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1. INTRODUCTION

The recent developments of conformai field theory have considerably

increased our understanding of two dimensional critical phenomena^1 • 2-I. They

however do not refer in general to any particular lattice or continuum model

familiar to statistical mechanics. From a practical point of view it is

necessary to understand better the connection between critical physical systems

and the conformai theories to which they correspond. In two dimensions, the

general arguments of Landau type that usually allow to classify universality

classes are not sufficient, and more specific methods are required. Also it must

be noticed that constraints which are natural in string theory are often not

satisfied in statistical mechanics, and the study of physical questions can

require the introduction of rather unusual conformai theories. For instance,

geometrical problems like percolation or polymers are described by non minimal,

non unitary c = 0 theories. From a more conceptual point of view, the conformai

invariance formalism bears striking similarities with the theory of integrable

models. The precise understanding of the connections between these two fields

should be an important progress.

In this paper, we review several works that aim at answering the above

questions. They are all partly based on free field (or Coulomb gas)

representations that seem to play a rather unifying role in the subject.

In the first part we discuss the general scheme that allows one to derive

the conformai theory associated to a critical (integrable) lattice model. We

show in particular how the central charge, critical exponents, and torus

partition function can be obtained using renormalisa',:ion group arguments.

In the second part we discuss, in the case of c < 1 models, the common

quantum group structure that appears in the integrable lattice models and in the

theory of Virasoro algebra representations.

In the third part we finally discuss relations between off-critical

integrable models, and conformai theories in finite geometries.
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2. CENTRAL CHARGE, CRITICAL EXPONENTS AND PARTITION FUNCTION OF LATTICE MODELS

There are several methods to obtain the exponents of lattice models. The

calculation of two point functions at criticality is a difficult task, and has

not been achieved so far, except for the energy and spin operators in the Ising

CaSeL3J. The calculation of order parameters can been performed more easily with

the corner transfer matrix'-*'5-' technique; it requires however the knowledge of

integrable weights off criticality, and these are not yet obtained in all cases

(E6 - E7 - E8 models of [6] for instance). The method we present here, although

less rigorous, is more general. As we shall see in the next section, it allows

as well the derivation of modular invariant partition functions. The basic step

consists in transforming the model to study, or a model supposed to be in the

same universality class, into a restricted solid on solid model which is assumed

(and this can usually be justified) to flow under renonnalization group onto a

free Gaussian modelL7'9j\ Various observables are then transformed into vortex

or spin wave operators'-7-', and their exponents readily calculated as functions

of the coupling constant. The latter can finally be obtained by reference to

some other, exactly known, quantity. On a torus, the study of topological

effects due to boundary conditions allow as well the calculation of the modular

invariant partition function"-10 J.

a) Potts model - 6 vertex model

To illustrate these concepts we consider in some details the Potts model,

which is defined by associating a variable a = 1,... ,Q to each site of the

square lattice £., with an action

-| ZT
<jk> J k

This definition can be extended to Q E IR by considering the high temperature

expansion of the partition function

Q Z (e^-nN^ (2.2)
graphs graphs

where the graphs are obtained by putting .N8 bonds on the edges of the lattice

which form ifc clusters i.e. connected components, including isolated points.

Eq. (2.2) is more easily handled using a polygon decomposition^11] of the

surrounding lattice S, here another square lattice (Fig.l). If J^ is the number

of loops in a given graph of (2.2) and JC3 the total number of sites in I, then

by Euler's relation I^ = Ĵ  + Ĵ . - J^. In a plane, the number Ĵ  of polygons

reads

^=K+K (2.3)

Hence (2.2) can be rewritten as
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Q Z C A' 2 (2.4)
, graphs

Model (2.4) is known to have a second order phase transition for Q 6 [0,4], the
critical temperature being such that (e1/T-l) Q"1/2 = 1 (self dual linet12J).
The weight Q 1 / 2 per polygon can now be reformulated 1OCaIIyL11J by first giving
en arbitrary orientation to each polygon, and then associating to each left
(right) turn a term exp +(-) iot/4. Since on a plane

• In^ - nrl = 4 (2.5)

for the square lattice, summing over all orientations gives the desired factor
provided

Q1/2 = 2 cos a, a 6 [O, ir/2] (2.6) .

