JAERI-M 89-109

大型放射光施設設計報告書-9

大型放	射光施設シンクロトロン
の基本	設計(I)
椛沢 島田	1989年8月 光昭・中山 光一・原見 太幹 太平・柳田 謙一・横溝 英明

日本原子力研究所 Japan Atomic Energy Research Institute

JAERI M レホートは、日本原子力研究所が不定期に公刊している研究報告書です、 入手の間合わせは、日本原子力研究所技術情報部情報資料課(〒319-11茨城県那珂郡東海村) あて、お申しこしください。なお、このほかに財団法人原子力弘済会資料センター(〒319-11次城 県那珂郡東海村日本原子力研究所内)で複写による実費頒布をおこなっております。

JAERI M reports are issued irregularly

Inquines about availability of the reports should be addressed to Information Division, Department of Technical Information, Japan Atomic Energy Research Institute, Tokai mura, Naka-gun, Ibaraki ken 319-11, Japan

© Japan Atomic Energy Research Institute, 1989

網術業	[発行]	日本原子力研究所
印	桐	日立高速印刷株式会社

大型放射光施設シンクロトロンの基本設計(I)

日本原子力研究所大型放射光施設計画チーム 椛沢 光昭^{*}・中山 光一^{*}・原見 太幹・島田 太平^{*} 柳田 謙一^{*}・横溝 英明^{*}

(1989年7月31日受理)

1988 年度に行なった大型放射光施設入射系の予備的検討の中のシンクロトロンを中心 に、高エネルギー電子・陽電子加速用セパレーテッド・ファンクション型シンクロトロン の基本設計について述べる。

本報告書では,単一粒子の運動論に基づく,リニアラティスの設計を中心に述べ,集団 運動・加速中の現象等に関する考察は次の報告書に譲ることにする。

日本原子力研究所: 〒113 東京都文京区本駒込二丁日28-8

.

+ 東海研究所物理部

The state of the second s

Basic Design for the Synchrotron in the Large Synchrotron Radiation Facility(I)

Mitsuaki KABASAWA⁺, Kohichi NAKAYAMA⁺, Taikan HARAMI Taihei SHIMADA⁺, Kenichi YANAGIDA⁺ and Hideaki YOKOMIZO⁺

> Synchrotron Radiation Research Laboratory Japan Atomic Energy Research Institute Honkomagome, Bunkyo-ku, Tokyo

> > (Received July 31, 1989)

Synchrotron Radiation Facility Project Team in JAERI had tried to preliminarily design the injection system of Large Synchrotron Radiation Facility in the fiscal year 1988. Concentrating on the basic design for the booster synchrotron in this injection system, we describe the general method to design the separated function synchrotron which is used to accelerate high energy electrons or positrons.

The content of this paper is founded on the physics of single particle motion. And in the next report we will discuss about the collective beam dynamics, the phenomena occurred during acceleration, and so on.

Keywords : Synchrotron Radiation Facility, Injection System, Electron, Positron, Single Particle Motion, Synchrotron, Booster

+ Department of Physics, Tokai Research Establishment

目

•

.

次

1. 序論	1
2. ラティスの設計	3
2.1 基本構造	3
2.2 分散の消去	••••• 4
2.3 パラメータの計算	5
2.3.1 ベータトロン振幅	5
2.3.2 ベータトロン振動数(チューン)	6
2.3.3 エミッタンス	6
2.3.4 ナチュラル・クロマティシティ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
2.3.5 モーメンタム・コンパクション及び放射減衰時間	7
2.3.6 量子寿命及びエネルギーアクセフタンス	8
2.3.7 平均СОД	10
2.3.8 ビームサイズ,BSC及びアクセプタンス	11
2.4 クロマティシティの補正	11
2.5 SYNCHによる計算	13
2.6 ダイナミック・アパーチャー	14
3. シンクロトロンリング内機器基本仕様	27
3.1 真空ダクト	27
3.2 偏向電磁石	28
3.3 四重極 電磁石	28
3.4 六重極電磁石	29
3.5 ステアリング電磁石	30
3.6 RF加速部	31
4. 入出射軌道	36
4.1 入射位置及び入射位置での軌道の傾き	36
4.2 入射軌道,入射バンプ軌道	37
4.3 入射バンプ電磁石位置及び蹴り角	38
4.4 入射セプタム電磁石位置及び偏向角	···· 39
4.5 出射位置及び出射位置での軌道の傾き	42
4.6 出射軌道,出射バンプ軌道	43
4.7 出射バンプ電磁石位置及び蹴り角	43
4.8 出射キッカー位置及び蹴り角	44
4.9 出射セプタム電磁石位置及び偏向角	44

(3)

. ..

. .

1

5.	シン	クロトロ	レン	入出身	射用	機器	基本	5仕	様·	••••	••••		• • • • •	• • • • •	• • • • • •	••••				• • • • • •	• • • • • • • •	51
	5.1	入出射部]真	空ダ	クト	及ひ	Q F	電	磁石	5…	•••••		••••	•••••	•••••	••••		• • • • • •		•••••	•••••	51
	5. 2	入射バン	゚プ	電磁イ	Б	•••••		••••	• • • • • •			••••		•••••		••••	•••••		•••••		• • • • • • •	51
	5.3	入射セフ	° タ	ム電台	滋石	••••		••••	•••••			••••		•••••		•••••			•••••		•••••	52
	5.4	出射バン	゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚	電磁石	5		· · · · · ·	••••	• • • • •			••••		• • • • •	· · · • • •	•••••	•••••					53
	5.5	出射キッ	カ	一電破	兹石		•••••		•••••		••••	••••	•••••	•••••			••••	•••••		• • • • • •	•••••	54
	5 <i>.</i> 6	出射セフ	° 9	ム電師	被石		• • • • • •	••••	• • • • •	• • • • •	•••••	• • • •	••••	••••		•••••		• • • • • •	•••••	• • • • • • •		54
6.	今後	の検討,	改	善点	••••	••••	•••••		•••••			••••	••••	••••		••••		• • • • • •		•••••	•••••	63
参	考文献			•••••	•••••	• • • • • •	•••••		• • • • •				•••••	••••	•••••	••••				•••••		63

-

į

•

.

.

: ; ; ;

Contents

1. Introduction	1
2. Lattice Design	3
2.1 Basic Stracture	3
2.2 Dispersion Suppression	4
2.3 Calculation of Synchrotron Design Parameters	5
2.3.1 Betatron Amplitude	5
2.3.2 Betatron Frequency (Tune)	6
2.3.3 Emittance	6
2.3.4 Natural Chromaticity	7
2.3.5 Momentum Compaction and Radiation Damping Time	7
2.3.6 Quantum Life Time and Energy Acceptance	8
2.3.7 Average COD	10
2.3.8 Beam Sige, B.S.C and Acceptance	11
2.4 Chromaticity Correction	11
2.5 Calculation with SYNCH	13
2.6 Dynamic Aperture	14
3. Bacic Specification for the Components in the Synchrotron Ring	27
3.1 Vacuum Chamber	27
3.2 Bending Magnets	28
3.3 Quadrupole Magnets	28
3.4 Sextupole Magnets	29
3.5 Steering Magmets	30
3.6 RF Cavity	31
4. Orbit Analysis for Injection and Extraction	36
4.1 Position and Gradient of Orbits at the Injection Point	36
4.2 Injection Orbit and Injection Bump Orbit	37
4.3 The Position of Injection Bump Magmets and their Kick-Angle	38
4.4 The Position of Injection Septum Magnets and their Bending	
Angle	39
4.5 Position and Gradient of Orbits at the Extraction Point	4 2
4.6 Extraction Orbit and Extraction Bump orbit	43
4.7 The Position of Extraction Bump Magnets and their Kick-Angle	43
4.8 The Position of Extraction Kicker and their Kick-Angle	44
4.9 The Position of Extraction Septum Magnets and their Bending	
Angle	44

.. . . .

- **1**

5. Ba	sic Specification for the Components used for Injection and			
Ex	traction	51		
5.1	Vacuum Chamber and QF Magnets in the Section of Injection and			
	Extraction	51		
5.2	Injection Bump Magnets	51		
5.3	Injection Septum Magnets	52		
5.4	Extraction Bump Magnets	53		
5.5	Extraction Kicker	54		
5.6	Extraction Septum Magnets	54		
6. Su	mmary	63		
References				

.

•

·· •

1. 序 論

日本原子力研究所大型放射光施設計画チームは、1988 年度末、大型放射光施設入射系の 備的設計検討を行った。ここにはその中のシンクロトロンの基本設計、すなわち、シンクロト ロンを構成する各機器の基本仕様とその導出方法を記す。さらに詳細な検討が必要な部分も残 ってはいるが、一般的な電子シンクロトロンの基本設計の一例を述べており、将来これを変更 する場合にもその手法に変わりはない。

図1.1に、シンクロトロンの運転シーケンスを示す。運転シーケンスは、構成機器の動作パ ターンを規定するだけで、ラティスの設計や、入出射軌道の計算には直接影響しないが、予備 知織として、理解しておかなければならない。ライナックは、60 Hz のくり返しで運転される ことを前提とし、その1.5 GeV のビームをシンクロトロンに 8 秒間蓄積する。入射用電磁石 はこの間、ライナックのパルスに合わせて断続的に作動する。その後 0.9 秒かけてリング内の 電磁石の磁場及び、RF電圧を最大仕様値まで上げ、ビームを 8 GeV まで加速する。つづく 0.2 秒間、リング内機器は最大値を保持しストレージリングがシングルバンチ運転の場合は、 1 パルスずつ、60 Hz で、ビームをストレージリングに向けて出射する。マルチバンチ運転の 場合は、1.6 µ s の間に一挙に全ビームパルスの出射を完了する。この間出射用電磁石が作動 している。出射終了後リング内機器は 0.9 秒かけて入射状態まで戻され、その後再び、入射 用電磁石系の動作が始まる。この1 回の動作ごとにシンクロトロンで約10 mA (ストレージ・ リングで約2.5 m A 相当)ずつ、ストレージリングで 100 m A 蓄積されるまで、運転をつづけ る。

このシンクロトロンの特徴として8 秒間,最大10mAの蓄積を行うことが上げられる。この ためにある程度ビームの安定性の検討が必要であるが、これは次の報告書に譲り、ここでは単 一電子の運動論に基く基本設計の説明に止める。第2章でシンクロトロンリング内の単一電子 の軌道計算すなわち、ラティスの設計について述べ、第3章でそれに基いて、リング内機器の 仕様値を決める。第4章では入出射軌道の計算を行ない、第5章で入出射用電磁石等の仕様を 決める。最後に第6章でいくつか問題点を上げ、詳細設計の際の改善点としたい。

12

1

JAERI-M 89-109

図1.1 シンクロトロンの運転シーケンス

2. ラティスの設計

2.1 基本構造

ł

シンクロトロンのラティスの基本構造は、過去の実積、対称性の良さ、ダイナミックアパーチ ャーの広さ等から、FODO型にした。また、加速周波数(RF)は、標準品的なクライスト ロンが存在する 508.6 MHz にした。今回の設計では、リングの機器の配置に余裕をもたせ、 ハーモニック数を800、セル数を48とした。 周長C (m)は

C = (c / f) • h c - 0.2997925 × 10⁹ m / s ; 光速 f = 0.5086 × 10⁹ Hz ; R F

h=800 : ハーモニック数

より 471.552 m となる。この周長は、ストレージリングの周長が 1473.62 m のとき、周長比 が、25 / 8 になることを想定している。

リングには、入射部、出射部、加速部2ヶ所の分数を消去した直線部を合計4ヶ所設けた。 従ってリング全体の対称性(スーパーピリオド)は4であり、放称性が2のレーストラック型 に比べて、理想的な場合には、危険な共鳴線の数は少ない。

ラティスの設計に於いて基本的なパラメータである偏向電磁石の磁束密度は,放射損失を小 さくしてRFシステムの負担を軽減するという観点から出発して,0.7 Tに設定した。セル数 と直線部の数から偏向電磁石の数は80台,長さは約3 mとなる。

表2.1.1 にシンクロトロンの設計パラメータを、図2.1.1 に、ラティスの基本構造を示す。

- 3 -

図 2.1.1 ラティスの基本構造

2.2 分散の消去

入出射部,加速空洞部共,分散によるビームの広がりを小さくするため,分散を消去した方 が良い。分散の消去は直線セルの両側のセルから偏向電磁石を1台取り除くことによって行な う(Missing Bend.)。この分散消去セルの収束四重極電磁石(QF)の中心でのX方向の Twissバラメータを β_{ox} ($\alpha_{ox} = 0$, $r_{ox} = 1 / \beta_{ox}$),分散を η_{o} ($\eta'_{o} = 0$),このQFの中心か ら,偏向電磁石の抜けた部分を経て、次の偏向電磁石の出口までの輸送行例(Transfer Matrix)を

$$\mathbf{M} = \begin{bmatrix} \mathbf{m}_{11} & \mathbf{m}_{12} & \mathbf{m}_{13} \\ \mathbf{m}_{21} & \mathbf{m}_{22} & \mathbf{m}_{23} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

とすると、分散が消える条件は

$$\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} m_{12} & m_{12} & m_{13}\\m_{21} & m_{22} & m_{23}\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \eta_0\\0\\1 \end{bmatrix}$$

