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Abstract : The frequency spectrum of tearing modes is analyzed with the

help of a mode coupling model including toroidal effects in the MHD re-

gions and various non linear effects in the resonant layers. In particular

it is shown that the sudden damping of the mode rotation and the simulta-

neous enhancement of the growth rate observed in tokomaks, could be ex-
plained as a bifurcating solution of the dispersion equation.



I. INTRODUCTION

The structure of the tearing modes in tokoraaks is the result of
two processes (Furth et al, 1963 ; Ruthertord 1973 ; Basu and Coppi, 1981)

first, the redistribution of the equilibrium current along the perturbed

magnetic surfaces in the MHD regions outside the resonant layers wich li-

berates energy from the poloidal magnetic energy reservoir ; second, the

resonant plasma response in these layers, and the wall resistive response,

allowing the dissipation of the liberated poloidal energy. The purpose of

this article is to incorporate those processes in a compact variational

principle expressing the self consistency of the modes. The formalism ta-

kes into account the linearized MHD equations, including the toroidal ef-

fects in the plasma bulk between the resonances (Edery and al, 1981). The

resonant layers are supposed to be in a non linear regime controlled by

magnetic island geometry, in which case the plasma response is determined

by diamagnetism combined with transverse transport (particle diffusion or

viscosity) (Samain, 1984). For a given toroidal wave number N, the varia-
tional principle leads to a system of coupled equations for the real fre-

quency u, for the growth rate f, and for the amplitudes $ (r ) of each

poloidal harmonic m of the perturbation, taken on the corresponding reso-

nant surface r where the safety factor q (r ) « m/N.m m
As an application we will consider the bifurcation of a mode

from an oscillating state to a quasistationary state (Edery et al 1989)

which appears at a critical ratio of the coupling coefficients with the

resonant layers and with the wall. That bifurcation is introduced by the

non linear effects within the islands, leading to critical island widths,

contrary to the model given in (Nave and Wesson, 1987) where the island

sizes are only governed by the Rutherford regime.



II. VARIATIONAL PRINCIPLE

The equilibrium magnetic field

B - VF x V (p H- q(F)9)

introduces intrinsic coordinates, namely, the poloidal flux F erabrassed by

the magnetic surfaces, the toroidal polar angle <p around the major axis

and the poloidal angle variable Q such that 7,,9/VuIP » l/q(F) . It is con-

venient to label the magnetic surfaces by the radial scale r(F) such that

BQrdr = -q dF [8] , B being the field on the magnetic axis. The plasma

equilibrium is characterised by density and temperature profiles n(r) ,

T(r) and by a rotation angular velocity Q(r) of the plasma around the ma-

jor axis.

Up to second order in the inverse aspect ratio a/R, a tearing perturbation

may be approximated by

UB - rot (SWp) - Vo* x Vp (1)

with

0« - $(r, 9) exp (iNp) exp (r-iut) + C. C (2)

The Fourier analysis

5 (r,6) - I *m(r) exp i me (3)
m

introduces the resonances of the mode on the surfaces r * r wherem
q « m/N.

A chain of magnetic islands is produced near the surface r if V (r ) is am m m
non null constant, with an half width

5 - 8 « /B S * (4)m m o r-r v 'm

S - r (1/q)



The self consistency of the structure (r,9), f, u can be expressed
by extremalizing in V* the functional

3
F (i*,i. r,w) = - ̂ - in v«*. 7* ̂5

5

where the plasma current response j (T, Q) roust be specified as a functio-

nal of $(r,9), within the MHD bulk as well as within the resonant layers.

Accordingly we will write

F » F +FMHD reson

From (5) we deduce the quantities 2u Im (F) and 2N Im (F) which are the

power and the 0 momentum rate coupled to the plasma respectively.

III. MBP IHTERyALS

In the plasma bulk between the resonances, the magnetic perturbation pre-

serves the topology of the magnetic surfaces. The current j is then de-

termined in terms of $, expressing that the plasma recovers an equilibrium

compatible with those surfaces. The energy produced is (Bus sac et al,

1975) :

+ R III U* (V? x Vf) V (Rj )dx/RB (6)e p o

where j is the toroidal component of the equilibrum current density and U

(r,6) is the time integrated electrostatic potential perturbation, expres-

sed in terras of $ (r,S) by

$(r,0) - RB. V U(r,0) / B (7)



which implies between the m harmonics the relation :

Um (r) » - i¥m(r) /(N- m/q(r)).

The integrals in (6) are of course taken ouside the resonant layers exten-
ding symmetrically on each side of the resonant surfaces r - r . The ex-

pression (6) does not contain the term proportional to 3p/3p (Hastie, Nice

1988) reflecting the redistribution-of the plasma pressure p(r) on the new

magnetic surfaces. Indeed, for tearing modes, the pressure term in F™D
consists of integrals localized at the boundary of the resonant layers,

and can be introduced in the functional F .