It is now convenient to stick again the oriented contours at each node of S; one
recovers in this way the 6-vertex modelE12>133 (Fig.2) with weights^11}

a = b = 1
c = 2 cos a/2 (2.7)

The Potts model (2.4) on its self dual line is thus equivalent to the 6-vertex
model, up to boundary terms. The latter do not modify the thermodynamic
quantities, but as we explain latter, they affect the conformai ones.

The program of reformulating the original model as a solid on solid (SOS)
model is now easily carried OUtI-14J. Given a configuration of vertices one
introduces height variables <p that live on the faces of S, and are defined
recursively by the constraint that two neighboring heights differ by rfcir, the
highest one being on the left of the arrow that separates them. This makes sense
because there is no vertex with a non zero divergence allowed. It is now
assumed'-8-! that this solid on solid model flows, under renormalization, to a
gaussian one with action

J^J 2 (2'8)
The coupling constant can be determined as follows. We look at the dimension of
operators 0H that create locally a new vertex of the kind shown in Fig.3. These
vertices induce defects in the above definition of heights, since <p i s no more
uniquely defined. Indeed going around C (Fig.3) gives JpLW'dl = -4TT. The

operator 0M i s a vortex operator^7], with charge M = — <J> Vip-d£ = - 2 . Its

dimension i s eas i ly obtained in the continuum limit (2.7) as XN = g M2/2 = 2g.
On the other hand i t i s possible to calculate the singularity of the free energy
of the 6-vertex model as one introduces a small amount of type d vertices^1 2 J.

r

[40] F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R.J. Baxter, G.R.W. Quis el



Matching Xn with Baxter's formula gives, introducing

A = a 2 + b " ° = -cos a a 6 [O.ir] (2.9)
2ab

the result

g = 1 - - (2.10)

(the 6-vertex model ceases^12] to be critical for IAI > 1). In the Potts case we

have

A = - I Q 1 ' 2 (2.II)

so only the region A e [-1,0] is covered. As Q varies from 0 to 4, g goes from -

to 1.

Once g is known (in the scale where topological defects are not

renormalised), the dimensions of observables that are equivalent to combinations

of spin wave (0E = e
iE<p) and vortex operators are easily determined

X™ = 5g- + S T- S*M = m

or

h(h) = i fe ± M\[g"j (2.12)

The 6-vertex model is thus described by a free Gaussian theory with central

charge 1 and operators (2.12). It has a simple variant, the Ashkin Tellert12J

model that contains'-15"1''] also twist fields (operators creating a branch point

singularity where <p changes of sign) with dimension h(h) = 1/16.

b) Central charge

The transcription of the ̂107 per loop term into a local weight depending on

left and right turns (2.5) is sensitive to curvature. If we think for instance

of a lattice built on a cube with a loop encircling a corner'-18-' as in Fig.4

then In^-nrI = ±3 instead of ±4. To correct this, an electric charge has to be

added in 0, which corresponds in the lagrangian version (2.8) to a new term

~ Ie0J R<p d
2x where R is the curvature. Even on a plane where R = O, this term

is known^19] to modify the central charge due to boundary conditions. The

simplest way^20] of getting c is to consider a cylinder (Fig.5) where non

contractible loops have In̂ -n,.1 = 0 and hence a weight 2 instead of "ÎQ. This

weight can be corrected by adding charges ±e0 at ±» in such a way that

2 cos ire0 = \|Q i.e. e0 = —. The finite size behaviour of the free energy is then

18
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modified, and the central charge, which was one for the 6-vertex model, reads

now c = 1 - 12 xe 0, i.e.