より,

$$\begin{cases} m_{11} \eta_0 + m_{13} = 0 \\ m_{21} \eta_0 + m_{23} = 0 \end{cases}$$
(2.2.1)

である。一般には、分散の消去は、QFの強さを調整して行なう。QFの長さ、強さ(1/m²) をそれぞれ1、Kとし、この分散消去セルのQF出口から偏向電磁石の出口までの輸送行列を (n₁₁)とすると、

$$\mathbf{M} = \begin{bmatrix} n_{11} & n_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\sqrt{K_1} \ell_1) & \sin(\sqrt{K_1} \ell_1) & \sqrt{K_1} & 0 \\ -\sqrt{K_1} & \sin(\sqrt{K_1} \ell_1) & \cos(\sqrt{K_1} \ell_1) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

と表わされ,

$$m_{11} = n_{11} \cos \left(\sqrt{K_1}\ell_1\right) - n_{12}\sqrt{K_1} \sin \left(\sqrt{K_1}\ell_1\right)$$

$$m_{13} = n_{13}$$

$$m_{21} = n_{21} \cos \left(\sqrt{K_1}\ell_1\right) - n_{22}\sqrt{K_1} \sin \left(\sqrt{K_1}\ell_1\right)$$

$$m_{23} = n_{23}$$

であるから、(2.2.1)式の条件は、結局

$$\sqrt{K_1} \tan\left(\sqrt{K_1} \ell_1\right) = \frac{n_{21} n_{13} - n_{11} n_{23}}{n_{22} n_{13} - n_{12} n_{23}}$$
(2.2.2)

となる。つまり、QF出口から偏向電磁石出口までのラティスを決定すると、方程式(2.2.2) からQFの強さが決まる。図2.1.1の/ーマルセルから、左側の偏向電磁石を取り除いた場合 について、QDの強さを変数として、QFの強さをブロットしたものを図2.2.1に示す。

2.3 パラメータの計算

次に機器仕様の基礎となるリングのパラメータを、分散を消去する条件の下で計算していく。

2.3.1 ベータトロン振幅

完全な対称性を持ったFODOラティスのQFまたはQD中心でのベータトロン関数を $\beta_{o,i}$ 1セルの輸送行列を(m_{ij})とすると、 β_{o} は対称性の条件;

$$\begin{bmatrix} \beta_{0} \\ 0 \\ 1 \neq \beta_{0} \end{bmatrix} = \begin{bmatrix} m_{11}^{2} & -2 m_{11} m_{12} & m_{12}^{2} \\ -m_{11} m_{21} & 1+2 m_{12} m_{21} & -m_{12} m_{22} \\ m_{21}^{2} & -2 m_{21} m_{22} & m_{22}^{2} \end{bmatrix} \begin{bmatrix} \beta_{0} \\ 0 \\ 1 \neq \beta_{0} \end{bmatrix}$$

すなわち,

$$\beta_{0} = m_{12} \neq \sqrt{(1 - m_{11}^{2})}$$
 (2.3.1)

より、求められる。ラティス中の任意の点での Twiss パラメータは、QF 中心からその点までの輸送行列を(n,,)とすれば、

$$\begin{bmatrix} i^{j} \\ a \\ r \end{bmatrix} = \begin{bmatrix} n_{11}^{2} & 2n_{11} & n_{12} & n_{12}^{2} \\ -n_{11} & n_{21} & 1 - 2n_{12} & n_{21} & -n_{12} & n_{21} \\ n_{21}^{2} & -2n_{21} & n_{22} & n_{22}^{2} \end{bmatrix} \begin{bmatrix} i^{j}_{0} \\ O \\ 1 \neq i^{j}_{0} \end{bmatrix}$$
(2.3.2)

より求められる。QDの強さを変数として、(2.3.1)式から求めたベータトロン振幅の最大 値(*i*。)、及び(2.2.1)式から求めた分散関数の最大値(y₀)を、図2.3.1に示す。

2.3.2 ベータトロン振動数(チューン)

一般には、チューンはベータトロン振動の安定領域(Tie Diagram)の中から、4次鳴線の 近くに選ばれる。しかし、今回のようにノーマルセルと分散消去セルで同じ強さの四重極電磁 石を使う場合、QFの強さは分散を消去するためにほとんど固定されてしまい、動径方向のチ ューン(v_x)を調節する余地がなくなる。

チューンは、ベータトロン振動の位相の進み(Phase Atvance);

をリング1周に渡って加算していくことで求められる。QDの強さを変数としたときの、 ×、、 ×、の値を、図2.3.2に示す。今回のラティスでは、幸いにも、 ×、 = 13.75、 ×、 = 10.75 付近に選ぶことができたが、周長によってこれが不可能なときは、直線部の分散を数センチメ -トル程度まで残すことによって、チューンの誤節を行なわなければならない。

2.3.3 エミッタンス

エミッタンスはビーム・サイズを規定する基本的なパラメータで、シンクロトロンの性能の 指標の1つである。エミッタンスは、シンクロトロン放射による電子の微小振動のエネルギー の相対的な減少(Radiation Damping)と、同時に起こる 光子発生に伴う電子の反跳 (Quantun Excitation)のつり合いで決まり、次の式から求められる。

ε = C_q • (E²/ρθ) ∮ (H/ρ) ds (m • rad)
 H = β η^{'2} + 2 α η η['] + γ η²
 C_q = 4.697×10⁻⁶ (GeV⁻²)
 E; 粒子のエネルギー
 ρ; 偏向電磁石の曲率半径
 θ; 偏向電磁石の偏向角

セクター型偏向電磁石の場合,偏向電磁石入口のTwiss パラメータを (α_1 , β_1 , γ_1),分 散とその傾きを η_1 , η'_1 とすると

$$\epsilon = \frac{C_{q} E^{2}}{\rho \theta} \left\{ \beta_{i} \left[(\eta_{i}^{2} + \frac{1}{2}) \theta_{o} + 2 \eta_{i} (1 - \cos \theta) - \frac{1}{4} \sin 2 \theta \right] \right.$$

$$+ \alpha_{i} \left[2 (\eta_{i} - \rho) \eta_{i}^{\prime} \theta + 2 f \eta_{i}^{\prime} \sin \theta + \frac{\rho}{2} (1 - \cos 2 \theta) + 2 (\eta_{i} - \rho)(1 - \cos \theta) \right] + r_{i} \left[(\eta_{i} - \rho)^{2} + \frac{1}{2} \rho^{2} \right] \cdot \theta$$

$$+ 2 P (\eta_{i} - \rho) \sin \theta + \frac{f}{4} \sin 2 \theta \right] \left. \right\}$$

$$(2.3.4)$$

と書き下せる。この €の値を、QDの強さを変数として、図 2.3.3 に示す。

2.3.4 ナチュラル・クロマティシティ クロマティシティは、運動量の広がりに対するチューンの広がりの比

$$\Delta \nu = \xi \ (\Delta P / P) \tag{2.3.5}$$

で定義され、一般には、Q電磁石の収束力で決まる。

 $\xi = \frac{-1}{2\pi} \oint \mathbf{K} \beta \, \mathrm{ds} \quad .$

FODOラティスの場合,四重極電磁石で発生するクロマティシティは,

$$\xi_{\rm F} = \frac{-1}{4\pi} \left\{ \frac{1}{2} \left[\left(\beta_{\rm i} \, {\rm K} + r_{\rm i} \right) \, {\rm I} - \alpha_{\rm i} \right] + \frac{1}{4\sqrt{\rm K}} \left(\beta_{\rm i} \, {\rm K} - r_{\rm i} \right) \sin 2\sqrt{\rm K} \, {\rm I} \right. \\ \left. + \frac{\alpha_{\rm i}}{2} \cos 2\sqrt{\rm K} \, {\rm I} \right\}$$
(2.3.6)

$$\xi_{\rm p} = -\frac{1}{4\pi} \left\{ \frac{1}{2} \left[(\beta_{\rm i} \ {\rm K} - r_{\rm i}) + \alpha_{\rm i} \right] + \frac{1}{4\sqrt{\rm K}} (\beta_{\rm i} \ {\rm K} + r_{\rm i}) \sin 2\sqrt{\rm K} + \frac{1}{4\sqrt{\rm K}} (\beta_{\rm i} \ {\rm K} + r_{\rm i}) \sin 2\sqrt{\rm K} + \frac{1}{4\sqrt{\rm K}} (2.3.7) \right] \right\}$$

2.3.5 モーメンタム・コンパクション及び放射減衰時間

RF系の基本仕様を決めるためには、モーメンタム・コンパクション・ファクター (α)が 必要である。これは、運動量の広がりに対する平衡軌道の長さ(C)の広がりの係数;

$$\frac{\triangle C}{C} = \alpha \frac{\triangle P}{P}$$

で定義され,

$$\alpha = \frac{1}{C} \oint (\eta \swarrow \rho) ds$$

から,計算される。セクター型偏向電磁石の場合,

 $\eta(\theta) = \cos \theta \cdot \eta_{1} + \rho \sin \theta \cdot \eta_{1}' + \rho (1 - \cos \theta)$

(η, η ί は入口での分散とその傾き)なので,

$$\int_{0}^{1} {}^{B} \eta \, ds = \rho \int_{0}^{\theta} {}^{\theta} \eta \left(\theta \right) \, d\theta$$
$$= \rho \left[\left(\eta_{+} - \rho \right) \sin \theta_{-} + \rho \eta'_{+} \left(1 - \cos \theta_{-} \right) + \rho \theta_{-} \right]$$

(0。は偏向角, 1_B は電磁石の有効長)

となる。従って入口での分散とその傾きがすべて等しいFODOラティスの場合は,偏向電磁 石の数をN_Bとすると

$$\alpha = \frac{N_{B}}{C} \left\{ \left(\eta_{i} - \rho \right) \sin \theta_{o} + \rho \eta_{i}^{\prime} \left(1 - \cos \theta_{o} \right) + \rho \theta_{o} \right\} \quad (2.3.8)$$

となる。

次に放射減衰の時定数を計算する。これは,

$$\tau_{i} = \frac{2}{C_{r}} \frac{C \rho}{J_{i} E^{3}}$$
(2.3.9)
E: 電子エネルギー (GeV)
C = 8.85×10⁻⁵ m/GeV³

で与えられる。ここで J, はダンピング・パーチションナンバーと呼ばれる。放射エネルギー の配分を表わすパラメータで,水平,垂直,進行方向(エネルギー)各々

 $J_{x} = 1 - D$ $J_{y} = 1$ $J_{e} = 2 + D$ $(J_{x} + J_{y} + J_{e} = 4)$ $D = \alpha C \swarrow 2 \pi \rho$ (2.3.10)

で与えられる。図 2.3.5 に α,図 2.3.6 ~7 にそれぞれ入射時と出射時の τ,, τ ε を示す。

2.3.6 量子寿命,エネルギーアクセプタンス

RFの最大電圧や、入射時の電圧を決めるためには、さらに量子寿命及びエネルギー・アパ ーチャーを計算しておかなければならない。エネルギー的にビームが安定に回る領域をエネル ギーアパーチャーと言い、加速空洞にかけるRF電圧で決まる。放射損失を補うだけの電力を

-8 -

ビームに与えても、光子の放出に伴う電子の量子励起によって、電子はエネルギーアパーチャーからやがてこほれ落ちてしまう。この効果によってビーム電流が1/eになる時間を量子寿命と言い、

$$\tau_{q} = \frac{\tau_{e}}{2} \frac{e^{\xi}}{\xi}$$

 τ_{E} ; (Energy) Damping Time
 $\xi = \frac{J_{F}E}{a h E_{r}} F_{(q)}$
a : Momentum Compaction Factor
 J_{E} ; (Energy) Damping Partition Number
 E : Electron Energy (GeV)
h : Harmonic Number
 $E_{1} = \frac{55\sqrt{3}}{64} \frac{h c}{r_{e}} = 0.108 \text{ GeV}$
 $r_{e} = 2.8 \text{ fm}$: Classical electron radius
 $h c = 197.3 \text{ MeV fm}$
 $F_{(q)} = 2 \left\{ \sqrt{q^{2}-1} - \cos^{-1} \left(\frac{1}{q}\right) \right\}$ (2.3.12)
 $q = \frac{e V_{RF}}{U_{o}}$; Over Voltage Factor
 V_{RF} ; R F Voltage
 $U_{o} = C_{r} E^{4} \neq \rho$; Radiation Loss
で与えられる。ここでは、充分余裕をもって、8 GeV で $\tau_{q} = 5 \min 2 t t_{o}$ このときのQ

Dの強さに対する加速電圧V_{RF}を,図2.3.8に示す。

また、エネルギーアパーチャーの境界(セパラトリクス)は

$$\epsilon^{2} = \frac{e \ V E}{\pi \ \alpha \ h} \left\{ \sqrt{1 - \left(\frac{1}{q}\right)^{2}} \left(1 + \cos \frac{c \ h}{R} \ \tau\right) - \frac{1}{q} \left[\sin \frac{c \ h}{R} \ \tau - \frac{c \ h}{R} \ \tau + 2 \cos^{-1} \left(\frac{1}{q}\right) \right] \right\}$$
(2.3.13)

