both nuclei are of Woods-Saxon form with

the same diffusivity, a, then in the proximity approximation the folded potential becomes

ihis form provides a convenient universal ion-ion potential with which we can investigate

the deformed proximity potential. Of course other ion-ion potentials correspond to the

folding of other effective nuclear densities. For example, the Woods-Saxon potential is

obtained in the proximity approximation from the folding of two densities peaked at the

nuclear surfaces.5

2. THE PROXIMITY POTENTIAL FOR A SPHERICAL NUCLEUS

INTERACTING WITH A DEFORMED NUCLEUS

One generalizes from the spherical to the deformed proximity potential by finding

the minimum separation distance between the two nuclei and then taking the operative

curvature of the deformed nucleus at that point on the surface closest to the spherical

nucleus5 (Fig. 1). This is the approach originally taken by Randrup and Vaagen in their

analytical but approximate treatment.1

To attain quantitative adequacy, our approach is semi-numerical: while we obtain

analytical expressions for the radii of curvature, we use a computer search to find the

point on the deformed nucleus closest to the spherical nucleus. The potential for a given



orientation is then expressed in terms of the radius of curvature of the spherical nucleus and

in terms of the two principal radii of curvature of the deformed nucleus at the appropriate

point.

Expressions for the principal radii of curvature along a deformed surface, Rl {6) and

R2(6), are given in Ref. 5. Generation of the deformed proximity potential in terms of

the spherical radius of curvature Ftp and the two deformed radii of curvature Rl (9) and

R2(6) is then straightforward. One takes the geometric mean of the two perpendicular

curvature factors to obtain

where eo(s) is the "slab on slab" function dependent on the separation distance, s, and

the density profile of the two nuclei.

Up to now we have only really treated the real part of the optical potential. One

does not expect the folding picture to have much validity for the imaginary potential. We

will assume, however, that the geometrical picture of the deformed proximity potential

can be taken over to the imaginary potential in conjunction with a Woods-Saxon or other

empirical potential for the slab on slab radial form. As we pointed out, one can show in

the proximity picture that the Woods-Saxon potential form can be seen to arise out of

a surface-surface folding. This picturer-efees not seem geometrically unreasonable for the

generation of a heavy ion imaginary potential. Adopting a one term proximity potential

treatment of the deformed imaginary potential we obtain

wwP

where W (s) is any empirical potential form and Rf is the spherical radius corresponding

to the average radius of the deformed nucleus.

This potential form might also be utilized for the real potential if one did not want to

abandon empirical Woods-Saxon potentials, but nevertheless wanted to provide a geomet-

rically more correct treatment of deformation.

For comparison we calculate the angular momentum components of the angle depen-

dent optical potentials for both folded, proximity, and centerline potentials

{R.8). (2.3)



To investigate various aspects of the deformed proximity potential we previously in-

vestigated a case for which data exist and for which a coupled channels analysis6 had been

performed: 72 MeV 1 60 +152 Sm. Geometrically, this is a typical case, a light heavy ion

projectile on a more massive deformed target.

Since the VQ component is ultimately fit to elastic data, the ratio of computed com-

ponents to the L = 0 component must be reliably calculated for reliable extraction of

multipole moments. We found that the ratios of components for L — 2,4, 6 to the L = 0

component were in good agreement for the prcx;mity and folding models.5

However, the crucial point of this whole development is how the proximity model

treatment differs from the centerline prescription when higher multipole components are

extracted. We have plotted in Figure 2 the ratios of angular momentum components to the

real monopole potential using the centerline prescription and the Woods-Saxon proximity

potential of Eq. (2.2). Assuming the Woods-Saxon proximity potential has the more correct

relative geometry for the given deformation lengths {j3oR% — 1-65, 0iR% = .29), we find

that Vi/Vo and V§/VQ are significantly overpredicted in the centerline prescription for the

&iRA
N value of .29, implying a true value somewhat larger. In fact there is a discrepancy

between this value obtained in Kim's heavy ion analysis and the values of faR^ = .52 and

.53 from electron scattering and Coulomb excitation respectively. If we keep 0o^% at 1.65

and set 0iR% to .52 then we obtain ratios for the Woods-Saxon proximity model which are

very close to the ratios of the centerline prescription in Figure 2 probed by Kim's analysis.

To further test these observations coupled channels calculations have been performed

for this case using the coupled channels code QUICC.7 In Figure 3 the solid line is a rep-

etition of Kim's original calculation for the 4+ angular distribution, using the centerline

prescription and 02R% = 1-65, 0iR% = .29, which fits the data. The dotted line is a

Woods-Saxon proximity potential calculation with the same parameters. The dashed line

is a Woods-Saxon proximity potential calculation with 0AR% = .52 and all other param-

eters the same. Clearly the proximity potential calculation with faRjf = .52 corresponds

better to the centerline calculation of 0iRA
N = .29 and thus to the data. Using the more

correct proximity prescription has caused the discrepancy with the electron scattering and

Coulomb excitation results to disappear.



