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Abstract

We review the interaction of real photons with nuclei up to the GeV region. The
common microscopic description of exchange effects below threshold and of the corre-
sponding real photoproduction above, is emphasized. The theoretical problems con-
nected with if photoproducticn in A region and vector meson photoproduction are
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explain both the low energy region, the bulk properties around the A resonance as
well as the appearence of shadowing only above p threshold.
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1 Introduction

The possibility of using photons as a probe of the target structure has long been empha-
sized . Unlike in strong interactions where much is geometrically preordained by the short
mean free path of the particle, the weakness of the interaction is indeed of much help in
order to gain informations about the interaction mechanism.

In the present paper we review in a schematical way our knowledge of photonuclear
reactions at intermediate energy, limiting ourselves to real photons.

We have first of all to define what we mean by intermediate energy.
In thia connection let us recall <:hat in the course of time the "nuclear" domain has

gradually shifted to higher and higher energies. Indeed the now low lying giant dipole
resonance provided the first evidence of a strong nuclear photoeffect, with an integrated
cross section of the order of one classical sum rule [1], scaled by the ratio of the nucléon
to the electron mass with respect to the atomic case. Its theoretical interpretation was
given in 1948 by Goldhaber and Teller [2].

Subsequently it was realized by Bethe and Levinger [3] that an important modification
to the electric dipole sum rule with respect to the atomic case was due to the presence
of exchange potentials in nuclear physics. The most relevant part consisted of the well
known Yukawa [4] one pion.

It was hence natural to regard the pion threshold as the upper limit of nuclear physics.
Finally Gell-Mann, Goldberger and Thirring [5] by applying dispersion relations to nu-

clei and by making an assumption about the asymptotic behaviour of the amplitude, were
able to connect the total nuclear photoabsorption cross section below the pion threshold
with a corresponding depletion (with respect to that of an incoherent assembly of nucléons)
above.

In spite of the criticism as regards this assumption about asymptotia (see next chapter)
this is of course our point of view.

Because of causality, virtual and real particles are intimately connected.
A consistent treatment necessarily cannot be restricted to the conventional low energy

domain. Nuclear physics means physics on the nucleus at any energy. In this connection
it is worth stressing that the new "discovery" known as EMC effect [6] that even at very
high energies and momentum transfers the nucleus is not just made up of free nucléons
was a well established fact, already known in photoabsorption some twenty years ago as
"shadowing".

Of course to understand and disentangle the effects peculiar to nuclear physics a cor-
rect starting point, i.e. the elementary photoproduction amplitude in the various energy
regions, is needed.

We will consider in this review laboratory photon energies u up to the GeV region i.e.



from threshold to above p photoproduction as shown in ivig.l. The problems connected
with the elementary photoabsorption process in the low energy, A and p region will be
pointed out, discussed and, as much as possible, solved.

In particular the microscopic interpretation of exchange effects below pion threshold
as virtual meson photoproduction and their connection with real photoproduction will be
stressed. In the A region the much talked about problem of a unitary elementary amplitude
and of its frame transformation will be addressed and solved, obtaining a formulation, in
terms of physical quantities, appropriate for nuclear applications.

Finally in the p region the difficulties connected with the treatment of massive vector
mesons will be recalled and the correct p photoproduction amplitude will be derived.

Such an amplitude has still to be implemented in nuclei.
As concerns nuclear effects we will not make a compilation of nuclear cases.
We will try to present in a schematic way how the physics of an interacting nucléon is

different from that of a free one.
In this respect our treatment will not overlap with existing reviews [6,9,10,11,12]. In

some of them finer details, regarding particular aspects, are extensively examined.
As regards the general level we have tried to make the present work as self contained

as possible and accessible as regards the physical arguments, if not the details, to non
specialists as well .

Its plan is as follows :
In chapter 2 generalities about the nuclear Compton scattering amplitude are spelled

out so as to provide the framework for the treatment of photoreactions.
The analytic properties of the amplitude are briefly discussed in connection with dis-

persion relations, sum rules and low energy theorems.
Chapter 3 deals with the low energy region. In particular in §3.1 isovector exchange

effects originating from the isovector JT and p exchange potentials are recalled whereas in
§3.2 isoscalar exchange effects due to the a and w are shown to appear on the same footing
and their role is discussed. Finally in §3.3 the typical nuclear features of the giant dipole
resonance in spherical and in deformed nuclei are reviewed.

Chapter 4 is concerned with the A region . In §4.1 the unitary and frame independent
pion photoproduction amplitude, (where only (3,3) final state interactions are consid-
ered) is presented. Its comparison with the Chew-Goldberger-Low-Nambou amplitude in
the nucléon case clarifies the role of the «scattering mechanism and makes it possible
to conclude that the A is an elementary (quark spin-flip) particle, thus confirming the
preferential role of photons in probing the target structure.

As regards nuclei a simplified version (A dominance) is used to derive sum rules for
the Ml part and to predict the total photoabsorption cross section on medium heavy



nuclei exemplified by 208Po . In §4.4 the physical content of the quasi-deuteron model
in photoabsorption is questioned and experimental testa of "three-body forces" causing
the in-medium increase of the A width are suggested. Finally in §4.5, always in the A
dominance language, elastic vs. inelastic Compton scattering is discussed and the related
dispersive contributions of the A to the nuclear magnetic susceptibility are analyzed and
compared with low energy nuclear effects.