c = 1 - 6 e^/g (2.13)

Another consequence of the form of the weights is the existence of a non trivial

operator with mean value one^8^. Indeed the insertion of exp - 2ie0 <p inside a

clockwise oriented loop changes the angular weight of the latter from exp -ioc to

exp[-ia + 2Ie0TT] = exp ia, and similarly for an anticlockwise loop the weight

exp ia is changed into exp -ia. Summing ones both orientation gives thus the

same factor \[Q = 2 cos a as before, hence

<exp - 2ieo<p> = 1 (2.Hf)

It is of course assumed here that the height at infinity takes some fixed value:

(2.14) does not hold on a torus.

If we define a = ir/ji+1, (2.13) gives

c = (2.14)

We recover the values c = 1 for Q = 4, c = 4/5 for Q = 3. c = — for Q = 2. An

important point for physical applications is Q = 1 which corresponds to the

percolation problem^21-*. From (2.14), c = 0 in this case, a result which was

expected since in the limit Q —• 1 the partition function 3Q —* 1. (2.14)

reproduces, for |i integer = m, the central charges of the unitary series. The

associated values of Q are the Behara numbers'-12J Q = 4 cos2ir/m+l.

c) Critical exponents

We discuss the example of percolation!-20J (Q = 1). An important quantity

here is the fractal dimension DH of the "hull" (i.e. the boundary^21! of the

infinite cluster) which is measured^22] DH =* 1-75. To calculate it with the

above formalism, we introduce!-22J the correlator

G(?i"?2) " 5- T '"(S) (2.15)
" graphs

where the sum is taken only over graphs such that T1 and r2 are two points on

the surrounding lattice at the corners of the same polygon 9. (2.15) is

translated in the SOS language by modifying first the orientation of one line of

? so that both sides of 9 now go from T1 to r2. The resulting configuration has

now a vortex of charge M = 1(-1) in T1(IT2)- The Boltzmann weight in the SOS

model does not, however, exactly correspond to (2.15). There is an

additional^8•93 curvature factor exp +(-)2ia for each left (right) turn of the

polygon around one of the extremities (Fig.6). It can be compensated by adding

in T1 and r2 the same electric charge E = -e0. Since E1 + E2 = ~2e0 is precisely

.4-
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the charge associated to (2.14), this does not modify, as is necessary, the

weight of surrounding polygons.

The breaking of electrical neutrality is repaired by adding a charge +2e0
at infinity, and one gets

x = - £ • § (2.16)

For percolation g = —, e0 = —, so x = p Scaling arguments!-22] give now

DH = 2-x = 7/4. 3 3

Using this method, various exponents for percolation or polymers have been

calculated^23] that have an important physical meaning. It is important to

notice however that all the corresponding operators are outside the minimal

unitaryL24J set, reduced here to the identity with h n = O since c = O; for

instance x = 1/k = 2h2Z.

d) Partition functions

We consider a torus with complex periods 1 and T. The universal part of the

6-vertex model partition function is evaluated using the mapping onto (2.8).

Because the arrow-heights correspondence is purely local, <p cannot in general be

uniquely defined on the torus, but presents some winding numbers'-25J

= <p(z,z) + 2"nM

(2.17)

U>(Z+T,Z+T) = ip(z.z)

In a given sector characterized by M, M', the functional integral

(2.18)MM . = f
J <p

p]
satisfying (2.17)

is easily evaluated by decomposing <p into a classical (soliton) and a quantum

part, and using the known result

OO

where T\ is Dedekind's function T\ = q1 '24 ]~|(l-qn), q = e2l1tT. One finds
1

IM-M1Tl2
2MM- = Zoo exP " 1^ - J ^ (2-20)