3. FORM FACTORS FOR THE INTERACTION BETWEEN

TWO DEFORMED NUCLEI

Bayman has derived proximity potential form factors for mutual excitation of deformed

nuclei, including simultaneous direct excitation of both ions.8-5 A coordinate system is

chosen in which the z-axis runs through the centers of the two interacting nuclei (Fig. 4).

The relative position and orientations of the two nuclei then can be completely described

by four variables: the distance between the centers, R, the inclination of each of the nuclei

from the r-axis, 8\ and #2, and the rotation angle of the second nucleus about the 2-axis

relative to the first, <j>. As Bayman points out, the proximity potential implies a torque

about centerline (z-axis) which is absent in the centerline prescription.

The technical details of how the shortest distance between the two deformed nuclei in

this configuration is obtained have been given in Ref. 8. A proximity potential can then be

defined in terms of two principal radii of curvature of each of the nuclei evaluated at the

mutual points on the surface closest to the other nucleus. The expressions axe complicated,

but amenable to a computer. A proximity potential is obtained as a function of R, 8\, &i

and <p.

By integrating over the three angular variables, form factors can be obtained of various
4

angular momentum character for each value of the distance R between the nuclear centers.

However Bayman's form factor expressions can be applied to any potential function of

R, 6\, #2 and <p to obtain the appropriate transition form factor, e.g. to the folding

model or the centerline prescription (even though it is independent of <f>). I have made a

small extension of Bayman's computer code PROX in order to be able to make a sample

comparison of the three models. The form factor I consider is the one for simultaneous

inelastic excitation of the 2+ level in 24Mg and the 4+ level in 154Sm, the case in which

Bayman compared DWBA calculation for the proximity and centerline potentials. Optical

model parameters and deformations have been taken from Ref. 8.

Figure (5) shows a comparison of the three form factors for the Woods-Saxon density

folding or Brink potential case. For angular momentum transfer 6, the proximity potential

is in good agreement with the folding model and the center line prescription is not. For the

lower angular momentum transfers of 4 and 2 the situation is less clear cut. The shapes



and magnitudes of the proximity potential are certainly in much better agreement with

the folding model than the centerline potential is. However the quantitative agreement is

less than ideal. In fact, for a simpler case in which the 154Sm target is not excited, but

the strongly deformed 28Si projectile is directly excited to the 4~*" state, the form factor

calculated in the proximity model is about half the magnitude of that calculated in the

folding model.

If one takes the approach that the proximity potential should reproduce the deformed

geometry of the folding model, then is seems clear that for quantitative analysis of heavy

ion reactions one should simply adopt the folding geometry when the proximity model is

inadequate. This is not to diminish the importance of the simplicity and physical insight

available from the proximity potential. However, the constant improvements of computing

makes routine evaluations of even all orientations of two deformed nuclei for the folding

model quite feasible.

4. THE COUPLED CHANNELS PROBLEM

It has been pointed out that for mutual excitation of two deformed nuclei the total

number of coupled channels that must be included for each scattering partial wave becomes

very large even for relatively low lying states being excited in both nuclei. For example,

inclusion of rotational levels up to maximum I for each nucleus leads to a total number of

channels
(J2 + 2J + 2)(J + 2)2

~ 8

for each partial wave.* Thus including excitation of the 0+, 2+ , 4+ , and 6+ states of each

ground state band would lead to 400 channels; including the 8+ also would make it 1025

channels.

Such a calculation is within the realm of current possibility as far as the number of chan-

nels. A heavy ion coupled channels calculation has been performed for a spherical nucleus

on a deformed target which required 441 channels: 208Pb +238 U (0+, 2 + , . . . , 40+).9 This

is a quantum mechanical calculation with a complex deformed optical potential. Fig. (fi)

shows the distribution of cross section into final states in the grazing region for a 1400

MeV projectile. The transition from the "picket fence" pattern characteristic of Coulomb



excitation at the forwaxdmost angle to the smooth distribution of the final states charac-

teristic of the onset of the complex nuclear interaction at more backward angles is evident.

This calculation made use of the centerline potential, and should be viewed as illustrative.

A proximity potential calculation would not significantly increase the time or difficulty of

the calculation. Such a calculation could easily be performed if data existed of a quality

sufficient to determine the optical parameters and the higher multipole deformations.