Chapter 5 is concerned with the high energy domain. In §5.1 the photoproduction am-
plitude for two uncorrelated pions is recalled, whereas §5.2 deals with p photoproduction.
It is shown that the requirement of invariance of the theory under local gauge transforma-
tions of the SU(2) x U(I) (isospin x hypercharge) group necessitates a Higgs mechanism
to generate the p masses.

In such a scheme which intrinsically relies e.m. and strong interactions, linking part of
the NN potential to the electromagnetic properties of hadrons, the vector meson domi-
nance prescriptions automatically result, universality is explained and the desired p photo-
production amplitude (which differs from that obtained via the minimal e.m. substitution
in the Proca Lagrangian) is obtained. In addition "genuine" three-body ppp forces (as well
as four-body ones) originating from the non abelian structure of the group are predicted.

As regards shadowing, i.e. the non linear behaviour in the atomic number A of the
total photoabsorption cross section, treated in §5.3, one gets from the previous framework
that a real photon is completely decoupled from pa.

Therefore the appearance or not of shadowing is determined solely by the photopro-
duction mechanism relevant at that energy.

In particular shadowing is predicted not to happen in the yet unmeasured uncorrelated
iris region. Finally in §6 conclusions are drawn.



2 The Structure of the Nuclear Compton Scattering Am-
plitude

2.1 Generalities

In this chapter we will recall the formalism of the Compton scattering amplitude, in order
to set up a convenient general framework for the discussion of photoreactions in the real
photon case.

We can roughly summarize the following discussion, which may appear a bit too formal,
simply by reminding that gauge invariance, especially in the interacting case (nucléons in
a nucleus) is a very powerful tool to comply , thank to appropriate conterterms, with low
energy theorems. In essence exchange effects cannot be introduced in a cavalier way only
in the current. The fact that such counterterms naturally derive from dispersive effects
when the Hilbert space is not arbitrarily restricted to conventional (low energy) nuclear
physics, as in this § and in § 3.1 will be touched upon in § 4.2 and 4.5.

The S matrix for Compton scattering off a nucleus in an initial state |0 > to a final
state I/ >, of a photon of initial four momentum k^ = (u, k) and polarization e^ = (O, e)
and final fcj, = (w.fc'Jej, = (O, e*), according to standard reduction techniques, reads to
0(e2) [13,14,15]

Sti = -i(2n)*6*(Pi + k-pk- k')E

dV+l*-I<TlV

ftu; - EN- - ftw')Mv

<f\f(0,y)\n><n\j"(0,x)\0>
Eo-En + hu + iTB/2
, ,
E0 - En + ftu>' '

where T stands for the time ordered product and En — iTn/2 for the complex energy of
the intermediate state.

Here j'M(x) = (jo(x),j(x)) is the full e.m. current operator satisfying the gauge condi-
tion

Wx) = O , (2)

and the sum J^n runs over a complete set of states. It is, however, easy to prove that,
despite eq.(2) T111,, in principle, may not be gauge invariant. As a matter of fact :

ik'y)<f\T(j»(X)J"(y))\0> ..
= /d4i/dVxp({fcz)exp(-»'fc'y)5(xo-yo) •' '"--'-^ l£r --.r-Miin^ V ;



whence a co-mterterm S1"1 must be added to T1*" such that

O . (4)

Eq.(4) determines 5MI/ uniquely up to terms of first order in fc, k'. The total amplitude in
the radiation gauge is therefore 1 :

We remark that the value of the double commutator in eq.(3) depends on the explicit form
of JP(X) and H. In particular it is different from zero when a non-relativistic limit is used
for both. Since with this choice JP(X) has matrix elements only between positive energy
states, this corresponds to a truncation in the sum of eq.(l) and as a consequence to a
loss of its gauge invariance.

In the atomic case this can be regarded just as an alternative formulation, since the
above procedure immediately yields the e2 contact (seagull) term of the well known inter-
action Hamiltonian

(6)
t=l L J

Of course with respect to that, the peculiar feature of nuclear physics lies in the existence
of exchange potentials, so as to violate current conservation eq.(2) if the current is simply
written as the sum of non interacting nucleonic currents

The current is consequently modified and so is the seagull term, and in this connection
the previous approach will prove useful.

Low energy theorems however stipulate that irrespective of the details of the interaction
(and here we stress again that exchange currents originate from the standard nuclear
physics approach of expressing everything in terms of nucleonic coordinates only) the
general form of the low energy elastic amplitude is completely determined by the total
charge Z (in the following N and A will denote the neutron and atomic number) and by
the anomalous magnetic moment K.

To the first order in w, then [16,17]

S being the total spin of the system and e2 = Q = ̂ .
1Of course state normalization and hence phase space factor determines the proportionality coefficient.
This will be taken care of, when giving explicit formulas in the following



The amplitude / is at all energies connected to the differential cross section in the
laboratory frame by

— - -1/2I (8)dtl ulJ ' V '
where w and LJ' are also expressed in the lab. and connected by

2MA

and B — fc.fc', in such a way that, in the elastic case (Ef1, = O) u' can be practically taken
equal to w at all angles (of course in the inelastic case, a corresponding inelastic amplitude
will intervene).