で与えられる。ここに ϵ はバンチ中心(Shynchronous electron)からのエネルギーのずれで、 τ は同じく時間的なずれである。つまり、バンチ中心からの距離のずれが、 c τ、バンチ中心 に対する R F の位相のずれが $\phi = \omega_{rf} \tau = (ch / R) \tau$ で与えられる(R は リングの平均半径: 2 π R = C) バンチ中心の電子は、放射損失に等しいエネルギーを加速空洞から供給される ことになる。また、当然の事ながら、(2.3.13)式から $\tau = 0$ のとき ϵ が最大になることがわ かる。

$$\left(\frac{\varepsilon_{\max}}{E}\right)^2 = \frac{U_o}{\pi h \alpha E} F_{(q)}$$
(2.3.14)

-9-

この ϵ_{max} がリングが受け入れられる最大のエネルギー幅である。入射時に $\epsilon_{max} / E = 1$ % のビームを受け取るために必要な q 値及び V_{RF}をQ Dの強さの関数として図 2.3.9 に示す。また、入射時 V_{RF} = 1.29MV, 2.0 MV, 3.0 MVのときのセパラトリクス(上半面)を図 2.3.10 に示す。 $\epsilon_{max} / E = 1$ %のアクセプタクスは、 $\epsilon / E = 0.5$ %で、 $\phi = \sim 120^{\circ}$ の範囲の電子を受け取れる領域であることがわかる。

2.3.7 平均COD

ビームダクトの径や,偏向電磁石の精度を決めるためにはCODの見積りが不可欠である。 後に述べるように実際のCODは、ランダムエラーの発生を考慮した。ビームトラッキングに よって調べなけれはならないが、その平均的な値は、統計理論から簡単に求められ、基本設計 の段階では、それで充分である。

リングのある点SでのCOD, X (s)は、エラーの源の座標をS, 大きさを #(s)とすると、

$$X_{c}(s) = \frac{\sqrt{\beta(s)}}{2\sin \pi \nu} \oint \Psi_{(s)} \sqrt{\beta(s)} \cos \left(\phi_{(s)} - \phi_{(s)} - \pi \nu\right) d\tilde{s}$$

で与えられる。誤差の間に相関がないとすると、CODの平均値は、

$$X_{i}^{2}(s) = \frac{\beta_{(s)}}{4\sin^{2}\pi \nu} \sum_{i} \beta_{i} \psi_{i}^{2}$$
 (2.3.15)

となる。

誤差の原因としては、偏向電磁石の磁場の誤差(^δ B)、四重極電磁石の据付誤差(^δ X)、 偏向電磁石の回転誤差(^δ φ)が主であり、それぞれ、

$$\psi_{BF} \doteq (\partial B \neq B) \cdot \theta_{B} , \theta_{B} ; 偏向角$$
 $\psi_{QA} \equiv \partial X \cdot K |_{Q} , K = \frac{\frac{d B}{d X}}{B \rho} , l_{Q}; Q Mag 長 さ$

$$\left. \left(2.3.16 \right) \right.$$

$$\psi_{BR} = \delta \phi \cdot \theta_{BR}$$
とすると、(2.3.15)式は、

$$X_{c}^{2}(s) > x = \frac{\beta_{x}(s)}{4\sin^{2}\pi\nu_{x}} \left[N_{B}\beta_{BX} \left(\frac{\delta}{B} \theta_{B} \right)^{2} + (N_{QF}\beta_{QFX} K_{QF}^{2} I_{QF}^{2} + N_{QD}\beta_{QDX} K_{QD}^{2} I_{QD}^{2}) (\delta X)^{2} \right]$$

$$< X_{c}^{2}(s) > _{y} = \frac{\beta_{y}(s)}{4 \sin^{2} \pi_{v} \nu_{y}} \left[N_{B} \beta_{By} (\delta \phi \theta_{B})^{2} + (N_{QF} \beta_{QFy} K_{QF}^{2} |_{QF}^{2} + N_{QD} \beta_{QDy} K_{QD}^{2} |_{QD}^{2}) (\delta X)^{2} \right]$$

となる。 $\delta B / B = 1 \times 10^{-3}$, $\delta X = 0.1 \text{ mm}$, $\delta \phi = 0.2 \text{ mrad}$ のときCODの値を図 2.3. 11に示す。

2.3.8 ビーム・サイズ,BSC及びアクセプタンス

ガウス分布しているビームのサイズ(この範囲に68%の電子が入る)は、一般に

$$\sigma = \sqrt{\beta \epsilon + \eta^2 \left(\frac{\Delta P}{P}\right)^2}$$
(2.3.17)

で与えられる。また、オンアクシス入射時や、オフアクシス入射でも充分時間が経った後その BSC(Beam Sfay Clear)は、

$$B S C = \sigma + C O D \tag{2.3.18}$$

で与えられる。しかし、オフアクシス入射の時は、後に述べるように、バンブ軌道と入射軌道 の差に対応する振幅のコヒーレントな振動(X)が入射平面内のベータトロン振動に加わるので、

$$B S C_x = \sigma_x + X + C O D_x \qquad (2.3.19)$$

となる。ビーム・ダクトの半幅 (Physical Aperture) Wは,

 $B S C \leq W \leq D A$

となるように決めなければならない。ここにDAは, ダイナミック・アバーチャー

(Dynamic Aperture) でこれについては 2.6 節で述べる。BSC \geq DA であるようなリングでは、入射効率が著しく低下することを、覚悟しなければならない。また、放射減衰後は、ビームサイズ σ に対してW = 6 σ とれば、ビームがダクトに衝突することによって失なわれる際の寿命は、放射減衰時間の 1.5 × 10⁶ 倍程度になる。

アクセプタンスは、 (2.3.17~19) 式により、

$$A_y = (W_y - C O D_y)^2 \not \beta_y$$

$$A_{x} = \left\{ (W_{x} - C O D_{x} - X)^{2} - \eta^{2} \left(\frac{\Delta P}{P}\right)^{2} \right\} \neq \beta_{x}$$
(2.3.20)

となる。但し, 垂直方向 (y方向) はη=0とした。BSCとQDの強さの関係を図2.3.12に 示す。

なお、COD補正は、オンアクシス入射で行ない、CODを3mm以下に補正した後オフア クシス入射を始めれば、水平方向のダクトサイズを大きくしないで済む。

2.4 クロマティシティの補正

クロマティシティを補正しないでおくと、(2.3.5)式で与えられる量だけチューンが変化 する。 ξ_x = -17程度とすると、入射時、△P/P=±1.0%のビームに対して△v=±0.17 となり、チューンを4次の共鳴付近に選んでも、3次の共鳴を引き起こすことになる。またヒ ームの不安定性を改善するためにもクロマティシティを補正しなければならない。

分散 η が存在するところに六重極電磁石を置いたときのクロマティシティは,

$$\xi = \oint \left(\mathbf{K} - 2 \eta \lambda \right) \beta \, \mathrm{ds} \tag{2.4.1}$$

)

 λ ; 六重極電磁石の強さ $\left(\frac{1}{2} - \frac{d^2 B}{d X^2} > B \rho (m^{-3})\right)$

で与えられる。従って、 X方向の 3 関数が大きい所に、ホール表面の磁気ポテンシャルが

$$\Phi = \frac{\lambda_{\rm F} B \rho}{3} (3 x^2 y - y^3) = \frac{\lambda_{\rm F} B \rho}{3} r_{\rm o}^3$$

r 🛛 ; Bore Radius

で与えられるような六重極電磁石(SF)を,また, y方向の | 関数が大きい所に、ボール表面の磁気ポテンシャルが

$$\Phi = \frac{\lambda_{\rm D} B \rho}{3} (x^3 - 3 x y^2) = \frac{\lambda_{\rm D} B \rho}{3} r_{\rm o}^3$$

で与えられるような六重極電磁石(SD)を置くこと x 方向, y 方向の1 セル当りのクロマティシティは,

$$\begin{aligned} \xi_{x} &= \frac{-1}{4\pi} \left[\int_{QF} K_{F} \beta_{x} ds - \int_{SF} 2\lambda_{F} \eta \beta_{x} ds - \int_{QD} K_{D} \beta_{x} ds \right. \\ &+ \int_{SD} 2\lambda_{D} \eta \beta_{x} ds \right] \\ &= \xi_{x0} + \frac{1}{4} \left\{ 2\lambda_{F} \int_{SF} \eta \beta_{x} ds - 2\lambda_{D} \int_{SD} \eta \beta_{x} ds \right\} \qquad (2.4.2) \\ &\xi_{y} &= -\frac{1}{4\pi} \left[-\int_{QF} K_{F} \beta_{y} ds + \int_{SF} 2\lambda_{F} \eta \beta_{y} ds + \int_{QD} K \beta_{y} ds \right. \\ &- \int_{SD} 2\lambda_{D} \eta \beta_{y} ds \right] \\ &= \xi_{y0} + \frac{1}{4\pi} \left\{ -2\lambda_{F} \int_{SF} \eta \beta_{y} ds + 2\lambda_{D} \int_{SD} \eta \beta_{y} ds \right\} \qquad (2.4.3) \end{aligned}$$

となる。ここで ξ_{xo} , ξ_{yo} は(2.3.6~7)式で与えられるナチュラル・クロマティシティである。征ってクロマティシティを消す($\xi_x = \xi_y = 0$)ために必要な六重極電磁石の強さは、

$$2 \lambda_{F} = -\frac{\xi_{x0} \alpha_{y2} + \xi_{y0} \alpha_{x2}}{\alpha_{x1} \alpha_{y2} - \alpha_{y1} \alpha_{x2}}$$

$$2 \lambda_{D} = -\frac{\xi_{x0} \alpha_{y1} + \xi_{y0} \alpha_{x1}}{\alpha_{x1} \alpha_{y2} - \alpha_{y1} \alpha_{x2}}$$

$$\alpha_{x1} = \frac{1}{4\pi} \int_{SF} \beta_{x} \cdot \eta \, ds$$

$$(2.4.4)$$

$$\alpha_{y_1} = \frac{1}{4\pi} \int_{s_F} \beta_x \cdot \eta \, ds$$

$$\alpha_{x_2} = \frac{1}{4\pi} \int_{s_D} \beta_x \cdot \eta \, ds$$

$$\alpha_{y_2} = \frac{1}{4\pi} \int_{s_D} \beta_y \cdot \eta \, ds$$

で与えられる。六極電磁石 (SF)の入口の水平方向の Twiss バラメータを パ, α,, r,, 同じく分散を η,, η, とすると, α_{x1} は,

$$a_{x_1} = \frac{1}{4\pi} \left\{ \eta_1 \beta_1 1_F + (\beta_1 \eta_1' - 2 \alpha_1 \eta_1) \frac{1_F^2}{2} + (\eta_1 \gamma_1 - 2 \alpha_1 \eta_1') \frac{1_F^3}{3} + \gamma_1 \eta_1' \frac{1_F^4}{4} \right\}$$

$$(2.4.5)$$

1_F: 6極電磁石の長さ

となる。この式のTwissパラメータの代わりに垂直方向のTwissパラメータを用いると α_{v1} が、同じくSD入口の値を代入すれば α_{x2}, α_{v2}が求まる。

(2.4.4~5)式から要求されるSF, SDの強さを, QDの強さの関数として図2.4.1に示す。但し縦軸の値は(六極電磁石の台数)/(四極電磁石の台数)を, 補正係数としてかけた値である。

2.5 SYNCHによる計算

前節まで述べて来た内容は次の2つの意味で近似的な計算である。

① 偏向電磁石を取り除いたセルの効果(偏向電磁石の収束力)を厳密に取り入れていない、 例えばモーメンタム・コンパクション係数の計算などは、周長として実際の周長を用い、 分散の積分値はノーマルセルで行なって、80(偏向電磁石の台数)倍している。実際は、 各セルで分散は同じではない。

② 実際に使う偏向電磁石は直方体型であるが、扇型の電磁石を仮定して計算している。 これらの不充分な点を補正する意味で、線形ラティスの計算プログラムSYNCHを用いて、 全体の計算を行なった。チューンは、

 $\nu_{x} = 13.735$

 $\nu_{\rm y} = 10.735$

を選んだ。最終結果のベータ関数と、分散関数を、図 2.5.1 ~ 2 に示す。また表 2.1.1の値は この wi 終結果である。

2.6 ダイナミック・アパーチャー

リング内に高次の磁場が存在することによって限定される、粒子が安定に周回する領域をダ イナミック・アパーチャーと言う。大きなリングでは、クロマティシティを補正しないと大き なチューンシフトが起こり、共鳴を起こしてしまうので六極 電磁石を用いて補正を行なう。 しかし、その代償として、そこで用いた六重極磁場によって、粒子が安定に運動できる領域が 限られてしまう。

設計段階でダイナミック・アパーチャーを知るには個々の電子の運動のシュミュレーション を行うのが、最も正確である。これは一般にトラッキングと呼ばれ、ここではトラッキングコ ード、RACETRACK を用いた。結果を図 2.6.1 に示す。観測点は最も広いダイナミック・ア パーチャーを必要とする入射点、出射点である。この図から、充分広いダイナミック・アパー チャーが存在していることがわかる。