The extreraalization of F....,. with respect to ¥* in each MHD interval, de-
MHD

termines ¥(r,9) in those intervals if the boundary values ¥(r ,9) are spe-

cified. The extremal value of F._,n may then be expressed in terms of the

slope jumps [n.V*] of * (r,9) across each layer where n is the unit vector

normal to the layer :

oW - ±- I H Ï* [n.VW] d2x/R2 (8)

In principle that extremal value depends on the amplitudes ¥ (r ') of all

harmonics m on all resonant surfaces r ', i.e., it is a real hermitianm
form in Ï (r ') and ¥*(r '). However, as it will be seen below, F da-rn m m m res
pends on W* through the restricted set of amplitudes ¥*(r ) only. The

principle that Fuun + F must be an extremum in ¥* then implies thatHHD reson
Fu11n is also extremum in ¥* (r '}, m

1 * m.HHD m m

The functions « (r) in the MHD intervals are then determined in terms ofm
the amplitudes 4f (r ) only, leaving FMtin in the hermitian form :m m M H D

In cylindrical geometry the quantities Tmm'.ra'-m are the classical logari-

thmic slope jump on each resonance r » r . At second order in r/R the

quantities T 1 , ra
1 * m ± 1 have the following analytical expression in

terms of the cylindrical tearing profiles f (r) » V (r)/¥ (r ) and of them m m m
Shaffranov equilibrum parameter A (r) (Edery et al, 1981) :



m, m r2(A+l) fm frà+l
• 1) f ,. f ' - raf f 'm+1 m m

- m(m+l) (A + 2) fmfra+1

dr

I (rA1+ 2A + 3)

(10)

IV. EESOMMTT LAYERS

The resonant current j which determines F is calculated as-<p t GS
suming a non linear regime where the electrons reach equilibrium in the

islands created by the perturbation OW. In each resonant layer m, such a

regime imposes islands with a significant half width 6 (eq.(A)), so that

they are ergodically explored by the electrons before they are extracted

by the effect of the phase velocity u/ra of the mode along 3, or by the
effect of the diffusion due to the microturbulence present in the plasma ;

that condition is expressed by the inequality

(11)

with

erg ext

l/terg » Min (K

1/Text Max

collision rate of electrons (e) with ions (i) ,, .

electron diffusion coefficient. It is shown in (Samain, 1984) that

where V - (2T/m ) , u

D

such a regime imposes the density and temperature profiles for electrons
in terms of the imperturbed diamagnetic frequency of electrons (outside

the layer) :

• T a



However the electrostatic potential U must be given. Taking into account
the ion response and expressing the neutrality, the potential U may be

determined in terras of the unperturbed plasma frequency Q(r) . We will con-

sider situations where

or ui > DiXoJj. . (12)

The quantities n, T, U are then approximately constant over the perturbed

magnetic surfaces within the layer. The conditions (11) and (12) are typi-

cally satisfied in the case of tearing modes observed by Hirnov probes.

The resonant current response j is identical to j;/ up to second order in

rXR ; j|f is determined from the charge continuity equation

div (j,,) - - div (j ) (13)

J1 - e 0 e - e0. + J11

where 0,0. are the radial fluxes of electrons and ions due to the micro-

turbulence and J1 1 represents the transverse ion current due to inertia,

F. L. R. drift curvature and viscosity effects. The e(0 - 0.) term in J1
is found to be largely dominant if the microturbulent modes exchange Q

momentum with the plasma over a radial range larger than the island width

fi , a situation which removes the local ambipolarity constraint 0 - 0. ;

the calculations are given in (Saraain, 1984) and lead to :

'«.on -S^. W 1S' 'V (14)
m

where for each layer m of area^along 9 and p :

' V + iKm



0,8̂ —

, 2
Kn = 44-e£SS_ —2— r̂ (15)
m T . „ o «2

H » plasma resistivity

The term - yR represents the Rutherford effect. Indeed (13) determines

j(/ except for an additive constant over each perturbed magnetic surface.

That constant results from the balance between the resistive effect and

the inductive effect in the island frame, proportional to the growth rate

y. The above situation where the radial range of 3 momentum transfer by

the microturbulent modes exceeds the island width <5 is the only case in

the considered non linear regime where the mode is influenced by the elec-

tron diamagnetic frequencies u* . For larger island widths, the raicrotur-

bulent modes adjust themselves to the perturbed magnetic surfaces in the

resonant layers and local ambipolarity 0-0. * O applies. In this case

the value of F is determined by the viscosity forces acting on ions.

The functional F is still given by (14) (15) putting u* » O and redu-
res 2 2 e

cing K. by a factor of order p./ô where p. is the Larmor radius of ions.£» i m x

V. APPLICATION ; MODE LOCKING

For a given equilibrium, the extremalization of the functional

FJ-.J. + F- with respect to the **(O. leads to the set of equations :

UTmm- + Hm <r."./»m /> *n

which produces the values of r, u and the ratios V .(r ')/$ (r ).m m ra m



The toroidal momentum rate P transferred to each resonant layer m by. the

mode is given by the relevant contribution in 2N̂ m(F), i.e :

Pp - 2N Kn [ID - u*(rm) - Nfl(rra)] /̂ (rj/

The created forces on each layer are balanced by the viscosity or inertia
forces proportional to the plasma angular velocities fl(r ).