2.2 Analytic properties of the amplitude

The previous form of the amplitude remains valid at all energies for the forward scattering
amplitude f(u) = f(u,ff = O).
Hence, always in the laboratory system

/M = fi(u)c'.e + i/,(w)wS.« x f ' (10)

Clearly, by averaging over nuclear spins in the amplitude we are left only with f\ , which
is therefore denoted as the spin averaged amplitude. These amplitudes are separable if we
can perform experiments either with both initial and final polarized photons or with one
polarized photon (say the initial one) and with a polarized target.

In the first case /i is clearly selected whca the two polarizations vectors are parallel.
In the second case, if the nuclear spin is aligned along (i.e parallel) the beam direction

or antiparallel to the photon helicity A (since iS x ?* = ASeA) we have

/?H= /i(w) - /Z

/»H= /i(«) + /2

where p = parallel and a — antiparallel.
The optical theorem for any of the four amplitudes stipulates

Sm/(w) = -%(«) (12)
VK

As usual, postulating analiticity of the amplitude, we can calculate their real parts if we
know their imaginary parts by means of dispersion relations. They read

= ^PV. £" ̂ ^<TT(^) (13)



where P.V. stands for principal value, and where (FT = f («o + ffp) represents the spin aver-
aged total photoabsorption cross section and UQ the threshold energy for photoabsorption
(equal to mw + rn^/IM in the nucléon case and to O for nuclei). The basic difference in
the derivation of the previous relations lies in the fact that a subtraction is needed for /i
(otherwise from the unsubtracted form 5fte/i(w) = £P.V. / *™{ffl dw1, apart from conver-
gence problems, a contradiction would result at u — O, the r.h.s. representing the integral
of the positive photoabsorption cross section, the l.h.s. being the negative Thomson limit)
whereas no such a subtraction is needed for /2-

In their first classical application [5], dispersion relations were applied to the differ-
ence between the nuclear amplitude and the incoherent sum over nucléons, A/(w) =
f(u) - Zfp(u) - Nfn(u). The assumption SfteA/(oo) = O, together with lim,,,-.,» Aff = O
sufficiently fast to allow for convergence, leads to (since WQ = m» for the nucleonic cross
section)

rm, 7.N f°°
I ff(u)dw-2ir*e2=£-=~ A<r(w)dw (15)

JO MA Jm,

This sum rule connects the enhancement due to exchange effects below the pion threshold
to the difference between incoherent nucléons and total nuclear 'TOSS sections.

Because of the discussion of § 5, the previous hypothesis is however untenable, the
very difference between nucleonic and nuclear photoabsorption lying in the possibility of
interference irrespective e.g. of the existence of the p meson. Conclusions from Eq.(15)
are still qualitatively correct.

It is however obvious that the only unbiased use of dispersion relations for a nu-
cleus is a direct one as embodied by Eq. (13). They can then be used as a consistency
check only, since SRe/(w) cannot be predicted or obtained experimentally (in the for-
ward direction Delbriick scattering dominates by far). It may be argued [18,19] that at
uj = cZ> ~ mr IRef ((jj) — O i.e. that the pion threshold has a sort of a universal meaning.

Using the experimental data for a, this seems indeed to be the case as shown in Fig.2
for Be, and as checked over the whole periodic table by Ahrens [2O]. This entails

which can also be interpreted as if, by a proper weighting, the cross section above threshold
(hence real pions) would correct the incoherent cross section by an amount which is strictly
connected to the degree to which exchange effects influence absorption below threshold.



On the other hand in Eq. (14) it is assumed that the photoabsorption cross sections
become spin independent so as to assure the convergence of the dispersive integral (and the
disappearance of — SRe/2(co) which is in principle present in the r.h.s.). It is obvious from
the preceding equations that, under the previous hypothesis, a sum rule can be immediatly
written down for /2, by usir.rj the low energy prediction that /2 (O) is proportional to the
square of the anomalous magnetic moment of the system. One obtains

U representing the total magnetic moment of the system of total mass MA and maximum
spin component S. This represents the celebrated Drell-Hearn-Gerasimov [21,22] sum rule.
Notice that the dispersive integral in (14) and of course in (17), in contradistinction with
the one entering dispersion relations for /i is not positive definite. The interpretation of
Eq.(17) is that the photon coupling in photoproduction is connected to and hence affects
the nucléon magnetic moment. In contrast with Drell and Hearn, Gerasimov applied the
sum rule to the nuclear case [22] , to predict modifications of the nucléon magnetic moment
by taking into account nuclear structure only through the Pauli principle incorporated in
the Fermi gas model.

Since the Pauli principle obviously leads to a decrease in the cross section for the pho-
toproduction of mesons by bound nucléons, this would result in a corresponding damping
of the g factor of the bound nucléon. A decrease by 7-8% seemed in fair agreement with
an alternative estimate of the isovector part of the anomalous magnetic moment obtained
by Drell and Walecka [23] by summing up the most relevant Feynman diagrams.

This appealingly simple result was however marred by a sign mistake.
In a more thorough scrutiny it was realized [24] , as confirmed by later isospin analyzes

of the sum rule [25] that already on the nucléon the single pion photo-production region
does not exhaust the sum rule, and that substantial contributions must come from the
region w > 1 GeV where data were absent and where the theoretical analysis is not free
from uncertainties.

Moreover, the low energy domain yields in the nuclear case the additional contribution

r
Jo

= J\[M,,M,]\Jz = J> (18)

obtained in the long wavelength limit for the magnetic moment operator. In addition, to
make reliable predictions, one should have a consistent treatment of nuclear effects both
below and above pion threshold which represents indeed a formidable task.