表 2.1.1 シンクロトロン設計バラメータ

Injection energy 1.5 GeV Maximum energy 8 GeV Maximum beam current 10 m A Beam emittance horizontal 1.19×10^{-7} (m • rad) (K = 0) 1.2×10^{-8} (m • rad) (K = 0.1) vertical Energy spread at maximum energy 1.1×10^{-3} Circumference 471.552 m Repetition rate 0.1 HzRadiation loss per turn 9.5 MeV / turn Number of cells / Periodicity 48 / 4 Nominal tunes $(\nu x : \nu y)$ 13.735 - 10.735 -17.5×-14.5 Natural chromaticities $(\xi x \neq \xi y)$ Momentum compaction 6.79 \times 10 ⁻³ Bending magnet Number of magnets 80 Magnet field 0.69866 T 3.00 m Length Bending radius 38.197 m Quadrupole magnet 48 / 48 Total 96 Number of magnets (QF/QD)QF: 14.43 T/m QD: -12.683 T/m 0.6 m Length Sextupole magnet Number of magnets $(SF \neq SD)$ 36/36 Total 72 SF: 92.3 T/m² SD: - 149.62 T/m² Length 0.2 m Damping time $(\tau \mathbf{x} / \tau \mathbf{y} / \tau \epsilon)$ 1.5 GeV 407.9 ms / 402.5 ms / 199.9 ms 2.7 ms / 2.7 ms / 1.3 ms8 GeV $(\beta x) \max / (\beta y) \max / (\eta x) \max$ 16.7 m / 17.4 m / 0.84 m RF system related parameters 508.6 MHz Resonant frequency 800 Harmonic number 14.2 MV at 8 GeV Accelerating voltage Over voltage factor ~ 1.5 at 8 GeV Synchrotron frequency 22.5 kHz at 8 GeV Beam lifetime over 5 min at 8 GeV Quantum lifetime Touschek lifetime over 5 min at 10mA 1.5 GeV

the second second

図 2.3.2 チューン

図 2.3.3 エミッタンス

図2.3.4 ナチュラル・クロマティシティ

- 18 -

-

Momentum Compaction Factor

図 2.3.5 モーメンタム・コンバクション・ファクター

Damping Time (X 1.5GeV)

🗵 2. 3. 6 入射時の放射減衰時間

図2.3.7 出射時の放射减衰時間

-21 -

• •

図2.3.9 入射時のRF加速電圧

図2.3.11 平均COD

- 23 -

図 2.4.1 クロマティシティ補正用六極電磁石の強さ

- 24 -

Dispersion Function of the Synchrotron

図 2.6.1 ダイナミック・アパーチャー(入・出射点) 長方形は、ビームタクト(フィジカル・アパーチャー)の 概形を表す。

3. シンクロトロンリング内機器基本仕様

本章では、前章のラティスの設計に基いて、リングを構成する機器の基本仕様をまとめる。

3.1 真空ダクト

真空ダクトの断面のサイズは、2、3、8節で述べたように、BSCと、タイナミックアパ ーチャーから決まる。ダイナミック・アパーチャーは、前に確認しているように、一般にFO DOラティスでは充分広くなる。BSCは、FODOラティスの場合、水平方向はQFの中心、 垂直方向はQDの中心で最大になる。

BSCx	<u></u>	$\sigma_{x \max} + X_{\max} + C O D_{x \max}$	$= 27.3 \mathrm{mm}$
σ _{xmax}	=	$\sqrt{\varepsilon_{in} \beta_{XQF}} + (\eta_{QF} \Delta P /$	$(P)^2 = 8.6 \text{ mm}$
εın		0.27 mm • mrad, $\beta_{x QF} =$	16.47 m
$\eta_{ ext{QF}}$	=	$0.83 \mathrm{m}, \ \bigtriangleup P \neq P = 1 \%$	
C O D _{x ma}	× =	3.9 mm	
∧ B ∕ B	=	5×10^{-4}	(偏向電磁石磁場精度)
$\land \phi$	=	2 mrad	(偏向電磁石回転誤差)
∆ X ₀	=	0.1 mm	(四極電磁石据付誤差)
X max	=	14.8 mm	
ВЅСу	=	$\sigma_{y \max} + C O D_{y \max} = 4.$	6 m m
σ _{ymax}		$\sqrt{\varepsilon_{\rm in} \beta_{\rm yqp}} = 2.2{\rm mm}$	
€ ın	==	0.27 mm • mrad	
ByqD	=	17.34 m	
C O D y max	_ =	2.4 mm	

であるが、本仕様では、余裕を見て、また、タクトの強度(偏平になりすぎると弱い),偏向 電磁石の磁極間平行度(ギャップが狭すぎると平行度の誤差が磁場精度に大きく影響する)等 を考慮して

> $W_x = 30 \text{ mm}$ $W_y = 15 \text{ mm}$

とした。CODの補正を行うことによって、CODを1mm以下にすれば、 ライナックからの 入射効率を90%以上にできる。これを99%以上(2.5 BSC)にするためにはWxは45mm以上 必要である。アクセプタンスは、(2.3.19)式より

 $A_{x} = 5.5 \times 10^{-7} \text{ mrad}$

$$A_{y} = 9.1 \times 10^{-6} \text{ mrad}$$

となる。図 3.1.1 に真空ダクト内側断面形状を示す。

3.2 偏向電磁石

偏向電磁石の最大磁場は、最初に述べたように 0.7 Tに設定した。

磁極間隙は、真空ダクトの垂直方向の幅30mmに、ベローズダクトを用いる場合を考慮して、 これを5mmとし、さらにクリアランスを片側2.5mm見て、合計45mmとした。

磁場精度(△ B / B)は、平均CODの大きさから見て、5×10⁻⁴に設定した。しかし、この精度については、ランダム・エラーを含むトラッキングを行ってみなければ正確には決められない。また、加速中の電磁石系の精度(トラッキング・エラー)についても、同様にシュミュレーションを行って決めなければならない。これらの事については、今後の検討課題である。 表 3.2.1に偏向電磁石基本仕様を示す。

3.3 四重極電磁石

四重極電磁石の強さは、チューンを

 $\nu_{x} = 13.735$ $\nu_{y} = 10.735$

に選んだことで決まり、 v x から

$$\frac{dB}{dx} max = 14.43 T/m (QF)$$

v,から

$$\frac{dB}{dy} max = -12.683 T/m (QD)$$

となる。

ボアー半径は31mmとしたが、これは磁極の幅と関連して決まり、その根拠については、参考文献(5)による。

偏向電磁石の精度がCODやダイナミックアパーチャーに影響するのに対して、四重極電磁石の精度は、チューンをシフトさせる。チューン・シフトムνと、磁場勾配の誤差 \land K (= \land $\frac{dB}{dx}$ / B ρ) との間には

$$\Delta \nu = -\frac{1}{4\pi} \oint \cdot \beta \Delta \text{ Kds} \qquad (3.3.1)$$

なる関係がある。この式から

$$|\Delta \mathbf{K}| \leq \frac{4\pi\Delta\nu}{N_{q}\beta_{qin}}$$
(3.3.2)

N。; 各種Q電磁石の台数

β_α; Q電磁石中のβ関数の最小値

となり、 3次の共鳴線を避けるように $\Delta \nu = 0.06$, Ng = 48台, $\beta_{gnm} = 15.7 \text{ m}$ とすると

 $\triangle K_{F} = 1 \times 10^{-3} \text{ m}^{-2}$

で、 $K_F = 0.541 \, \text{m}^{-2}$ なので、磁場勾配の精度は、

 \triangle K_F / K_F = 1.8 × 10⁻³

となる。仕様値では,余裕を見て,

 $\triangle K_{\rm F} / K_{\rm F} = 1 \times 10^{-3}$

とした。

4極電磁石の仕様値を表3.3.1に示す。

3.4 六重極電磁石

6極電磁石の仕様値は1,4節で述べたように、クロマティシティの補正から決まる。(2. 4.4~5)式で与えられる値に、微小なセル間の非対称性を考慮した最終的な値は、

S F ;
$$\frac{d^2 B_y}{d X^2} = 92.5 T / m^2$$

S D ; $\frac{d^2 B_y}{d X^2} = -149.18 T / m^2$

となる。

6 極電磁石の精度は、それ自体はクロマティシティの誤差に直接影響するだけであり、1% の誤差があってもナチュラル・クロマティシティの1%程度しかクロマティシティの誤差とし て現われないので、チューンの誤差としては、4 極電磁石の誤差に比べて無視できる。ビーム の安定性に対する影響はこれより大きいが、シンクロトロンの場合は蓄積するとしても電流は 少ないので問題ない。そこで六重極磁場の精度は、偏向電磁石の精度と対比して決める。六重 極磁場の強さは、

$$B = \frac{1}{2} \left(\frac{d^2 B_y}{d X_{\cdot}^2} \right)_0 X^2$$
 (3.4.1)

で与えられ、X=21mm (3 $\sqrt{\beta_{sp} \epsilon + (\eta_{sp} \cdot \frac{6P}{P})^2}$ + COD) では、

- 29 -

$$B_{sF} = \frac{1}{2} \times 149.1 \times (0.021)^2 = 0.033 T$$

である。一方, 偏向電磁石は, 0.7 T に対し5×10 なので

 $\Delta B = 3.5 \times 10^{-4} \, \mathrm{T}$

である。△B/Bs==1.07×10⁻²であるが, 六重極成分に対して厳しく見つもって, 結局,

$$\triangle X_{SF} / X_{SF} = 5 \times 10^{-3}$$

$$\left(X_{SF} = \frac{1}{2} \left(\frac{d^2 B_y}{d X^2}\right)_0 / B \rho\right)$$

とした。 X_{sp}についても同様である

表 3.4.1 に, 六重極電磁石の基本仕様を示す。なお, ボア半径等の決定方法については参考 文献に依る。

3.5 ステアリング電磁石

ステアリング電磁石はCODの補正を用いる。2,3,7節でも述べたように、ステアリン グ電磁石の仕様を決めるためのCODの見積はもっと精密に行なわなければならないが、実際 のCODの補正は磁場測定のデータを考慮し、実際のビームの位置を測定しながら行なわれる。 そこで、ここではとりあえず、ステアリング電磁石の仕様は、各セルに1台ステアリング電磁石 を入れるとして、平均CODを1セルで補正できる強さに設定する。リングの平均CODは(2. 3.16)式より、

$$< X_{cQF} > = \frac{\sqrt{16.7}}{2|\sin 13.735 \pi|} \left\{ 80 \cdot 12.7 \cdot (5 \times 10^{-4} \cdot 7.85 \times 10^{-2})^{2} + 48 \cdot 16.7 \cdot (\frac{-14.48}{26.69} \cdot 0.6 \cdot 1 \times 10^{-4})^{2} + 48 \cdot 2.5 \cdot (\frac{-12.68}{26.69} \cdot 0.6 \cdot 1 \times 10^{-4})^{2} \right\}^{\frac{1}{2}} = 4.4 \times 10^{-3} \mathrm{m}$$

$$< Y_{cqD} > = \frac{\sqrt{17.4}}{2|\sin 10.735 \pi|} \left\{ 80 \cdot 13.8 \cdot (2 \times 10^{-4} \cdot 7.85 \times 10^{-2})^{2} + 48 \cdot 3.5 \cdot (\frac{14.48}{26.69} \cdot 0.6 \cdot 1 \times 10^{-4})^{2} + 48 \cdot 17.4 \cdot (\frac{12.68}{26.69} \cdot 0.6 \cdot 1 \times 10^{-4})^{2} \right\}^{\frac{1}{2}}$$

- 30 -

$$= 3.0 \times 10^{-3} \,\mathrm{m}$$

で、これを補正するために必要なけり角は1セルの長さが、9.82mであるから、

$$Q_s = \frac{4.4 \times 10^{-3}}{9.82} = 4.5 \times 10^{-4} rad$$

である。従って必要な強さは、ステアリングの長さを0.15mにすると、

$$B_{s} = \frac{B \rho \cdot Q_{s}}{\ell s} = \frac{26.7 \times 4.5 \times 10^{-4}}{0.15} = 0.08 \text{ T}$$

である。仕様では、余裕を見て、2COD程度補正できるように

 $B_{s} = 0.15 T$

に設定した。

4

.