^, has the modular transformation properties from its definition



^MM'*T' " ^aM'*bM,cM'*dMI

The total 6-vertex' model partition function is obtained by summing over M

and M' and is then modular invariant. Restricting to an even x even lattice, M

and (I1 £ Z one gets

Vv.rt.«-Mg>- 2 **.-(«> " 4 2 q
hEMihEM (2-22)

MM'^ TTH E,MS

where last equality is obtained by Poisson formula. (2.22) exhibits the operator

content (2.12). It contains also operators of dimensions (1,0) (resp.(Ol))

associated to the currents d<p(d<p). If g = 1, (2.22) has additional currents O11

(O1 _j) and can be shownt25^ to coincide with the SU(2) level 1 Wess Zumino

model partition function'-26-!. Accordingly, the lattice model present a (global)

SU(2) invariance. (2.22) satisfies also the duality transformation formula

Zc(g) = Zc(l/g) (2.23)

Although the 6-vertex model has g 6 [0,1], (2.22) is defined for any g. With

g e[n2,(n+l)2], it describes^27] a n-critical 6-vertex model.

To obtain the partition function of the Potts model is a more difficult

task. First, all polygons that wind around the torus have a weight 2 in the

6-vertex model formulation that must be corrected into \J(Ï. The extra term

equivalent to the charges ±e0 at infinity in the cylinder case can be builtL
10-!

by noticing that

- if two non contractible loops coexist on the torus, then they are

homotopic

- if a non contratible loops intersects the periods 1(T) n(n') times, then

n and n' are coprimes (n~n'=l). One is then led to introduce the interaction

between winding numbers cos He0 M^M'. The other point is that on the torus,

although Eulers1 relation remains valid, (2.3) can be violated for clusters that

have a "cross topology"^10^ (Fig.7) for which J^ + Hc - J^ = 2. Equation (2.4)

gives to such graphs the relative weight 1 instead of Q. One thus must odd to

(2.4), (Q-I) times the partition function restricted to clusters with cross

topology; the latter are selected by giving a weight 0 to non contractible

contours. One finds finally

3Q —• ZQ = Y. 2MM-(E) cos ne0 M-M
1 + — - cos ̂ M-M1I (2.24)

M1M
1GZ l 2 2 J

For simple values of e0, the sum (2.24) can be recast into linear combinations

of zÇ10]. One finds

a



- Zc(l)]/2

zq__2 = [zc(i2) -

The results for Q = 2,3 agree with modular invariant combinations of characters

derived in [28]. The result for Q = 1 is also expected since X»Qiil = 1.

For other values of Q, it can be shownL10J that (2.24) decomposes onto

infinite sums of characters with real (negative) coefficients. In particular at

the Behara numbers values, (2.24) doest not reproduce the modular invariant

combinations obtained in [26]. In the percolation case, geometrical quantities

of interest can be obtained by considering^23] derivatives of ZQ.

The ADB integrable lattice models^6-! can also be transformed^29^ into the

6-vertex model. They then look similar to the Potts model with Q = 4 cos2ir/H

(where H is the Coexeter number of the algebra) up to boundary terms. One finds

in all casesC3°]

ZA.D.E= 2 2MM-(S-) 2 COS[£M.M'] (2.26)
M.M'eZ V H ' j e exponent l n J

where in the last sum j runs over the exponents of the classifying algebra.

e) Generalization to other conformai theories

The preceding picture generalizes^30-31.32] t 0 m o st of the known theories.

At the basis of a given conformai series, there is a vertex model that has an

integrable curve in its parameter space. This curve has a critical part C along

which a coupling constant varies, and which ends at a self dual point described

by a Wess Zumino theory. Minimal models renormalize then onto a set of discrete

points on C, and their partition functions can be written similarly to (2.26).

An interesting physical example is provided by the "SU(2) level 2" series.