In conclusion, although appealing, the D-H-G sum rule when applied to nuclei can
hardly tell even the sign of the modification of the nucléon anomalous magnetic moment.



Also on the experimental side, polarized photons and targets are not presently avalaible
in the whole energy domain of interest for the r.h.s. of Eqs.(14),(17).

As regards the dispersion relation for f\, it can yield a sum rule only with an indepen-
dent piece of information about its real part.

Hence, let alone the problem of the good causal properties of a non relativistic ampli-
tude [26,27], which in principle question the very applicability of dispersion relations, we
see that their predictive content in the nuclear case is indeed limited.

They can be viewed therefore as a sort of rough consistency constraint for our theo-
retical treatment in the various energy regions.

Their use to connect low and high energy properties rests on the knowledge of the
photoproduction mechanism of all possible mesons.

Luckily, because of the I/o; and 1/w2 factors in the r.h.s., the relevant domain practi-
cally extends only up to the p photoproduction region.

The problem is further simplified by the fact that of all possible N and A resonances,
only the A(1241) plays a significant role in this whole energy range. Details will be given
in the subsequent sections. However the Compton scattering formalism outlined above
allows the direct (i.e. without having to resort to dispersion relations) calculation of all
the quantities entering the scattering amplitude.

One such example will be given in §4.5 by the calculation of the magnetic susceptibility.
In the following we will limit ourselves to the spin independent amplitude /i (which

we will loosely denoted by /).

10



3 The low energy region

3.1 Exchange currents, sum rules, polarizabilities.

In this energy domain, our states \n > correspond to " genuine" nuclear states i.e. they
contain only positive energy nucléons.

In such a case the electromagnetic current J11 = (Jo, Jo) reads to the lowest order in
^ in the impulse approximation

where r? stands for the third component of the isospin-operator, pt- and M are the t -
nucléon momentum and its mass and /i and ff,- are the magnetic moment and the i"1-
nucleon spin, respectively and where the subscript in the three current is to indicate the
impulse approximation.

By assuming no change in J0 (since on the nucléon corrections to the charge are of
0(^) ) and by taking H = HQ + Vfx where #0 stands for the kinetic plus central part
of the nuclear Hamiltonian and V'x the spin isospin dependent part, dp J*1 = O reads in
momentum space

k. J0(K) = (H0, J0(k)} ,
*.A J(E) = [V", J0(Jb)] V '

which determines to 0(w°) the correction to the longitudinal part of the current.
For example, in the long wave length limit, in the Coulomb gauge the total current

reads

jfà=E H1^e+£'"(f< x f>)3(£i - s*)v?(x} (21)
« *&

where £ = TJ — Xj and where the isospin structure T^.TJ of the potential has been separated
out.

Exchange effects originate from the fact that the isovector part of the charge density
does not commute wj'th the potential.

They are therefore isovector and correspond to the fact that, since a nucléon can emit
charged mesons (reabsorbed by other nucléons in the nucleus), the nucJeonic charge is
locally not conserved.

11



Of course non commutativity can arise also because of the momentum dependence
of the potential. This happens for the fsoscaJar GJ and a exchange, through which one
customarily parametrizes the short range part of the nucléon potential. They will be
considered in the next section.

We will take here as reasonable representatives of Vet, V^ + Vf i.e. the long range one
pion plus the intermediate ranger rho exchange potential

.
,, , , JpNN Vj * q.ffj x q
V"(q)=- »

where &£*- = >$$?-, * ~ 0.08 and where *• ~ 4.5 -=- 5. Only the total magnetic
coupling (coming predominantly from the pNN tensor vertex) has been considered in the
rho case.

Notice that the rho potential comes as a N. R. reduction of the corresponding p exchange
Feymann diagram where only the g^v part of the spin 1 propagator contributes.

Then

EzV«fil - { f d3q c~is-s£ d V(a\«*«i*j -'/ (2jr)3e
 e<*dqa

vw
] (23)

^ '
ffNN,ffi x f-Sj x q + ffi x q.ffj x e _ _ Zq.e _ ,.
-- 5 i - ̂ ï~, - 5 -- ff« x g-/-? , - r\ïff) x '"Jp if2 + ™? (r + w?)2

The two terms have the immediate physical interpretation of Fig. 3. Exchange effects
originate from virtual charged pion [28] and rho electric photoproduction [29]. Notice that
the gauge condition automatically generates in both amplitudes the contact terms, coining
fron a contact elementary interaction and or from NN intermediate states, although only
positive energy states enter explicitly the non relativistic treatment.

Neutral pions and rhos do not intervene since they cannot be photoproduced in the
long wave length (w -* O) limit.

The interpretation of Eqs.(20), (23) is straightforward especially if reexpressed, in the
same long wavelength limit via the Siegert theorem [30]

eJ = i[H,D] (24)

~* 1 _ i _ 3 __ — .

where D = J^ ~~2~*~e(*« ~ Sy ~~A) is fcne dipole operator (referred to the c.m.s.).

12



It is then obvious that in addition to dipole absorption off protons corresponding to
the first term of Eq.(21) (since || = ev — ̂ ex), photons can be additionally absorbed
because of the dipole moment of an n — p pair (interacting via an isospin dependent
exchange potential).