精度はやはり, 偏向電磁石の精度を基準にして

$$\triangle B_{s} \cdot \ell_{s} \simeq \triangle B \cdot \ell_{B}$$

となるように

$$\frac{\Delta B_s}{B_s} = \frac{\Delta B}{B} \cdot \frac{\ell_B}{\ell_s} = 5 \times 10^{-4} \cdot \frac{3.0}{0.15} = 1 \times 10^{-2}$$

とした。表3.5.1にステアリング電磁石の仕様をまとめた。

3.6 RF加速部

2 3, 6節で述べたように、出射時の加速電圧は、量子寿命から決まり、入射時はエネル ギー・アクセプタンスから決まる(低エネルギーでは Touschek 寿命も考慮する必要がある)。 まず出射時に τ₀ = 5 分と設定すると、(2.3.11~12)式より

q = 1.55

となり,

$$U_o = 8.85 \times 10^{-5} \cdot \frac{8^4}{38.19} = 9.49 \times 10^{-3} \text{ GeV}/_{Turm}$$

であるから,

$$V_{RF} = q U_0 = 14.71 M V$$

である。

このとき必要なRF電力は,

 $P_{RF} = P_{w} + P_{B}$ $P_{w} = V_{RF}^{2} / R_{sh} ; Wall Loss$ $R_{sh} ; Shunt Inpedauce$ $P_{B} = V_{0} I_{B} ; Beam Loading$ $V_{0} = v_{0} / e$ $I_{B} ; Beam Current$ (3.6.1)

で与えられる。従って,

 $R_{sh} = \frac{V_{RF}^2}{P_{RF} - V_0 I_B}$ (3.6.2)

である。 P RFの最大値を 1.8 MW, I B = 10 m A とすると,

$$R_{sh} > \frac{14.71^2}{1.8 - 9.49 \times 10 \times 10^{-3}} = 127 \text{ M}\Omega$$

を得る。

 $R_{sh} = \rho_{sh} \cdot \ell_c$ $\ell_c = N_{RF} \cdot C / 2 f_{RF}$;加速空洞全長 (πモード) N_{RF} ;加速空洞のセル数 f_{RF} ; Radio Frequency

であるから、 $\rho_{sh} = 20 M \Omega / m$, $f_{RF} = 508.6 M Hz$ とすると、加速空洞のセル数は、

$$N_{RF} = \frac{2 R_{sh} f_{RF}}{\rho_{sh} C} > \frac{2 \times 127 \times 508.6}{20 \times 300} = 21.5 \text{ (B)}$$

以上必要である。従って、3連キャビティを8台設ければ充分であるが、ここでは余裕を見て、 5連キャビティを8台設けた。このときキャビティ1台の長さは、1.5mであり、分散を消去 した直線部の半セルに2台ずつ充分余裕をもって入れることができる。

次に入射時のRF電圧を計算する(2.3.14)式に、U_o = 1.17×10⁻⁵GeV/_{Turn}, h = 800, *a* = 0.007, E = 1.5GeV, ε_{max}/E=0.01を代入すると、

q = 119

となり

 $V_{RF} = q U_o = 1.39 M V$

を得る。この電圧をかければε/E=0.5%のライナックからの入射ビームを、位相±120°の 範囲で受け取ることができる(図 2.3.10参照)

表3.6.1に、RF加速部の基本仕様を示す。

1

1 · · · · · · · · · · · ·

個数		80
磁束密度	最大値	0.7 T
	最小値	0.131 T
曲率半径		38.1972 m
磁場有効長		3.00 m
磁極間隙		45.0 mm
形状		H型又はC型
磁場精度	範囲	水平 +20mm, 垂直 +15mm
	入射時	5×10^{-4}
	出射時	5×10^{-4}

表 3. 2.1 偏向電磁石の基本仕様

表 3.3.1 四極電磁石の基本仕様

個 数		QF:46
		Q D : 48
<u>∂Βy</u> ∂X		
QF:	最大值 •	14.43 T/m
	最小値	2.706 T/m
Q F :	最大値	– 12.683 T∕m
	最小値	−2.378 T∕m
有 効 長		0.6 m
ボアー半径		31 mm
磁極端形状		双曲線
→By →X 精度		
	範囲	半径 22 mm 以内
	入射時	1×10^{-3}
	出射時	1×10^{-3}

- 33 -

.

.....

個数 $\frac{\partial^2 B y}{\partial x^2}$		72
ØX2		
SF:	最大値	92.3 T/m ²
	最小值	17.31 T/m ²
SD:	最大值	$-149.62 \text{ T} \times \text{m}^2$
	最小值	- 28.05 T/m²
有效長		0.2 m
ボアー半径		42 mm
→ ² By →X ² 精度		
	範囲	半径20mm以内
	入射時	5×10^{-3}
	出射時	5 × 10 °

表 3.4.1 六極電磁石の基本仕様

表 3.5.1 ステアリング電磁石の基本仕様

個 数	72 (SV36, SH36)
磁束密度(SH, SV)	
出射時最大値	0.15 T
入射時最大値	0.028T
有長	0.15 m
磁極間隙 SH	45 mm
s v	75 mm
磁場精度 範囲	水平 + 20mm, 垂直 + 15mm
入射時	1 × 10 - 2
出射時	1×10^{-2}

3

ſ

共振周波数	508.61 M H z
ハーモニック数	800
加速電圧	1.4 M V at 1.5 GeV
	14.2 MV at 8 GeV
Over voltage factor	1.5 at 8 GeV
シンクロトロン周波数	22.5 KHz at 8 GeV
量子寿命	5 分以上 at 8 GeV
タウシェク寿命	5 分以上 at 10m A 1.5 GeV

表 3.6.1 RFパラメータ

Cross section of the uacuum chamber

図 3.1.1 ノーマルセル真空ダクト内のり概形

4. 入出射軌道

入射方式は、8秒間のポジトロンビームの蓄積を前提として、放射減衰を利用したオファク シス、シングルターン入射とする。出射方式は、シンクロトロンでのマルチバンチ、ストレー ジリングでのシングルバンチ運転に対応できるものとする。

4.1 入射位置及び入射位置での軌道の傾き

入射位置及び角度は、オフアクシス入射に伴うバンブ軌道と入射軌道の差に対応するベータ トロン振動の振幅ができるだけ小さくなるように決める。入射点で、リング中心軌道から測っ た入射軌動の位置及び傾きを x_B, x_b, 同じくバンブ軌動の位置及び傾きを x_B, x_h とし、

 $\begin{array}{c} \mathbf{X} \stackrel{=}{\to} \mathbf{X}_{\mathsf{E}} \quad \mathbf{X}_{\mathsf{B}} \\ \mathbf{X}^{\prime} \quad \mathbf{X}_{\mathsf{E}}^{\prime} \stackrel{=}{\to} \mathbf{X}_{\mathsf{B}} \end{array}$

とすると、この振動のエミッタンスは

 $\mathbf{a}^2 = \beta \mathbf{x}'^2 + 2\alpha \mathbf{x} \mathbf{x}' + \gamma \mathbf{x}^2$

$$=\beta\left(\mathbf{x}'+\frac{\alpha}{\beta}\mathbf{x}\right)^2+\frac{\mathbf{x}^2}{\beta} \tag{4.1.1}$$

で与えられる。従って

$$\mathbf{x}' = -(\alpha/\beta)\mathbf{x} \tag{4.1.2}$$

)

のとき a² は最小値

$$a_{\min}^2 - x^2/\beta$$
 (4.1.3)

をとる。つまり、 a を出来るだけ小さくするためには、 β が出来るだけ大きい位置で、(4.1.2) 式で与えられるような角度で入射すれば良い。

 β_x が最大になるのはQFの中心なので、セプタム電磁石の出口(入射点)は、できるだけQF の近くに設定すべきである。実際には、モニター等を挿入する間隙を確保して、セプタム電磁 石出口をQFから20cmの位置(QF中心から50cm)に設定する。この位置でのTwissパラメ ータの値は、

$\beta_{\rm x} = 14.75 {\rm m}$			(1 1 1)
	$\alpha_{x} = -2.51$	Ş	(4, 1, 4)
	β _y = 3.81 m		
	$\alpha_y = 0.733$		
で、入射	角は		
	$x'_{E} = 0.1702 \cdot x + x'_{B}$		
である。	また,このとき振動の振幅は,		
	$\sqrt{a^2eta} = x$		
である。			

4.2 入射軌道,入射バンプ軌道

次に x_{E} , x_{B} を決定する。図 4.2.1 に入射点での軌道の位置関係を示す。入射ビームは、入 射直後平衡軌道のまわりで振幅 $x(x=x_{E}-x_{B})$ のベータトロン振動を行っているが、 t 秒後に はこの振幅は放射減衰によって $xe^{-t/r_{x}}$ に減衰する(τ_{x} は水平方向の減衰の時定数)。入射軌 道の位置は、この前に入射したバンプ軌道上のビームと、新たに入射する入射軌道上のビーム が、共にセプタムにぶつからない位置でなければならない。すなわち、

$$x \ge \frac{x + 2.5\sigma_{\rm E} + C}{e^{t/\tau_{\rm X}}} + 2.5\sigma_{\rm E} + t_{\rm s} + 2C$$

である。ここで、ビームサイズは、入射ビームの標準偏差をσ_Rとして、片側 2.5 σ_Bを取った。 また、t_sはセプタムの厚さ、Cはビームとセプタム間のクリアランスで、バンプ軌道及び入射 軌道のCODに相当する。従って、入射軌道とバンプ軌動の入射点での間隔は

$$\mathbf{x} = \frac{(2.5\sigma_{\rm E} + C)(1 + e^{-t/r_{\rm X}}) + t_{\rm s} - C}{1 - e^{-t/r_{\rm X}}}$$
(4.2.1)

(4, 2, 2)

である。また,バンプ軌道がリングの平衡軌道に戻った時(バンプ軌道は、ビーム入射後150 ns 以内 に平衡軌道に戻る),入射されたビームがセプタムにぶつからない条件は,

セプタム位置が (X + 2.5 $\sigma_{\rm E}$ + C) $e^{-1/t_{\rm X}}$ + X_B + C なので,

$$\frac{\mathbf{x} + 2.5\,\sigma_{\mathsf{E}} + C}{e^{t/r_{\mathsf{x}}}} + \mathbf{x}_{\mathsf{B}} + C \ge \mathbf{x} + 2.5\,\sigma_{\mathsf{E}} + C$$

となる。従って,バンプ軌道は,

$$x_B \ge 5\sigma_E + t_s + 2C$$

でなければならない。

.

入射ビームのエミッタンスはライナックの仕様から, 1.5 GeV で,

 $\epsilon_{\rm in} = 2.7 \times 10^{-7} \,{\rm m} \cdot {\rm rad}$

であり、入射点では、分散を消してあるので、(4.1.4)より、

 $\sigma_{\rm E} = \sqrt{\beta_{\rm x} \epsilon_{\rm in}} = 2.0 \, {\rm mm}$

- である。さらに $t_s = 1 \text{ mm}$, C = 1 mm, $t = 1.2 \tau_x$ とすると,
 - x = 14.0 mm
 - $x_{B} = 13.0 \text{ mm}$

$$\mathbf{x}_{\mathbf{E}} = \mathbf{x} + \mathbf{x}_{\mathbf{B}} \approx 27 \, \mathrm{mm}$$

となる。仕様値は余裕を見て

$$\left. \begin{array}{c} x_{\rm B} \approx 14 \, {\rm mm} \\ x_{\rm E} = 28 \, {\rm mm} \end{array} \right\} \tag{4.2.3}$$

とした。このとき入射軌道の傾きは、(4.1.2)、(4.1.4)より、

$$x'_{E} = 2.77 \,\mathrm{mrad}$$
 (4.2.4)

である。

4.3 入射バンプ電磁石位置及び蹴り角

バンプ軌道はバンプ電磁石(パータベータとも呼ばれる)によって作られる。従ってバンプ 電磁石の働きは、オフ・アクシス入射に伴う入射ビームの大きな振動の振幅をできるだけ小さ くすることにある。

入射点を狭むQD端からQD端までの輸送行列を (m_{ij}) とし、QD端からバンプ電磁石中心までの距離を図4.3.1のように ℓ_1 、 ℓ_2 とする。このとき軌道が閉じる条件は、バンプ電磁石の蹴り角を x_{h1} 、 x_{h2} とすると、

$$\begin{pmatrix} 1 & \ell_{1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} 1 & \ell_{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ x_{32}' \end{pmatrix} + \begin{pmatrix} 0 \\ x_{31}' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\therefore \begin{cases} m_{12} + \ell_{1} m_{11} + \ell_{2} (m_{22} + \ell_{1} m_{21}) = 0 \\ x_{32}' + (m_{22} + \ell_{1} m_{21}) x_{31}' = 0 \end{cases}$$

$$= \begin{cases} \ell_{2} - \frac{m_{12} + \ell_{1} m_{11}}{m_{22}' + \ell_{1} m_{21}} \\ x_{32}' - (m_{22} + \ell_{1} m_{21}) x_{31}' \end{cases}$$

$$\forall s \in S_{0} \quad x_{31}' = x_{32}' = x_{30}' \leq \frac{1}{2} \leq \frac{1}{2} \end{cases}$$

$$\begin{cases} \ell_{1} - (1 + m_{22})/m_{21} \\ \ell_{2} - (1 + m_{11})/m_{21} \end{cases}$$

$$(4.3.1)$$

を得る。偏向電磁石を直方体型(Rectangular Type)にすると、水平方向(x方向)の輸送行 列はドリフトスペースとほとんど同じになるので、QFを中心にしてラティスはほぼ対称にな る。従って対称性の条件から、 $m_{22} = m_{11}$ となり、 $\ell_1 = \ell_2$ となる。今回のラティスでは、

> $m_{11} = m_{22} = -0.0250$ $m_{21} = -0.4438$

なので,

 $\ell = \ell_1 = \ell_2 = 2.196 \,\mathrm{m}$

とした。また、(4.3.1)式が成り立つとき、バンプ電磁石間のベータトロン振動の位相の進み μ_Bは、

$$\cos \mu_{\rm B} = \frac{1}{2} [m_{11} + m_{22} + (\ell_1 + \ell_2) m_{21}] = -1$$