Here the vertex model is the 19-vertex model£33] which is described^
30-311! in

the continuum limit by a free superfield

A = - J 3<p d<? d2x + J (i|â|r - ̂ i ) d 2x (2.27)

with partition function^30]

zsc(S) = H 32(r.s) 2 ZMM,(g) (2.28)
r,s=0,l M=r mod 2

iV=s mod 2

where 32(r,s) is the Ising model partition function with the spin a twisted by



(-l)r((-l)s) along 1 (T), and g e [0.1/2]. In this case Zsc(g) = Zsc(l/4g).

At the self dual point g = 1/2 (2.28) coincides with the SU(2) level 2 Wess

Zumino model partition function. For superminimal ADE models'-35^ one has

ZADE= E V*.s> I ZMM.gf) 2 cos |-IMI' (2.29)
r,s=0,l M=r mod 2 v 'j 6 exponents H

M'=s mod 2

3. QUANTUM GROUP STRUCTURES IN ÏNTEGRABLE MODELS AND CONFORWU. THEORIES

It has become clear that integrable lattice models and conformai theories

have similar properties, and the developments of both fields are now quite

correlated. The precise connection between integrability and conformai

invariance is not however fully understood. We discuss here how the concept of

quantum group can shed some light on this problem.

a) SU(2)t representations and spectrum of the XXZ chain

We consider again the Potts model, and turn to a hamiltonian formalism

which is more suited for our purpose. In the very anisotropic limit the transfer

matrix defines the quantum XXZ chainL12J

L-I
K 2 fa°?.i*°M.i + cos a ̂ 1 ) • i sin «(o»-o£) (3-D

where a's are Pauli matrices, and where the surface term accounts for the

special weight of external vertices^11J. (We have taken an open chain to deal

later on with a single Virasoro algebra). If a = 0, (3.1) has a global SU(2)

invariance, which turns into a local one in the continuum limit described by the

Wess Zumino model. If QcO, one can showt36! that (3.1) still commutes with

generalized objects

i

(3-2)

S3 = 2 ô /2

where

t = e1* (3.3)

The associated commutation relations are
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[S^S*] = ± S ±

t2S
3
 t-2S

3

[S*,S"] = ;
-t'1t-t

They define^8! the quEuitum deformation of SU(2): SU(2)t which can be considered
as the "symmetry group" of the chain.

It is now interesting to have a look at the theory of representations[36 J
of SU(2)t. For this we need the Casimir operator

S2 = Sx2 + Sy2 + (t+f1) r ^ 1 (3-5)

Ot 1 -
If — = is irrational, the representations p, of SU(2)t are characterized by

IT n+1 J

the value of

IY . {*"* - *»•"]* (3.6,
2Jt k t-t"1 )
Y {
Jt k t-t"

and are isomorphic to SU(2) ones p,. IF — becomes rational, things get different
due to the possible periodicity of (3.6) when j varies. We discuss here the case
|x integer. Then, (3-6) is invariant under the transformations

J.: • J : n ( n: l )
n (3.7)

j* = (A-J + n{|x+l)

Accordingly, there are states IT) that become highest weights (S* I-Y) = 0) even
i f they are the S" of something, and several se t s of vectors \ P j / which would
have formed irreducible representations in the irrat ional case mix to form an
indecomposable representation. We give the example of the f inal structure of the
Hilbert space for t = e l l t / 3 , L=3

ITTT)

I-Y) = qITU) + ITAT) + q" 1 U t T ) -̂ 1(3) Ia)

qlTU) + U U ) + q"1 IUT) Ip') Ia1)

UU) ^ " " ^

where arrows connect states under the action of S*. Associated to (3-7) is a
property of t 6 ^
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(S*)1"*1 = O (3-9)

It is now interesting* to restrict attention to representations that remain

isolated (like {la>, Ia'>} in (3-8) and thus are still of Pj type. Excluding

moreover^36! the case j = IA/2, one finds that the corresponding highest weights

are completely characterized by

Ia. ) e
J

; S=* Ia, ) = jla, >
Im(S+)

(3-10)

and. if rjL> =
(L/2-j

L

fL/2-j-l
i s the number of spin .1 representaions in the

SU(2) c ise, their number reads

L> + r(L) - r<L) •> n 11)

The representations are unitary i.e. (S+) = S" thsre.