It is worth pointing out how the absence of a dipole moment for a pp and an nn couple
(Eqs,(21), (24)) because of the isospin factor, is accompanied in the other picture (Eq.
23) by the absence of a neutral particle photoproduction.

In general (no long wavelength limit) an explicit expression for the exchange current
obeying current conservation has been built for the pion in terms of the photoproduction
amplitude [31].

Refinements to the previous treatment, due to center of mass effects in Siegert theorem
[32], or the extra contributions to the current due to exchange modifications of JQ [33] or
the non static treatment of the current [34] (see however § 4.4) will not be considered.

From the previous expressions the El part of the scattering amplitude reads therefore
in the long wavelength limit

/BI(W, 0) = E* <" i— *y —I-N— + croased
En.-i*f-u (25)

Ze2

—TTf-E + exch.seagull
M

where the expression "crossed" in Eq.(25) denotes the so called crossed term which results
from exchanging e, —k —» s',k' and —w —* +u> in the first expression on the r.h.s.. The
seagull term depends upon the form of the current and of the intermediate state |n > and
will be commented upon at length later on.

It is then immediate to obtain

, }_f£ s , v _ 4JLEj1 1/5-1 V- I K - I 0

U.» (jj 2 *n f ofi^p 1^t)J
,7.2 a n/2

""(£„„-")2+ (*?)'

and by the replacement (£n _M»(^ir /2); -* ^S(JEn,, - w) the corresponding Bethe-Levinger
sum rule

;w) =2^^i<0| [D.e'.HjD.e\\0>
'ZN.

+ «) (27)

13



The first term of Eq.(27) represents the famous "classical sum rule" i.e. the model
independent contribution in the absence of exchange forces. It is traditionally measured
in units of ^f- = 60 MeV mb.

Its main difference with respect to the atomic case (apart from the trivial nucléon-
électron mass substitution) lies in the center of mass effect i.e. in that in the nuclear case
roughly (Z/4) (to O (JV — Z)J(A)) protons contribute instead of Z in the atomic case.

In the exchange term polarizations have been retained (for spherical nuclei e.xf'.x =
IE.? 1X2) to allow for the interpretation of Fig.4 i.e. virtual photoproduction at both
vertices plus a genuine seagull (i.e. the two photons at the same point) off the exchanged
particle [35,37,29].

The factor K which represents the enhancement of the classical sum rule reads in our
notation KT + KP. It is manifestly positive (for spin saturated nuclear matter) for an
attractive potential such as the central part of both the pion and the p. On the other
hand, since ff^.qS^.q — \S\S^ + gSi2(?) whereas (t?i x q).(fft x q) = \ff\.&z — |Siî(g) where
•5*12(9) is tne usual tensor operator, there is a partial cancellation of the pion tensor term,
whose role has been greatly emphasized by Brown and co workers [39], due to the negative
rho contribut:on [4O].

Experimentally, the integrated cross section up to the pion threshold, with which
people generally tend to compare the calculation of the double commutator, is of the
order of 2 classical sum rules, for all nuclei [41,42].

Such a. comparison is of course questionable no matter how good is the phenomenolog-
ical potential one uses [43]. The previous use of a microscopical potential makes it quite
clear. Whereas in the IT case, although the amount of Kr above pion threshold is of course
not under control, one may argue that this assumption is not so unreasonable, in the p
case this is completely meaningless.

On the other hand it is straightforward to get

^2-2
me f (0,6) = _—_ê".r+ —e^K. + exch.aeagull (28)

MA MA

Hence the exchange seagull, necessary to yield the Thomson limit demanded by low
energy theorems for the amplitude, is represented by (minus) the same enhancement factor
of the dipole sum rule.

Its interpretation in terms of a genuine seagull off the charged exchanged particle and
of the square of a photoproduction amplitude suggests [19] that the latter term comes
from the low energy limit of dispersive effects (i.e. from the real part of the amplitude
where mesonic degrees of freedom are explicitely allowed).2 This overcomes in principle

2TMs means that the intermediate states \n > now consists of nucléons plus pions. The current has

14



the problems connected with the extrapolation of such a counterterm to higher energies.
This will be discussed in § 4.

Coming in the same long wavelength limit to the magnetic part we have

< OlMl.fc' x e'\n >< n|Mi.fc x e|0 >») =C - E^ - {29)
+ crossed

where Ml, by neglecting exchange effects, is given by

M1 = - 1 ^ ' + " " * + ""1^' {30)

with / being the orbital angular momentum operator. Therefore, from the optical theorem
(by averaging over polarization)

VM i(w) = — ̂ m f MI(U, 9 = 0)
(31)

= — Z) I < n\Ml.k x £|0 > \26(En0 - w).
n

Whence remembering that k = uk one obtains immediately the Kurath sum rule [44,45]

/ <7Ml(w)<fc> - 47T2 Dn En0\ < n|Ml.fc X e|0 > |2 . .

= \x* < 01[[Ml1F]1Ml]IO, l '

Elementary considerations allow us to understand how the electric sum rule is by far
more important than the magnetic one, the former being in any case dominated by the
kinetic term in H, thus yielding one classical sum rule as compared to the much smaller
spin orbit contribution in the latter. This is the reason why we have not considered the
(even smaller) exchange terms for Ml, apart from the discussion of next paragraph in
connection with relativistic effects. On the other hand we have in the limit of w — > O the
following expression for the Compton amplitude

/MI(U; -» O1 0) = (fc x ê).(fc' x ? Vx (33)

where the paramagnetic susceptibility is defined as

E jX 3^- E n - E 0 - ^ '

consequently different dimensions and J^n has an additional integration over the pion momentum. The
imaginary part of such an amplitude is connected to pion and rhô photoproduction.