より,

$$\mu_8 = \pi$$

となっている。

次にバンプ電磁石の蹴り角を計算する。バンプ電磁石の蹴り角は、前節で求めた入射点での バンプ軌道を実現するように決められる。QD端からセプタム入口までの輸送行列を (n_{ij}),バ ンプの蹴り角を x_{ho} とすると,

$$\begin{pmatrix} \mathbf{x}_{B} \\ \mathbf{x}_{B}' \end{pmatrix} = \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} \begin{pmatrix} 1 & \ell \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \mathbf{x}_{B0}' \end{pmatrix}$$

$$= \begin{bmatrix} (n_{12} + \ell n_{11}) \mathbf{x}_{B0} \\ (n_{22} + \ell n_{21}) \mathbf{x}_{B0}' \end{bmatrix}$$

$$(4.3.2)$$

となる。従って

$$\mathbf{x}_{B_0} = \frac{\mathbf{x}_{B}}{\mathbf{n}_{12} + \ell \mathbf{n}_{11}}$$
(4.3.3)

を得る。このバンブ軌道のエミッタンス (ε_{B})の保存則 ($x_{B}^{\prime} - \frac{1}{\beta} \left[\sqrt{\epsilon_{B}\beta - x^{2}} - \alpha_{x} \right], \epsilon_{B} = \beta_{B} x_{B0}^{\prime}, \beta_{B}$ はバンプ電磁石中心のβ関数)から傾き x_bに関する条件は自動的に満たされる。

 $x_{B} = 14 \text{ mm}$, $\ell = 2.196 \text{ m}$

$$(n_{ij}) = \begin{pmatrix} 2.1936 & 5.2759 \\ -0.4742 & -0.6846 \end{pmatrix}$$
(4.3.4)

とすると,

 $x_{B0} = 1.387 \, \text{mrad}$

になる。

しかし、バンプ電磁石2個では、動作点(チューン)を変更した場合に、バンプ軌道が完全 にもとに戻らなくなるので、それぞれ2個に分割して、全体で4個にする。内側のバンプ電磁 石の蹴り角を x_h, その中心からQD端までの距離をℓ₃, 同様に外側のバンプ電磁石について, x_{ho} , ℓ_4 とすると、(4.3.2)式に対応して、

$$\begin{pmatrix} \mathbf{x}_{B} \\ \mathbf{x}_{B}' \end{pmatrix} = \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} \begin{pmatrix} 1 & \ell_{3} \\ 0 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 & \ell_{4} - \ell_{3} \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 0 \\ \mathbf{x}_{B2}' \end{pmatrix} + \begin{pmatrix} 0 \\ \mathbf{x}_{B1}' \end{bmatrix}$$

$$= \begin{pmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{pmatrix} \begin{pmatrix} \ell_{3} & \mathbf{x}_{B1}' + \ell_{4} & \mathbf{x}_{B2}' \\ \mathbf{x}_{B1}' + \mathbf{x}_{B2}' \end{pmatrix}$$

$$(4.3.5)$$

となり、初期設計としては、

$$\begin{cases} x_{B1}^{\prime} = x_{B2}^{\prime} = x_{B0}^{\prime}/2 \\ \ell_{3} + \ell_{4} = 2 \ell \end{cases}$$

$$\left. \left\{ 4.3.6 \right\}$$

とすれば良い。結局バンプ電磁石の位置及び蹴り角は

$\ell_3 = 3.992 \mathrm{m}$		
ℓ₄ = 0.4 m	}	(4.3.7)
$\mathbf{x}_{B1} = \mathbf{x}_{B2} = 0.694 \text{mrad}$	J	

とする。ただし、オン・アクシス人射で、COD補正を行う場合、2台は、1.388 mrad必要で ある((4.3.3~6)式の計算で x_B , x_B' の代わりに x_E , x_E' を用いれば良い)。

4.4 入射セプタム電磁石位置及び偏向角

後段セプタム出口の位置及びそこでの軌道は4.1、4.2節で述べた。ここでは、セプタム電 磁石に入る前の軌道を与えて、後段セプタム電磁石出口での条件を満たすように軌道を偏向さ せるために必要な、主及び後段セプタムの位置と強さを求める。

図 4.4.1のように主セプタム電磁石に中心軌道から x_0 ,入射角 θ_0 で入射した場合、主セプ タム出口での入射軌道の位置(入射軌道とリング軌道の間隔) x_{ms} と傾き θ_{ms} は、次の式で与 えられる。

$$\mathbf{x}_{ms} = \mathbf{x}_0 - 2\rho_s \sin \frac{\theta_s}{2} \sin \left(\theta_0 - \frac{\theta_s}{2} \right)$$
(4.4.1)

)

(4.4.10)

$$\theta_{\rm ms} = \theta_0 - \theta_{\rm s} \tag{4.4.2}$$

ρs: 主セプタム電磁石の曲率半径

θs:主セプタム電磁石偏向角

また、この主セプタムの長さに対応するリングの軌道の長さℓmRは,

$$\ell_{\rm mR} = 2\rho_{\rm s}\sin\frac{\theta_{\rm s}}{2}\cos\left(\theta_{\rm 0}-\frac{\theta_{\rm s}}{2}\right) \tag{4.4.3}$$

となる。また、リング軌道に平行に測って、主セプタム電磁石入口から ℓ_D だけ離れた所での入射軌道の位置 x_D 及び傾き θ_D は、

$$x_{\rm p} = x_0 + \ell_{\rm p} \tan \theta_0$$
 (4.4.4)

$$\theta_{\rm D} = \theta_{\rm 0} \tag{4.4.5}$$

で与えられる。

一方,後段セプタムに関しても同様な関係式が成り立ち,入口の軌道間距離を x_{P_s} , θ_{P_s} と t すれば, (4.4.1)~(4.4.5)に対応して

$$\mathbf{x}_{\mathrm{E}} = \mathbf{x}_{\mathrm{PS}} - 2\rho_{\mathrm{P}}\sin\frac{\theta_{\mathrm{P}}}{2}\sin\left(\theta_{\mathrm{PS}} - \frac{\theta_{\mathrm{P}}}{2}\right) \tag{4.4.6}$$

$$\mathbf{X}_{\mathbf{E}}^{\prime} - \boldsymbol{\theta}_{\mathbf{PS}} - \boldsymbol{\theta}_{\mathbf{P}} \tag{4.4.7}$$

$$\ell_{PR} = 2\rho_{P}\sin\frac{\theta_{P}}{2}\cos\left(\theta_{PS} - \frac{\theta_{P}}{2}\right)$$
(4.4.8)

$$\mathbf{x}_{\mathsf{PS}} = \mathbf{x}_{\mathsf{ms}} - \ell_{\mathsf{mp}} \tan \theta_{\mathsf{ms}} \tag{4.4.9}$$

 $\theta_{PS} = \theta_{mS}$

PPs : 後段セプタム電磁石曲率半径

が成り立つ。このようにセプタム電磁石を2つに分離するのは、セブタムをできるだけ厚くす るためである。つまり、入射軌道とリングの中心軌道が最も接近する部分を後段セプタム電磁 石として切り離し、セプタムを極力薄くする代わりに、磁極長や磁場の強さを抑える。他方主セ プタム電磁石は長く強くする代わりに漏れ磁場を完全になくするように、セプタムを厚くする。

さて、(4.4.1~10)式によって、入射軌道の両端(x_D , θ_D)と(x_B , x'_B)とを結ぶことがで きるが、もう1点(x_{ms} , θ_{ms})にも重要な条件が課せられる。それは、4.2節で述べたことと 基本的に同じで、入射ビームと、バンプ軌道上のビームが共にセプタムに当たらないという条 件である。主セプタム電磁石出口位置で、リング内のビームのサイズを σ_{Bm} ,入射ビームのサ イズを σ_{Bm} ,セプタムの厚さを t_m ,クリアランスをCとすると、この条件 ニームの99%がぶ つからない条件)は、

$$x_{ms} - x_{Bm} \ge 2.5(\sigma_{Em} + \sigma_{Bm}) + t_m + 2C$$
 (4.4.11)

と表わせる。ここで、この位置での入射軌道及びリングの β -関数をそれぞれ β_{Em} , β_{Bm} とすると、

$$\sigma_{Bm} = \sqrt{\frac{\beta_{Bm}}{\beta}} \sigma_{B} = \sqrt{\frac{\beta - 2(\ell_{PR} + \ell_{mp})\alpha + (\ell_{PR} + \ell_{mp})^{2}\gamma}{\beta}} \sigma_{B} \qquad (4.4.12)$$

$$\sigma_{\rm Em} = \sqrt{\frac{\beta_{\rm Em}}{\beta}} \sigma_{\rm E} \simeq \sqrt{\frac{\beta_{\rm Bm}}{\beta}} \sigma_{\rm E} \qquad (4.4.13)$$

$$\theta_{\rm Em} = \left(\cos\theta_{\rm P} - \frac{\ell_{\rm mp}}{\rho_{\rm P}}\sin\theta_{\rm P}\right)^2 \beta - 2\left(\cos\theta_{\rm P} - \frac{\ell_{\rm mp}}{\rho_{\rm P}}\sin\theta_{\rm P}\right)(\ell_{\rm mp}\cos\theta_{\rm P} + \rho_{\rm P}\sin\theta_{\rm P})\alpha + (\ell_{\rm r}\cos\theta + \rho\sin\theta)^2\gamma$$

σ_B, σ_E : 入射点でのビームサイズ

となる。(4.4.13)式の近似は、後段セプタムの偏向角がミリラジアンのオーダーであり、軌道 がきわめて、リングのバンプ軌道に近いので良く成り立つ。なお、α、β、rは入射点(後段 セプタム出口)でのTwissパラメータである。(4.4.11~13)式から主セプタムの位置の条件 として、

$$\beta_{Bm} \lesssim \left(\frac{x_{ms} \cdot x_{Bm} - t_m - 2C}{2.5(\sigma_E + \sigma_B)}\right)^2 \beta$$
(4.4.14)

を得る。

さて, (3.4.1~10)式をまとめると,

$$\theta_{s} = 2 \left[\theta_{D} \tan^{-1} \left(\frac{\mathbf{x}_{D} - \mathbf{x}_{ms} - \ell_{D} \tan \theta_{D}}{\ell_{mR}} \right) \right]$$
(4.4.15)

$$\theta_{\mathbf{P}} = \theta_{\mathbf{D}} - \mathbf{x}_{\mathbf{E}}^{\prime} - \theta_{\mathbf{s}}$$
 (4.4.16)

$$\ell_{mp} = \frac{x_{ms} - x_{E} \cdot \ell_{PR} \tan\left(\frac{\sigma_{P}}{2} + x_{E}'\right)}{\tan\left(\theta_{P} + x_{E}'\right)}$$
(4.4.17)

となり、 x_{D} 、 θ_{D} 、 x_{E} 、 x_{K} 、 x_{ms} , ℓ_{PR} , ℓ_{mR} , ℓ_{D} を与えると、主セプタム電磁石の偏向角 θ_{s} , 後段 セプタム電磁石の偏向角 θ_{P} , 及びこれらの磁石の間隔 ℓ_{mp} が計算できる。このうち、 x_{E} , x'_{E} は前節で決めた入射点の座標と傾きであり、主セプタム出口での軌道間隔 x_{ms} は(4.4.12~14) 式からわかるように、主セプタムの厚さ t_{m} をどれだけ確保するかによって、 ℓ_{mp} と関連して与 えるべき量である。 x_{D} , θ_{P} は、リングを構成する機器と、入射ビーム輸送系を構成する機器が 最も接近する位置での軌道間隔と、入射軌道の傾きである。今回の設計ではこれはQDの端で の値を、QDとビーム輸送系のダクトが干渉しないように設定している。 ℓ_{PR} は後段セプタム 電磁石の長さで、フェライトを使う場合を考えて、0.5 T以下の磁場で2~3 x'_{E} 程度曲げられ る長さを与えれば良い。主セプタム電磁石の長さ ℓ_{mR} は、積層鋼板を使うことを考えて、1 T 以下で θ_{D} 程度偏向できる長さを与えれば良い。問題は ℓ_{D} で、QF~QD間の長さを ℓ_{FD} 、QF ~後段モプタム電磁石間の距離を ℓ_{F} とすると、(4.4.17)式の ℓ_{mp} との間に

 $\ell_D = \ell_{FD} - \ell_F - \ell_{MR} - \ell_{MP}$ (4.4.18) なる関係がある。そこで、(4.4.15~17)式は、

$$\theta_{s} = 2 \left\{ \theta_{p} - \tan^{-1} \left[\frac{\mathbf{x}_{p} - \mathbf{x}_{ms} - (\ell_{c} - \ell_{mp}) \tan \theta_{p}}{\ell_{mR}} \right] \right\}$$
(4.4.19)

$$\ell_{mp} = \frac{\mathbf{x}_{ms} - \mathbf{x}_{E} - \ell_{PR} \tan[(\theta_{D} + \mathbf{x}_{E}^{\prime} - \theta_{s})/2]}{\tan(\theta_{D} - \theta_{s})}$$
(4.4.20)