Going back to the hamiltonian (3.1). Bethe ansatz and numerical

calculations give the generating function of scaled gaps associated to all p.
as[36.40.4l]

q
hl,l+2j_q

hl.-l-2J

The generating function restricted to isolated ones as above reads thus,

similarly to (3.11)

= K
l,l (3-13)

and is exactly the Virasoro character^2 •> associated to an irreducible

representation of highest (L0) weight hj lt2J. This thus point out a relation

between the commutant of SU(2)t and the Virasoro algebra.

It is also interesting to notice that the hamiltonian (3-1) is not

completely equivalent to the Potts model, and the partition function \ (2A)

with free (periodic) boundary conditions in the space (time) direction can be

deduced from the spectrum of H by addingt*1^ boundary terms as in (2.2T). One

finds

/2M
S *i.i-

[H/2M

Comparison of (3-1*0 and (3.10) indicates a more formal way of formulating the
correspondence between 6-vertex and Potts models by restricting^4 3 ] the former
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to proper SU{2)t representations.

b) Feigin Fuchs construction

The preceding study» bears striking similarities with the theory of Virasoro

representations via the bosonic Feigin Fuchs construction (we restrict here

again to \i integer)^4*45}. There, one considers a chiral bosonic field with

propagator

(3-15)

and charge e0 = — - at infinity; The Virasoro generators are obtained as momentsu u,+l
of the stress energy tensor

(3.16)

and null states are built using screening operators. These are vertex operators
Ve with dimension h = (e2 - 2eQe)/4g equal to one, hence

= 2

-2
(3-17)

Because h=l, (0+,Ln) = 0 where

Q± ~ —^ § Ve±(z) dz (3.18)

where
On the other hand the free field model having a U(I) symmetry, [Q3 ,LD] = 0

(3-19)

This gives thus a structure very similar to (3.1), (3.2). Commutation relations
can be defined in this continuum limit and one obtains, with the appropriate
normalizations

[Q3,Q_] = -Q.
(3-20)



with t = e1 e ° , the last term being essentially due to e,+e. = 2e0. (3.20)

reproduces (3.4). up to a mismatch of the first relation. Accordingly one finds

(see also [46])

*f = 0
(3-21)

instead of (3-9). The irréductible Virasoro representation is then obtained by

considering, in a given fock space Te = [polynomials in dip, 32<p... ] Vc,

cohomology groups similar to (3-10), and

L 1-r 1-s
Xr = Tr q ° (restricted to states with charge — — et + — — e.

Kep S* r
and belonging to ) (3-22)

Im S*»-r

A similar Feigin Fuchs construction can be carried out for SU(2) models of level
k. One finds then, for a given t = e11t/B, commutation relations similar to
(3.20), with

[Q 3 .OJ~Q. (3-23)

The lattice quantum group is thus obtained formally by taking the k=0 limit of

this structure.

4. OFF CRITICAL INTECiRABLE MODELS AND CONFORMAL THEORIES IN FINITE GEOMETRIES

Another interesting relation with conformai theories can be observed in the

study of non critical integrable systems. We discuss here the case of the

6-vertex model. The latter is critical^12} for IAI £ 1. The region A > 1 is

completely frozen with all arrows in the same direction and a spontaneous

polarization 1. The region A < -1 presents a more interesting order; in terms of

the solid on solid variables <p, the surface that was rough for IAI S 1 becomes

localized, with a finite correlation length £. In this regime the ground states

are antiferroelectrically ordered, and the variables <p take two different values

B and C on each sublattice. On can then, fixing heights B and C at the boundary,

consider the probability of finding iiie height A at the center of the system

P(A/B,C). Parametrizing the weights by

a = b = 1

c = 2 cosh — , a > 0 (4.1)
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(A = -cosh à) one finds'-*7-1, using corner transfer matrix technique