15



Hence one explicitly sees how from the El operator one gets contributions to Sfe/(0, w)
of the same (zeroth) order of the corresponding photoabsorption cross section upon which
gauge invariance puts a constraint.

On the other hand the behaviour of the real and imaginary part of the amplitude are
completely different for the Ml case. In contrast to an integrated Ml cross section of the
same order as the corresponding El, the real part now contributes at low energy to 0(w2),
representing an unconstrained dynamical feature of the system.

The general expression of the spin independent part of / reads, for w — » O

f(u,e) =?'.%-— c*, (35)
x fc'.e

where a = OJQ + Aa/?, OQ representing the electric polarizability

En-E0

and

(37)

whereas 0 = x + A/3, x standing for the paramagnetic susceptibility Eq. (34) and

for the diamagnetic susceptibility.
In the previous expressions both the mean-square radius r2 and the dipole operator

D are referred to the center of mass, and exchange effects have been disregarded. The
"corrective" terms ACKJZ and A/Î originate from retardation and sum over excited states.

Notice that retardation corrections to the electric polarizability add, whereas diamag-
netic and retardation effects subtract from the paramagnetic susceptibility.

The previous expressions are valid for any system (nucléon, nucleus, atom) with obvious
meaning of the symbols.

Polarizatibilities were introduced and discussed in [46,47,48,49] , whereas rigurous for-
mulations can be found in [15,50] and reviews in [51,52]. Whereas for atoms AOJR and A/9
are totally negligible, they play a significant role for the proton.

In this case it is easy to understand why, even in the presence of a dominant magnetic
A excitation, QQ and x are comparable. This is due to the fact that the ir N continuum,
mainly induced by the electric ff.e operator (see next chapter), peaks at lower energies.
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However the structure constants which intervene in low energy Compton scattering are
manifestly a and /3. Calculations for AOR and A/Î, have been performed in different quark
models [53,54,55,56] with result (of less intuitive interpretation than for a0 and x) which
depend sensitively on the bag radius or on the oscillator parameter.

The general conclusion is that diamagnetic and retardation effects tend to cancel the
paramagnetic contribution. Consideration of the vacuum magnetic polarizability is even
claimed [57] to possibly bring 0 to negative values. In any case a, by far, dominates.

As regards nuclei, the main thing to be stressed is that, because of the smallness of
AQ and A/3 (O (~ 5 - 10%)) which implies that practically a ~ Q0 and 0 = X, m the
subthreshold region we are considering one expects a to be much bigger than x since the
Ml sum rule is much smaller than the El. This is substantiated by a number of elaborate
calculations of polarizabilities [58,59,6O].

The evaluation of dispersive effects coming from explicit pionic degrees of freedom,
and in particular the relative rôle of electric and magnetic virtual photoproduction with
respect to the conventional low energy contributions, will be considered in next chapter.

Let us finally mention that from Eq.(13) a dispersion relation can be immediately
written down for the u/2 term of / , namely

OL + 8 - —

It has to be stressed that although the use of dispersion relations is in this case unbi-
ased, still they cannot be used to obtain informations on the physical quantities i.e. on a
and P separately.

3.2 Relativistic effects

In the preceding paragraph the standard isovector exchange currents stemming from cur-
rent conservation Eq.(2,20), generated by the JT and p isospin dependent potentials have
been discussed.

It should be stressed that both potentials essentially arise form the O(-^) reduction
of the corresponding Feynman diagrams. This results respectively from the off-diagonal
O(-gf) nNN coupling and from the O(jy) dominant pNN total magnetic moment. For
consistency reasons, also the short and intermediate range isoscalar potentials are to be
treated on the same footing, i.e., a non-relativistic reduction has to be performed to the
same order.

For definiteness we will keep in the following to the simplified version of the Bonn
potential [61], which we prefer to more phenomenological approaches because of its mi-
croscopical fundations.
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The OBE parametrization of the full Bonn potential contains essentially, in addition
2

to the TT and to the p^ an u and a a respectively of mw = 782 MeV, -^ = 20 and m0 =
2

550 MeV ̂ L _ g 3

These coupling constants correspond to the values at -the poles of the exchanged par-
ticles. They are multiplied by form factors which reduce these values at |?|2 = O (relevant
for the analysis of the behaviour of low angular momentum partial waves) respectively to
10.6 and 7 and even more at \q\2 c* m2, which corresponds to the typical value range of
the potential.

In [61] also the S and the n interve, although with a smaller role, and the a parameters
are different from the quoted ones in the total isospin T = I channel ; these refinements
will be neglected. The form of these potentials in the energy independent form considered
i.e. without retardation in the propagators is determined by the spinor structure of the
scalar and vector meson NN vertices.