Some discussion should be made on how such a large calculation can be carried out in

a reasonable amount of computer time. Several techniqu€s-,facilitate the computation:

(1) Solution of the coupled equations is iterative. A set of coupled first order equa-

tions equivalent to the usual second-order coupled Schrodinger equations is solved. The

wave function solutions in each channel (ru{ (r) = X{ (r)) are written in terms of radially

varying coefficients, C, (r) , Cf (r), of the regular and outgoing, fi(r), hf (r), parts ~.f

the homogeneous (uncoupled) wave function solutions:

V; (r) = Q (r) /,- (r) - C+ (r) k+ (r) . (4.1)

One then immediately obtains from the second order coupled Schrodinger equations two

sets of coupled first order equations in Ci (r) and C± (r):

TrCi (r) = hlHt(r) £ Vl1 (r) fi (r) C} (r)

- K (r) ^ Vij (r) hj (r) C+ (r)] (4.2a)

i

- f, (r) J ] Vij (r) hj (r) Cf (r)] (4.26)
i

The first equation is integrated inward, beginning by ignoring the second term on the

right-hand side and using the asymptotic initial condition of only incoming flux in the

elastic channel (C;(oo) = — 2i<5;o) for the first term. Next, the second equation may be

integrated outward beginning with the approximate but very adequate physical boundary

condition that Cf (TQ) = 0 for some small ro. The process is then iterated to convergence.

(2) The Coulomb excitation is solved quantum mechanically, but in a way that takes

numerical advantage of its semiclassical character. The variation on the method which I



have developed for the Coulomb excitation region is to break the products of homogeneous

wavefunction on the right-hand side into rapidly oscillating and smoothly varying parts.

The rapidly oscillating parts may then be discarded in all orders of the iteration, allowing a

large step size for the solution in the long-range part.7 However, in the nuclear interaction

and turning point region the equations are solved exactly.

(3) Only a relatively few partial waves are calculated. For the case discussed 10,000

partial waves were included in the Legendre polynomial sum for the final cross sections.

However, only 65 were actually calculated. The other scattering amplitudes were then

obtained by interpolation for the partial wave sum.10

To reiterate, apart from the partial wave interpolation, the strengths of the method

used for this problem are that it is iterative and that it allows solutions of the equations

in the long range Coulomb excitation region with a crude step size. Both of these features

seem necessary to make the present problem tractable, as will be shown in the following.

Solution of the equations was carried out to 400 fm. With the mesh size used in the turning

point region (0.01 fin) a brute force second order Schrodinger equation approach would

have required nearly 40,000 radial mesh points. By the technique of keeping only the

smoothly varying parts of the effective long range coupling in the first order equations, the

number of mesh points used was limited to about 500. The number of iterations needed

to solve the 441 coupled equations for each partial wave never exceeded six to achieve an

accuracy of one part in 10,000. In contrast, the brute force method would have required

441 independent sets of solutions of the set of 441 coupled equations followed by solving

the appropriate set of 441 simultaneous equations for the scattering amplitudes." The

fast methods used allowed a full angular distribution to be calculated in about ten hours

on the Cray 2 at MFE Livermore.

5. CONCLUSIONS

Low energy heavy ion reactions provide a rich opportunity for probing the mutual

interactions of deformed nuclear surfaces. Strong interference effects between the nuclear

interaction and Coulomb excitation make excited state angular distributions very sensitive

to deformation parameters. This has been seen in extraction of the /?4 parameter from

the 4+ cross section in the 16O + 154Sm. /?6 and higher moments could be similarly
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analyzed from cross sections to higher final states. The technical problems of evaluating the

appropriate deformed ion-ion potentials and performing the large scale coupled channels

calculations are well in hand. What is now needed is more resolved final state data and

application of the various coupling and transition schemes to coupled channels calculations.
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Figure Captions

Fig. 1: Coordinate system for a deformed optical potential including a volume

element for folding.

Fig. 2: Comparison of ratios of L = 2, 4, 6 components of the Woods-Saxon

potential of Ref. 6 to the L = 0 component using the centerline prescription

and the proximity prescription.

Fig. 3: Comparison of 152Sm (16O,16O') 152Sm(4+) angular distribution. The value

of the Woods-Saxon proximity real and imaginary potential depths have

been reduced by 6% to correspond to the L = 0 potential strength of the

conventional Woods-Saxon potential.

Fig. 4: Coordinates frame for the interaction of two deformed nuclei.

Fig. 5: Form factors for the simultaneous transition to the 2+ state in 24Mg and

the 4"1" state in 1S4Sm from the ground state of each. Curves are ratios of

transition potentials to the spherical potential for the folding model (solid

line), the proximity potential (dashed line), and the centerline potential

(dot-dashed line). Total angular momentum L transferred is 6 (a), 4 (b) and

2(c).

Fig. 6: Cross sections ratios to Rutherford scattering at 84° (full circles), 88° (open

circles), 92° (crosses), 96° (triangles), 100° (full squares), and 104° (open

squares).
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