 $(\ell_{\rm C} = \ell_{\rm FD} - \ell_{\rm F} - \ell_{\rm PR} - \ell_{\rm mR})$

なる連立方程式にまとめられる。さらに $\theta_{P}+x'_{E}=\theta_{D}-\theta_{s}$ が充分小さいことを考慮すると、 ℓ_{mP} に対する方程式として

$$(2 \ell_{mp} + \ell_{PR}) \tan^{-1} \left(\frac{\tan \theta_{D}}{\ell_{mR}} \ell_{mp} + C_{1} \right) - \theta_{D} \ell_{mp} - C_{2} = 0$$

$$C_{1} = \frac{x_{D} - x_{ms}}{\ell_{mR}} - \left(\ell_{PD} - \ell_{F} + \ell_{PR} + \ell_{mR} \right) \tan \theta_{D}}{\ell_{mR}}$$

$$C_{2} = \frac{\ell_{PR}}{2} \left(\theta_{D} - x_{E}^{\prime} \right) + x_{ms} - x_{E}$$

$$(4.4.21)$$

が得られる。(4.4.14)式の条件の下で、この方程式を解いて ℓ_{mp} を決めれば、あとは

$$\theta_{\rm s} = \theta_{\rm D} - \frac{\mathbf{x}_{\rm nrs} - \mathbf{x}_{\rm E} - \ell_{\rm PR} \mathbf{x}_{\rm E}^2/2}{\ell_{\rm nrp} + \ell_{\rm PR}/2}$$
(4.4.22)

$$\theta_{\rm P} = \frac{{\rm x}_{\rm ms}}{\ell_{\rm mp}} \frac{{\rm x}_{\rm E} - (\ell_{\rm mp} + \ell_{\rm PR}) {\rm x}_{\rm E}'}{\ell_{\rm mp} + \ell_{\rm PR}/2}$$
(4.4.23)

から、各セプタム電磁石の偏向角が決まり、軌道が固定される。ここでは、 主セプタムの厚 さ (t_m)を5 cm、クリアランス(C)を1 mmとし、 $x_{ms} = 30.9$ mm、 $\ell_{PR} = 0.2$ m、 $\ell_{mR} = 1.0$ m、 $x_D = 589$ mm、 $\theta_D = 10^\circ$ 、 $x_B = 28$ mm、 $x'_E = 4.79$ mrad として計算し、

$$\begin{cases} \theta_{\rm s} & 165.5 \, {\rm mrad} \\ \theta_{\rm P} & 13.85 \, {\rm mrad} \\ \ell_{\rm mp} & 0.269 \, {\rm m} \end{cases}$$
 (4.4.24)

を得た。

最後にオフ・アクシスの入射軌道を図 4.4.2 に示す。また, COD 補正を行うためのオン・ アクシス入射の時の軌道を図 4.4.3 に示す。

4.5 出射位置及び出射位置での軌道の傾き

出射は入射と異なり、出射後にはリングの中(少なくとも、出射したビームパルスのあった 場所)にはビームがなくなるので、基本的にはバンプ軌道を作る必要はない。しかし、8 GeV では、わずかに軌道を曲げるだけでも比較的強い磁力が必要になり、キッカーだけでは、キッ カーの負担が大きくなりすぎる。そこで、その負担を軽減するために、入射時と同様にバンプ 軌道を作る。

前段出射セプタム電磁石入口の位置(出射位置)も、できるだけセプタム電磁石の負担が軽くなる位置(QFに近くて、出射軌道の傾きが小さい位置)が良いが、振幅の大きい入射時のビームが、出射セプタムに当たることだけは避けなければならない。これらのことを考え合わせ

て、結局、ビーム進行方向での出射位置と、動径方向の前段出射セプタム電磁石のセプタム位置は、入射時と同じにした。出射点でのTwiss パラメータは、

 $\begin{cases} \beta_x = 14.75 \,\mathrm{m} \\ \alpha_x = 2.51 \\ \beta_y = 3.81 \,\mathrm{m} \\ \alpha_y = -0.733 \end{cases}$ (4.5.1)

で、中心軌道とセプタム内面の距離は21mmである。

4.6 出射軌 4,出射バンプ軌道

次に出射点での軌道の位置関係を決める。4.2節と同様な記号を用いると、既にセプタムの 位置(x_{sp};図4.6.1参照)が決まっているので、バンプ軌道、出射軌道は次のように与えられ る。

$$x_{B} = x_{sp} - 3\sigma_{ex} - C,$$
 (4.6.1)

$$x_{E} = x_{sp} + t_{s} + C + 3\sigma_{ex}$$
 (4.6.2)

従って、軌道の分離は $x = x_{E} - x_{B} = 6\sigma_{ex} + 2C + t_{s}$ (4.6.3)

である。てこで

$$\epsilon = 1.20 \times 10^{-7}$$
 mrad

 $\sigma_{\rm ex} = \sqrt{\epsilon \beta_{\rm x}}$

なので、 (4.5.1) 式より、 $\sigma_{ex} = 1.33 \text{ mm} となり、 C = t_s = 1 \text{ mm} とすると$ $<math>x_B = 16 \text{ mm}$ $x_E = 27 \text{ mm}$ x = 11 mmとなる。また、 (4.1.2) 式より、 $x'_E = -4.59 \text{ mrad}$ x' = -1.87 mradである。

4.7 出射バンプ電磁石位置及び蹴り角

バンプ電磁石については 4.3 節の議論がそのまま成り立つ。 4.3 節と同じ記号を用いる(図 4.3.1 参照)と, (4.3.1~5)式より,

$$\ell_3 + \ell_4 = 2 \ell = 4.392 \,\mathrm{m}$$

より,

$$\ell_{3} = 3.692 \text{ m}$$

$$\ell_{4} = 0.700 \text{ m}$$

$$\mathbf{x}_{B1}' = \mathbf{x}_{B2}' = \frac{1}{2} \frac{\mathbf{x}_{B}}{\mathbf{n}_{12} + \ell \mathbf{n}_{11}} = \frac{1}{2} \frac{16}{5.276 + 2.196 \times 2.194}$$

$$= 0.793 \text{ mrad}$$
(4.7.1)

を得る。

4.8 出射キッカー位置及び蹴り角

出射直線部には入射用機器に加えてキッカーが入る。バンプ電磁石やキッカーなど微小角の 偏向を行う電磁石に対してはThin Lens 近似が良く成り立つ。Thin Lens 近似では、これらす べての電磁石の蹴りの効果は、各電磁石の蹴りの和で与えられる。すなわち、QD端からキッ カーまでの間隔を $\ell_{\rm K}$, キッカーの蹴り角を $\theta_{\rm K}$ とし、他の量は、4.3節の記号をすべて使うと、 このことは、

$$\begin{pmatrix} \mathbf{x}_{\mathsf{E}} \\ \mathbf{x}_{\mathsf{E}}' \end{pmatrix} = \begin{pmatrix} \mathbf{n}_{11} & \mathbf{n}_{12} \\ \mathbf{n}_{21} & \mathbf{n}_{22} \end{pmatrix} \begin{pmatrix} \ell_{\mathsf{K}} & \theta_{\mathsf{K}} \\ \theta_{\mathsf{K}} \end{pmatrix} + \begin{pmatrix} \mathbf{x}_{\mathsf{B}} \\ \mathbf{x}_{\mathsf{B}}' \end{pmatrix}$$
(4.8.1)

と表わされる。これを解けば,

 $\theta_{\rm K} = n_{11} \, {\rm x}' - n_{21} \, {\rm x} \tag{4.8.2}$

$$\ell_{\rm K} = \frac{n_{22} x - n_{12} x'}{n_{11} x' - n_{21} x}$$
(4.8.3)

$$(x = x_E - x_B, x' = x'_E, x'_B)$$

を得る。(4.3.4),(4.6.4~5)式を用いると,

 $\theta_{\rm K} = 1.109\,{\rm mrad}$

$$\ell_{\rm K}=2.196\,{\rm m}$$

となる。

4.9 出射セプタム電磁石位置及び傷向角

出射セプタム電磁石については 3.4 節の議論がそのまま成り立つ。最終出射角度 (θ_D)を 6°, QD端でのリング中心軌道と出射軌道との分離 (x_D)を 260 mm,前段出射セプタム電磁石位置 でのビーム条件 (x_E , x'_E)を (4.6.4~5)式,前段出射セプタム電磁石の長さ (ℓ_{PR})を 0.6 m, 主出射セプタム電磁石の長さを (ℓ_{mR})を 2.5 m,QF~QD間距離 (ℓ_{FD})を 4.312 m, (QF~前 段セプタム電磁石間距離 (ℓ_F)を 0.2 m とすると, (4.4.21~23)式より 2 つのセプタムの間隔, 及び偏向角は,

> $\ell_{mp} = 0.323 \text{ m}$ $\theta_{P} = 15.62 \text{ mrad}$ $\theta_{s} = 99.00 \text{ mrad}$

を得る。入射,出射用各セプタム電磁石の出入口の軌道を表4.9.1~2にまとめて記す。出射

セプタムの位置では、セプタムの厚さを8mm取れることがわかる。 また、図4.91に出射軌道を示す。

.

Charles and

.

.

.

•

.

	Q	D 端	主セプ	夕ム入口	主セプタ	タム出口	後段セフ (入り	『タム出口 村 点)	QF	中心
	入射軌道	バンプ軌道	入射軌道	バンプ軌道	入射,道	バンプ軌道	人射軌道	バンプ軌道	人射軌道	バンプ軌道
x (mm)	588.8	4. 2	122.9	10.5	30.9	12.9	28.0	14.0	29.7	14.9
<u>x'(mr)</u>	-174.5	2. 4	-174.5	2. 4	- 9. 1	2.4	4. 8	2.4	0.0	0. 0
$\beta_{x}(m)$	1.82	2.48	8, 13	8.44	12.49	12.50	14.75	14.75	16.57	16.57
ax	- 0. 35	-0.47	-2.01	-1.78	-2.29	-2.28	- 2. 51	-2.51	0.0	0. 0
η (m)	0.58	0.0	0.11	0. 0	0.01	0. 0	0. 0	0. 0	0.0	0. 0
$\beta_{y}(m)$	16.86	16.67	6.83	6.84	4.57	4.59	3.80	3.80	3. 33	3. 33
a _y	2.41	2.39	1.33	1. 33	0.92	0.92	0.73	0.73	0.0	0. 0
σ_{x} (mm)	3.00	4.08	1. 58	7.52	1.84	9.15	2.00	9.94	2.12	10.54
σ_y (mm)	2.13	0.64	1.36	0.41	1.11	0.34	1.01	0.31	0.95	0.29

表 4.9.1 入射軌道の座標とパラメータ

表 4.9.2 出射軌道の座標とパラメータ

	Q D 端		主セプタム入口		主セプタム出口		前段セプタム入口 (出射点)		Q F 中 心	
	出射軌道	バンプ軌道	出射軌道	バンプ軌道	出射軌道	バンプ軌道	出射軌道	バンプ軌道	出射軌道	バンプ軌道
x (mm)	260.0	4. 8	183.9	6. 6	32.5	13.5	27.0	16.0	28.6	17.0
x' (mr)	110.0	-2.7	110.0	-2.7	11.0	2. 7	-4.6	-2.7	0. 0	0.0
$\beta_{\mathbf{x}}$ (m)	2.40	2.47	3.29	3.36	10.53	10.54	14.75	14.75	16.58	16.58
a _x	0.47	0.47	0.82	0.82	2.06	2.05	2.51	2.51	0. 0	0.0
η (m)	0. 25	0. 0	0.18	0. 0	0.01	0.0	0. 0	0. 0	0. 0	0. 0
$\beta_{y}(m)$	16.71	16.66	13.58	13.56	5.51	5.51	3.81	3.81	3.34	3.34
a _y	-2.40	-2.39	-2.12	-2.11	-1.11	-1.11	-0.73	- 0. 73	0. 0	0. 0
σ_x (mm)	0.60	0.54	0.66	0.63	1.12	1.12	1.33	1.33	1.41	1.41
$\sigma_{y}(mm)$	0. 5	0.5	0.4	0.4	0. 3	0. 3	0. 2	0. 2	0. 2	0. 2

- 46 --

ŕ

÷

図 4.3.1 入 射 部 の 軌 道 (n_{ij}), (m_{ij})はその区間の輸送行列を表わす。

Ì

••••

Injection Orbit for 8GeV synchrotron

図 4.4.2 オフ・アクシス入射軌道

図4.4.3 オン・アクシス入射軌道

Environde a Starrage of Starra

図 4.6.1 出射点での軌道の位置関係

Ext.orbit for 8 Gev synchrotron

図4.9.1 出射軌道

- 50 -

5. シンクロトロン入出射用機器基本仕様

本章では第4章の入出射部の軌道計算に基づいて、入出射機器の基本仕様をまとめる。

5.1 入出射部真空ダクト及びQF 電磁石

入出射部では分散を消去してあるが,バンプ軌道を作ることによって,通常のビームダクト サイズでは,アバーチャーが不足してしまう。そこで,バンプ軌道が最も大きくなる入出射点 に一番近いQFを中心に,1セル分真空ダクトの外側のサイズを大きく取る。その大きさは, ビーム・サイズ,入出射軌道と中心軌道の分離共,入射部の方が大きいので,入射部で決める。