The central and spin-orbit parts, up to O(1/M2) included, read in an arbitrary frame
in momentum space

(40)

'(1 * ft) + 4SfS#i-(9 X PV)

-(9 * Pj) - 2]feîÔV-(9 X ft)

where Pi.py are the absolute momenta of the two nucléons and q the momentum transfer.
The first term in both Eq 's corresponds to the usual expression to be found in the

literature, namely
02 --TIt0I

^•>=-£— (42)

V111(X) = £s.£_!!!!l where x = |f,. _ xj\ (43)
47T X

i.e. to the central attractive a and repulsive w potential.
If one averages over a constant one body density p(x) = Po = .17/m~3 i.e. without corre-

lations, the previous expressions Eq's.(42, 43) with the above mentioned "effective" coupling

constants || = 7 and || = 10.6, one obtains < V0 >~- 390 MeV, < Vu >~ 320 MeV.
These values practically correspond to the ones of relativistic mean field theories

[62,63].

18



As regards jjj relativistic corrections to the central part in Eqs. (40,41) the term -

simply changes the short range behaviour of the ff potential by a factor 1 - -jffîfc plus a
S function, and will be irrelevant as well as q.(pi — Pj) to our final results, whereas the
kinetic terms ^jj and the dipole-dipole exchange — *-fijri~ have opposite sign again (as the
central part).

It should be stressed that in a mean field approximation in the Hartree sense i.e. by
averaging over the jf - th uncorrelated nucléon all » - 3 terms in Eq. (41) coming from the
3- vector part of the w exchange potential (usually denoted by u?) manifestly vanish.

In such an approximation, focussing only upon the central part, relativistic effects
disappear in Vw. On the contrary they survive in V0 with the immediate physical inter-
pretation that the kinetic energy in the non-relativistic nuclear Hamiltonian turns into
2S7 (* + <I~M">) i-e- changes the mass into an effective one M* =

Consequently one obtains in a standard way for the respective convective exchange
currents Ajf^fc) = O AJf >(£) = -^&.

However such an averaging procedure causes a number of "spurious" relativistic effects.
The best known examples is that of the single particle magnetic moment [64]. Its

orbital part Ml1 = ^jIi (see Eq.(30)) is obtained from the long wave length limit of the
convective part of the e.m. current.

With the previous position one has for the contribution of the kinetic energy term

Compared with the conventional non-relativistic result, one has an enhancement of
the orbital magnetic moment by a factor M/M*. Even for a valence nucléon, such an
enhancement is large and is undesirable as we known that the experimental magnetic
momenta are very close to the Schmidt line in agreement with the standard non-relativistic
description. Furthermore, it has been pointed out that also the contribution of the spin-
orbit term to the magnetic moment is very large and makes things even worse [65].

The reason for such a failure is obvious since in averaging, thus priviledging the labo-
ratory frame, one has lost Lorentz and consequently gauge invariance. Indeed there is no
need of doing so.

One immediately obtains from the continuity equation, the convective exchange current
contribution in momentum space of the a and u; potentials
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Aï-to- <«>
The reason for the interchange i «-» j in the r.h.s. of Eq.(45b) is due to the fact that the

current for the j - th nucléon (obtained by commuting with c1*-^') is proportional to p<.
From the previous expressions, averaging over j one gets from the a

I = JL-Ï. ^ ^ (46a)

and from the u component

It should be clear from the preceding observation that the w contribution comes from the
j — th nucléon : it corresponds to "back flow".

These is a partial cancellation between Eq.(46a) and (46b) depending upon the more
or less approximate equality between < -V0 > and < Vw > [67].

In an analogous way, there is a a similar cancellation of the spin-orbit contributions to

the magnetic moment [68] . We have from the i.ff term

> <47°>
whereas from the w

JLIg1 x (,, x *) < L?Ll^^L > (4W)
2M4 l ' v '

where in the average a sum X^ over i,y = x has to be understood, and where the factor
-1/4 results from +1/4 from UQ and -1/2 from the t3 contribution (see Eq. (41)).

In a mean field approximation the last term would be absent.
Let us mention in passing that the role of the o> is also instrumental in getting for two

particles in their center of mass the L. S interaction

.S (48)

Due to the quantum numbers of the cj, the above mechanism of cancellation is effective
only for isoscaJar quantities.
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Unlike the previous cases where spurious effects disappear, the Bethe-Levinger sum
rule constitutes a good example for genuine ones. It is obvious that the current modifi-
cation fa <-> j^s- according to the mean field approach, necessarily modifies the double
commutator [D, H]D] yielding for the integrated cross section 2n-2a jf£j. To ascertain
whether this really holds true, we calculate explicitly the potential energy contribution.

Notice that only terms that are bilinear or quadratic in the momenta will be non
vanishing. These are the terms Pi + PJ in V0 and p, + PJ in Vu. By direct commutation
one gets from the u> contribution [68]

Making the approximation that, in terms of the nucléon density p(r), the proton density
is given by pp = ̂ p, it is easy to see that the above u-exchange contribution vanishes.

In the case of the a, the previous expression goes into the corresponding one, and in
addition rf

Within the same approximation one has

-i ,so,

which is just the first order expansion of the classical result, when M is replaced by Af*.
This means that for the dipole sum rule, the relativistic effect is not cancelled by the <2
exchange mechanism. Such a result might have been expected since the dipole operator
is made up of an isoscalar and of an isovector component.

Inched, by analyzing separately the two contributions one easily gets the usual almost
complete cancellation in the former case, whereas potentials add up in the latter. The
separate contributions to K of the ff and w are shown in Fig. 5.

As usual, use of the continuity equation automatically takes into account negative en-
ergy states among the external probes and the meson- NN vertex, even if in the potentials
only positive energy states appear.