P(A/B,C) = —- (4.2)

where p = exp - 4a.
Now we can consider instead the 6-vertex model at A = -1 on a strip of

width L and length T, with periodic boundary conditions in the time direction.
Suppose first we fix heights to be equal to A (resp.D) in j = 1 (j=L). Then Z
can be directly evaluated via the free field mapping. Separating <p into its
quantum and classical parts one gets

-<A-D)2/4

1 *

where q = exp - —-. The case where heights are fixed to B (resp.C) in j = L-I

(resp. j=L) can also be treated with Bethe ansatz calculations'-41'4®-' to give

Z(A/B,C) = 2 — (4.4)
•n(q)

It is remarkable that (4.2) and (4.4) have the same structure; P(A/BC) can

indeed be formally calculated by forming the ratio Z(A/BC)/^T Z(A' /BC) once p is

identified with q. This points out a relation between an off critical integrable
model and its conformai theory in a finite geometry, once the distance to
criticality p in the former case has been identified with the finite size
parameter q in the latter. The correspondence p = q is non universal but, in the
limit where â - » 0 , it must satisfy, due to finite size scaling

q a e2*2/'» E (4.5)

This is the case here sincet12^ £ = exp n2 /2Ot.
This observation can be (partly) extended^40! to minimal models. In the

Ising case for instance, we can consider the partition*-491 functions with spin
cr = 1, and CT=I (resp -1) for j = L

.3
(4.6)
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Forming now the ratio

OO

nu - <r>
- z*- o

Z + Z Co

Fid * q
O

gives an expression that agrees exactly with the spontaneous magnetization in
the low temperature phase, as- calculated by YangL12J, where q has now to be
related to T0-T via the e l l i p t i c parametrization of Boltzmann weights.

ACKNOWLEDGMENTS

I had the pleasure to collaborate on these matters with H. Bauer,
B. Duplantier, P. Di Francesco, C. Itzykson, V. Pasquier and J.B. Zuber who I
warmly thank here. I am also grateful to the organizers who invited me to this
very stimulating meeting.



16

REFERENCES

[I] J. Cardy, in "Phase Transitions and Critical Phenomena" Vol.11, (1987).

[2] C. Itzykson, H. Saleur, J.B. Zuber, "Conformai Invariance and Applications

to Statistical Mechanics", World Scientific (1988).

[3] T.T. Wu, B. Mc Coy, CA. Tracy, E. Barouch, Phys. Rev. Bl^, 316 (1976).

[4] G.E. Andrews, R.J. Baxter, P.J. Forrester, J. Stat. Phys. 3j>, 193 (1984).

[5] E. Date, M. Jimbr., A. Kuniba, T. Miwa, M. Okado, Nucl. Phys. B290, 231

(1987).

[6] V. Pasquier, Nucl. Phys. B285. 162 (I987).

[7] L.P. Kadanoff, A.C. Brown, Ann. Phys. 121, 318 (1979).

[8] M. Den Nijs, Phys. Rev. BgJ. 6111 (1981).

[9] B. Nienhuis, in "Phase Transitions and Critical Phenomena" Vol.11 (1987).

[10] B. di Francesco, H. Saleur, J.B. Zuber, J. Stat. Phys, 49_, 57 (1987).

[II] R.J. Baxter, S.B. Kelland, F.Y. Wu, J. Phys. A9_, 397 (1976).

[12] R.J. Baxter, "Exactly Solved Models in Statistical Mechanics", Academic

Press (1982).

[13] E. Lieb, in "Phase Transitions and Critical Phenomena" Vol.1 (1972).

[14] H. Van Beijeren, Phys. Rev. Lett. 38, 993 (1977) •

[15] D. Friedan, S. Schenker, in [2].

[16] S.K. Yang, Nucl. Phys. B285. 183 (1987).