À resistive wall of resistivity n and width ô at radius r is similar to

the resonant layers, in the sense that it introduces a dissipative term in

the functional F. It may be included in tba formalism by adding the ampli-

tudes *m(rw) to the set of the tfm Crn) .

The value F.™ excluding the wall is expressed as a real hermitian form in

' ̂  ̂  the wal1 then contributing fay

Fw ' "1WaI ** wall

A simple application of the above formalism is the study of the transition

of a single helicity tearing mode N = 1, m = 2 from an oscillating state

where it mainly interact.s with the resonant layer at r = TJ to a stationa-

ry state where it strongly interacts witn the wall at r = r . The basic

functionals are :

FMHD

Freson ' (~ R2^ + ̂ 22^^ (17)
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whprp W = V fr 1 W = W Cr 1wnere Y- 2 2 ' w 2 w '

Cr) + N Q

In the case of a perfectly conducting wall (n = O) we have \|i = O and
2 w w

FMHD a ̂ 2^2^ ' On the Contrar7 if the wal1 is not active (nw
= 09J, Fw

 = °
and F = FMHD + FRes + Fw dePends on ̂ w through F̂  only.
Extreraalization with respect to \j>* then gives F..,,- a (Ai-C /A'w)/i|i2/ .

The quantities A'2 < O and A'2 - C /A'w > O are the usual A' for the two
cases n » O and q » », respectively. We will assume in what fallows that

- A'2 ~ C « A'w.

The plasma velocity fl (r_) is typicaly determined from the balance between

the toroidal force exerted by the )de on the resonant layer and the vis-

cosity forces. This balance is exprt sed by

. , CXrJ - fl(o) Q(r.)
2N K, (u-S.) /V = n mi D RZ ( - *- - ) + — -̂ -J (18)z t t v r2 rw-r2

where D is the viscosity transport coefficient (m /s) and we have assumed

constant n m. D 3Q/3r on each side of the resonant layer, up to the wall

r » r and the center r = O. The elimination of Q(r,) allows to replace in
W £t

(17) the old expressions of u. and K- given by (15) by the new ones j

NQ(O) (rw -

K2 = 2 2 r (r -r2 2N2 /^/2 r2Crw r
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In most practical cases, one finds a « 1. The plasma angular velocity

CKr.) near the resonant surface then adjusts to a value close to

(u - u*(r_))/N, to maintain the force exerted by the mode on the layer

(the RHS in (18)) at the low level of the viscosity forces imposed from

outside. The new value K1, applicable to (17) is then determined by the

corresponding viscosity coefficient D , independently of the actual reso-

nant process. In view of (4) that new value varies with the island width
—4fi. as a_ . From (17) we obtain the following set of equations

[A2 - R2T + iK2 (u - U2) ] «2 + C¥w = O

[A; - Rwr + ÎKW U] ww + c*2 = o

allowing the determination of the parameters u, f./̂ /̂ /and Arg (*w/

The resulting dispersion relation for the normalized frequency Q *

(for - A'2-C « A'w) is :

(Q )
Y(Q) « Q (1-Q) [1 + R ° J = f (QJ

2

where Q - 1/U +

- C2 / (K2Kw

g(Qo) = A'
2 Q2 /
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The possible solutions are exhibited on fig (1), and the phase locking of

the mode may be interpreted as a bifurcation from a diamagnetic driven

mode at r » r, (A) to a quasistationary mode (B), when the width 5^

determining K. is increased. The critical relation between the physical

parameters is

In JET the application of the above formula to the interaction

of a tearing mode m « 2, N * 1 with the wall, leads to the following esti-

mation of the critical values of O :

and of the parameters for the stationary mode talcing place after the bi
furcation :

»1.5 10"4

r/r2 - 3

Ar8 (*2X¥W) = 10"
2 rad

The above parameters are in agreement with the observations in JET

(Snipes 1989) . The plasma velocity Q(r.) takes a value close to

(w-u|(r2)XN. However the observed slowing down of the plasma bulk (in ca-

ses where a plasma rotation is induced by neutral injection) cannot be

explained by the viscosity forces resulting from that constraint. This

slowing down should rather result from the component m * 1 of the mode

freezing the plasma rotation Q(r,) on the surface q * 1.
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IV. CONCLUSION

We dispose of a model allowing to calculate the parameters of a

tearing mode : growth rate, frequency, ratio between poloidal components,

forces exerted by the mode on each resonant layer, and for instance the

bifurcation from a normal mode regime driven by diamagnetism with u/u? - 1

to a quasi stationary mode regime with ui/u2« 1.

We are grateful to Miss Marie Faule Valentin from DRFC (CEN-CAD)

for her constant assistance in the numerical calculations.
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B : quasistationary mode

A: diamagnetic driven mode

FIG. 1 Bifurcation diagram of the mode frequency

(Critical solution : f(Q ) = 1/4)o