 $BSC_x = \sigma_{xQF} + x_{EQF} + COD_{QF} = 35.8 \text{ mm}$

 $\sigma_{\rm XOF} = \sqrt{\varepsilon_{\rm III}\beta_{\rm XOF}} = 2.2\,\rm{mm}$

x_{EQF} 29.7 mm

COD_{QF} 3.9 mm

である。ここでは、さらに σ_{xqF} 程度余裕を見て、入出射部ダクト・サイズを、外側だけ 40 mm とした。図 5.1.1 にその概形を示す。

また, これに伴って, QFのボア半径を, 42mm に広げた。入出射部QF電磁石の仕様を表 5.1.1 に示す。

5.2 入射バンプ電磁石

一般に電磁石の蹴り角(偏向角)θと長さℓが与えられれば、強さは

$$B = \frac{B\rho \cdot \theta}{\ell} \tag{5.2.1}$$

から求められる。入射バンプ電磁石に対しては,

 $B\rho = 5.00346 \text{ Tm}(1.5 \text{ GeV})$ $\theta = 0.694 \text{ mrad}$

ℓ - 0.2 Gauss

とすれば,

 $B_B = 174 \text{ Gauss}$

必要である。

磁場精度は、CODの計算式(2.3.15)から決められる。バンプ電磁石の磁場精度を $\Delta B_{B}/B$ 、 そこでの β 関数を β_{B} 、後段セプタム電磁石出口の β 関数を β_{s} 、チューンを ν_{x} とすると、バン プ電磁石の誤差による、セプタムの位置でのバンプ軌道のずれは、この式から

$$\langle \delta_{\rm X} \rangle = \sqrt{\beta_{\rm s}} \frac{\sqrt{\beta_{\rm B}}}{2|\sin \pi \nu_{\rm x}|} \cdot \left(\frac{\Delta B_{\rm B}}{B_{\rm B}}\right) \theta_{\rm B}$$
(5.2.2)

となる。今、 $\beta_B = 3.43 \text{ m}$, $\beta_s = 14.75 \text{ m}$, $\nu_x = 13.735$, $\theta_B = 0.694 \times 10^{-3} \text{ rad}$ とし、 $\langle \delta_X \rangle = 0.1 \text{ mm}$ ((クリアランス)/10)とすると、

$$\left|\frac{\Delta B_{B}}{B_{B}}\right| = \frac{2 \times |\sin(\pi \times 13.735)| \times 0.1}{\sqrt{3.43} \times \sqrt{14.75} \times 0.694} = 0.030$$

である。仕様ではさらに余裕を見て

$$\frac{\Delta B_{B}}{B_{B}} = \pm 2\%$$

とした。この精度を、2σ_{in} + X_B、すなわちx方向;±20mm、y方向;±8mmで実現する。

また, バンプ電磁石の立ち上げ, 立ち下げ時間は, 既に入射されているビームに影響を与え ないようにするために, きわめて速いものになる。471.55mのシンクロトロンをビームが1周 する時間は, 1573 μs で, ここに8バンチ入っているので, バンチ間の間隔は196.6 ns である。 従って, 既に入射されていて, 放射減衰が充分でない隣のバンチに影響を与えず入射するため には, 393 ns 以内にバンプ電磁石の立ち上げ, 入射, 立ち下げの過程を終了しなければならな い。本仕様では, 安全のため,

立ち上げ時間 70 ns
 入射(フラットトップ) 40 ns
 立ち下げ時間 70 ns

とした。ただし、立ち下げ時間は、パルスのアンダーシュートに始まる振動が、±3%に収ま るまでの時間である。また、ライナックのパルスが1µs 程度になる場合にも対応するため、フ ラット・トップは 1600 ns にも切り換え可能であることとした。図 5.2.1 に入射バンプ電磁石 の励磁バターンを示す。また、仕様値を表 5.2.1 に示す。

5.3 入射セプタム電磁石

(5.2.1), (4.4.24)式から, 後段, 主各セプタム電磁石の長さをそれぞれ 0.2 m, 1.0 m とすると, 強さはそれぞれ

$$B_{p} = \frac{5.003 \times 13.85 \times 10^{-3}}{0.2} = 0.346 \text{ T}$$

$$B_{s} = \frac{5.003 \times 165.5 \times 10^{-3}}{1.0} = 0.828 \text{ T}$$

である。

精度は、後段セプタム電磁石の出口での軌道位置の誤差∆x_Eが 0.2 mm 以下になるように設 定する。主セプタムについては

$$\Delta x_{E} = \Delta \theta_{s} \cdot (\ell_{mp} + \ell_{PR})$$

$$= \frac{\Delta B_{s}}{B_{s}} \cdot \theta_{s} (\ell_{mp} + \ell_{PR}), \qquad (5.3.1)$$

$$\theta_{s} \quad : 主 セプタム偏向角$$

$$\ell_{es} \quad : = - 後 \theta_{es} + \tau^{2} q \Delta B 距離$$

- 52 -

であるから

Ĩ

$$\frac{\Delta B_s}{B_s} = \frac{0.2 \times 10^{-3}}{165.5 \times 10^{-3} (0.269 + 0.2)} = 2.5 \times 10^{-3}$$

となる。そこで入射ビーム・サイズ 2.5 σ_{max} (x; 4.6 mm, y; 3.4 mm)の範囲でΔB_s/B_s= 2.5×10⁻³とする。後段セプタムについても、同様に

$$\Delta \mathbf{x}_{\mathrm{E}} = \frac{\Delta \mathbf{B}_{\mathrm{P}}}{\mathbf{B}_{\mathrm{P}}} \boldsymbol{\theta}_{\mathrm{P}} \boldsymbol{\ell}_{\mathrm{PR}}$$
(5.3.2)

より

$$\frac{\Delta B_{P}}{B_{P}} = \frac{0.1 \times 10^{-3}}{13.85 \times 10^{-3} \times 0.2} = 3.6 \times 10^{-2}$$

となる。後段セプタムについては、x; + 5 mm, y; + 3.2 mmの範囲で $\Delta B_{P} / B_{P} = 1$ % とする。

主入射セブタムは電力節約のため、励磁バターンを、200μsの正弦半波とする。

後段入射セフタムは、充分なうず電流で、もれ励場を遮蔽するため、20 µs (波長 40 µs)の 正弦半波で励磁する。このとき、表皮厚は、

$$\delta = \sqrt{\frac{1}{\pi\mu\sigma f}}$$
(5.3.3)
= $\frac{1}{\sqrt{\pi \times 4\pi \times 10^{-7} \times 5 \times 10^{7} \times 2.5 \times 10^{4}}}$

··· 0.45 mm

で、セプタムの厚さの半分程度である。

表 5.3.1に入射セプタムの仕様を示す。図 5.3.1~2に励磁パターンを示す。

5.4 出射バンプ電磁石

入射バンプ電磁石と同様である。

ℓ_B = 0.8 m

 $\theta_{\rm B}=0.793~{\rm mrad}$

より

 $B_B = 265 \text{ Gauss}$

である。

精度は入射時と同じで良い。

励磁パターンは、ビーム・サイズが充分小さくなっているので、正弦半波で良く、その速さ は立ち上げ開始から終了まで 200 µs 程度とする。

表 5.4.1 に出射バンプ電磁石の仕様を示す。図 5.3.1 にはその励磁パターンが示してある。

5.5 出射キッカー電磁石

出射キッカー電磁石は、シングルバンチ運転時に隣りのパルスに影響を与えないように、入 射バンプ電磁石と同じ 70 ns の速い立ち上げ、立ち下げを行う。こうすると、80 cmの長さでは 電源に負担がかかるので、40 cm のキッカーを2台、1台の時の中心から等距離に設置する。

 $\ell_{\kappa} = 0.4 \text{ m}$

 $\theta_{\rm K}$ = 1.11 mrad

で,強さは

 $B_{K} \approx 374$ Gauss

である。

精度も入射バンプ電磁石と同一とする。

表 5.5.1 に出射バンプ電磁石の仕様を示す。励磁パターンは、入射バンプ電磁石と同一である。

5.6 出射セプタム電磁石

前段出射セプタム電磁石も当初の予定では後段入射セプタム電磁石と同じ励磁方式をとる予 定であったが、磁場が強くなりすぎるため、主出射セプタム電磁石と同じ正弦半波 200 µs程度 の遅い励磁を行うこととした。

 $\ell_{\rm P} = 0.6 \,\rm m$ $\theta_{\rm P} = 15.62 \, {\rm mrad}$ $l_{s} = 2.5 \text{ m}$ $\theta_s = 99.0 \text{ mrad}$

より,

B_P = 0.695 T :前段セプタム B_s = 1.057 T :主セプタム

となる。

精度は、入射セプタム電磁石と同じである。

表 5.6.1 に出射セプタム電磁石の仕様を示す。また、図 5.3.1 に励磁パターンが示されている。

最後に入射機器の配置を図 5.6.1 に、出射機器の配置を図 5.6.2 に示す。

個	数			QF : 2
∂By ∂X				
	最	大	値	14.43 T/m
	最	小	値	2.706 T∕m
有 効	長			0. 6 m
ボアー半	径			42 mm
磁極端形	状			双曲線
<u>∂By</u> ∂X 精度				
	範		囲	半径 35 mm 以内
	入	射	時	1×10^{-3}
	出	射	時	1×10^{-3}

表 5.1.1 入出射部四極電磁石の基本仕様

表 5.2.1 入射用バンプ電磁石の基本仕様

台	数	4
ビームエネノ	レギー	1. 5 G eV
曲げ	角	1.5 mrad
有 効	長	0. 2 m
最 大 磁	場	173. 2 G
パルス	幅(フラットトップ)	40 ns 及び 1600 ns
繰返し	率	60 Hz

表 5.3.1 入射用セプタム電磁石の基本仕様

OF ALL PROPERTY OF

主入射用セプタム電磁石	
台数	1
曲が角	165. 47 mrad
有 効 長	1. 0 m
最 大 磁 場	8.238 KG
パ ル ス 幅(T/2)	~200 µsec
繰り返し率	60 Hz
セ プ タ ム 厚(出口)	5 mm
セプタム-中心軌道(出口)	20 mm
後段入射用セプタム電磁石	
台 数	1
曲げ角	13.85 mrad
有 効 長	0. 2 m
最 大磁場	3.466 KG
バールース 幅(T/2)	~20 µsec
繰り返し率	60 Hz
セ プ タ ム 厚(出口)	1 mm
セプタム-中心軌道(出口)	21 mm

台		数	4
ビ	ームエネル	レギー	8 G eV
曲	げ	角	0. 793 mrad
有	効	長	0. 8 m
最	大 磁	場	264. 4 G
パ	ルス	幅(T/2)	~200 µsec
繰	返し	率	60 Hz

表 5.4.1 出射用スローバンプ電磁石の基本仕様

表 5.5.1 出射用キッカー電磁石の基本仕様

<u>∠</u> ∟1	数	2
ビームエネル	レギー	8 G eV
曲げ	角	1.09mrad (2台で)
有 効	長	0.4m×2台
最 大 磁	場	363. 6 G
パルス	幅(フラットトップ)	40 ns 及び 1600 ns
繰 返 し	率	60 Hz
	1	

A REAL REAL PLACE AND A REAL PROPERTY AND A RE

前段出射用セプタム電磁石	
台 数	1
ビームエネルギー	8 G eV
曲が角	15. 618 mrad
有 効 長	0. 6 m
最 大 磁 場	6. 95 KG
バ ル ス 幅(T/2)	~200 µsec
繰返し率	60 Hz
セプタム厚	1 mm
セブタム-中心軌道(入口)	21 mm
主出射用セプタム電磁石	
台 数	1
ビームエネルギー	8 GeV
曲が角	99 mrad
有 効 長	2. 5 m
最 大 磁 場	10. 57 KG
パ ル ス 幅(T/2)	~200 µsec
繰返し率	60 Hz
セプタム厚	8 mm
セプタム – 中心軌道(入口)	19 mm

表 5.6.1 出射用セプタム電磁石の基本仕様

図 5.1.1 入出射部真空ダクト

図 5.3.2 後段入射セプタム電磁石励磁波形

Injection System of the Synchrotron

図 5.6.1 入射部機器配置

-

Extraction System of the Synchrotron

図 5.6.2 出射部機器配置

.

6. 今後の検討,改善点

以上のように、単一電子の運動論に基づくシンクロトロンの基本設計を行った。今後、建設時に発生する、ランダムな誤差を含んだビーム・トラッキングやCODの計算、加速時にダクトに発生するうず電流の効果、同じく加速時に許される偏向電磁石と4極電磁石の強さのずれ(トラッキング・エラー)の範囲、さらに入射時のビームの安定性等,詳細に検討を進めなければならない。特に、CODの計算や、トラッキング・エラーの見積りを行わなければ、電磁石や電源の精度は、厳密には決められない。

また,出射セプタム電磁石は強くなりすぎているので,実際の製作は難しい。出射軌道の再 検討が必要である。

このようなことや 各機器の予備的検討で明らかになってきた問題点を考慮しながら、検討 を進めて行きたい。

参考文献

- MATTHEW SANDS : "THE PHYSICS OF ELECTRON STORAGE RINGS" SLAC-121, UC-28 (1970)
- 2. 神谷幸秀 :「OHO *84」Ⅱ 加速器の原理(1984)
- A. Renieri : "PROBLEMS IN SINGLE-PARTICLE DYNAMICS SPECIFIC TO ELECTRONS", CERN77-13 (1977) 82
- 4. R.H.Helm et al.: "EVALUATION OF SYNCHROTRON RADIATION INTE-GRALS", IEEE NS-20 (1973) 900