[17] H. Saleur, J. Phys. A20, L1127 (1987).

[18] 0. Foda, unpublished.

[19] D. Friedan, in " Recent Advances in Field Theory and Statistical

Mechanics", Les Houches 1982.

[20] H. Biete. J. Cardy, M. Nightingale, Phys. Rev. Lett. 56. 742 (1986).

[21] D. Stauffer, "Introduction to Percolation Theory"

[22] B. Duplantier, H. Saleur, Phys. Rev. Lett. 5J. 3179 (1986).

[23] H. Saleur, J. Phys. A19_, L807 (1986).

B. Duplantier, H. Saleur, Nucl. Phys. B290, 291 (1987)

[24] H. Saleur, J. Phys. A20, 455 (1987).

[25] P- Di Francesco, H. Saleur. J.B. Zuber, Nucl. Phys. B285, 454 (I987).

[26] A. Cappelli, C. Itzykson, J.B. Zuber, Nucl. Phys. B280. 445 (1987).

[27] B. Nienhuis, E.K. Riedel, M. Schick, Phys. Rev. BJJ, 5625 (1983)

[28] J. Cardy, Nucl. Phys. B270. 186 (1986).

[29] V. Pasquier, J. Phys. A20, L1229 (I987).

[30] P. Di Francesco, H. Saleur, J.B. Zuber, Nucl. Phys. B300. 393 (1988).

[31] V. Pasquier, Nucl. Phys. B295, 491 (1987).

[32] I. Rostov, Nucl. Phys. B300. 559 (1987).

[33] V.A. Fateev, A.B. Zamolodchikov, Sov. J. Nucl. Phys. 3_2, 298 (I98O).

[34] H. Saleur, to appear in proceedings of "Annecy Conference on Conformai

Field Theories"

[35] A. Cappelli, Phys, Lett. I85B, 82 (1987).

[36] V. Pasquier, H. Saleur, Preprint Saclay

[37] L.D. Faddeev, N. Yu Reshetikhin, L.A. Takhtajan, LOMI preprint E-14-84 and
Ref. therein.

[38] M. Jimbo, Lett, in Math. Phys. 10, 63 (1985).

[39] V.G. Drinfeld, Dokl. Akad. Nauk. SSSR 28_2, 1060 (1985).



r
*

17

[tO] F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R.J. Baxter, G.R.W. Quispel, J.
Phys. A20, 6397 (1987).

[4l] H. Saleur, M. Bauer, to appear in Nucl. Phys.
[42] A. Rocha Caridi, in "Vertex Operators in Math, and Phys.", Springer Verlag

(1985).
[43] V. Pasquier, Comm. in Math. Phys. 118, 355 (1988).
[44] B.L. Feigin, D.B. Fuchs, Moscow Preprint (1983) (unpublished).
[45] V.I. Dotsenko, V.A. Fateev, Nucl. Phys. B240. 312 (1984).
[47] P.J. Forrester, J. Phys. A19_, L143 (1986)
[48] H. Saleur, To appear in J. Phys. A Letters.
[49] J. Cardy, Nucl. Phys. B275, 200 (1987).



18

4F

FIGURE CAPTIONS

Fig.l : A typical graph in the high temperature expansion of 3Q (2.2) and its

alternative polygon representation. After arbitrary orientation, the

polygons are considered as walls between regions of constant height

in a solid on solid model.

Fig.2 : Vertices of the 6-vertex model.

Fig.3 : These two additional vertices correspond to vortex configurations in

the SOS language, with multi valuedness of <p along C.

Figs.4,5 : The local polygon weights are sensitive to curvature. Here a loop

around a corner (or a cylinder) does not have the weight \TQ but

2 cos 3ce/4 (2).

Fig.6 : The weights of the SOS model give additional phase factors for

polygons encircling extremities.

Fig.7 : Schematic representation of a cluster with cross topology.
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