In conclusion, aside from the very particular case of the orbital magnetic moment, the
relativistic effect brought about by the effective mass M" of a mean-field description will
generally stand [69] (as it known also from the weak axial current case [70,71]).

Actually, this so-called relativistic effect is not something that is specific to a relativbtic
description : it appears as soon as one replaces the nucléon mass M by some effective
M*(r), independently of the origin of the latter, as for example in the non-relativistic
description with a Skyrme interaction [72].
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Coming back to the sum rule enhancement, one has of course to add to the previous
contribution the standard ones coming from the pion and the rho, unlike what has been
done in reiativistic mean field theories [73]. Since use of the quoted value of < V0 > in
Eq. (50) yields an enhancement given by the er alone of the order of half a classical sum
rule, this might seem to be incompatible with the integrated experimental photoabsorption
cross-section up to the pion threshold.

In this connection two comments are in order : the first stricly concerning the sum
rule, the second the connection between microscopic approaches and reiativistic mean field
theories.

Indeed it has to be stressed once more that, in view of its microscopical interpretation
as virtual meson photoproduction, the comparison of the double commutator with the
experimental photoabsorption cross section up to the pion threshold is somewhat justified
only for the pion part, whereas the virtual photoproduction of higher mass mesons lies
surely above so as to make such a comparison totally non quantitative.

Moreover the microscopic foundations of the intermediate range part of the NN ex-
change potential and of the corresponding exchange currents are not totally satisfactory.

Indeed, by using the Lagrangian which generates the a exchange, one does not repro-
duce the two uncorrelated pion photoproduction region. The basic mechanism at work
there (see § 5.1), corresponds in a potential language to a two pion exchange with inter-
mediate A excitation.

Finally the previous estimate of the isoscalar contribution to the sum rule enhancement
is based on the neglect of correlations.

As regards reiativistic mean field theories, in the mean field approximation the reia-
tivistic nucléon is supposed to obey a Dirac equation

\i> - M - s - -YO^]U = o (si)

5 representing the attractive scalar and V the repulsive vector potential. The eigenval-
ues of such an equation are such that the ordinary mass M —* M* = M + S whereas
the energy £ — * £ * = i/p2 + Af*2 = E - V. Hence the mass is decreased because of
attraction, whereas the energy is shifted in an analogous way by V. In the non reia-
tivistic (Schroclinger) reduction of the Dirac equation the mass and energy appear in the
combination (M - E) -> (M* - E") = (M - E) + (S + V).

On the other hand, in the small components of the Dirac equation M and E appear
in the opposite combination i.e. M + E (u* ~ (x* T\f+]eX*))-

Therefore the relatively weak central and large spin-orbit potentials one observes can
be accomodated in such a scheme with almost equally large and opposite values of S and
V.
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The bulk properties of nuclei are reproduced within a relativistic Hartree approxima-
tion (only a and w) or with a Hartree-Fock treatment (a, w and ir,p) without significant
differences in the coupling constants [63], although the success in the description of inter-
mediate energy nucléon nucleus scattering rests on the use of the empirical NN potential
i.e. in a not totally self-consistent recipe. However, in the case of an external probe as
for the Bethe-Levinger sum rule discussed above, the inclusion of the pion in going from
a Hartree to a Hartree-Fock approximation results in substantial differences.

Therefore there is no justification to identify the boson of relativistic mean field theories
with those appearing in the one boson exchange potentials [74].

In conclusion even disregarding the open problems concerning the connection between
the Dirac equation and its nonrelativistic reduction [75,76,77], it should be clear that the
(too hasty) mean field replacement Af —» M* in the non relativistic expressions should be
explicitly checked in each case.

The Lorentz invariant microscopical formulation outlined above and the ensuring gauge
invariant exchange currents seem to provide the natural framework to that aim.

Interesting places to investigate the role of relativistic exchange contributions might
be high momentum transfer processes like e.g. low energy deuteron photodisintegration
in the forward direction, which has been shown to be very sensitive to relativistic effects
[78].

3.3 Collective effects : the giant dipole resonance and deformed nuclei

We briefly review what has represented for quite a long time the traditional domain of
nuclear physics i.e. the low energy region. As " the" example of genuine nuclear effects
we consider the giant dipole resonance (GDR) in particular in deformed nuclei.

It is well known experimentally that all nuclei show a bump in the experimental cross
section with a shape that tends with increasing A to become more and more (since nuclear
structure effects are smeared out) that of a Lorentz curve. Its peak energy roughly follows
the law

EGDR ~ 8OA"1/3 MeV (52)

hence passing from about 25 MeV in light nuclei to 13 in Pb whereas the width TGDR
remains roughly constant with a value of the order of 5 MeV.

Such an energy dependence can be explained in simple models like the hydrodynamic
one [79].

In it the nucleus is schematized as being made up of interprenetrating proton and
neutron fluids of constant total density confined within a rigid boundary. GDR is just the
lowest oscillation mode where the restoring force is connected to the symmetry energy of
the semiempirical mass formula.
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This picture represents an alternative version of the original Goldhaber and Teller
theory which just reflects the form of the dipole operator.

Indeed, since protons have a dipole moment with respect to the center of mass, one
can alternatively attribute effective (-^) and ( j ) charges to protons and neutrons re-
spectively, so that one can think of protons and neutrons oscillating against each other.
However the previous result can also be obtained in a standard single particle shell model
[80], where the A"1/3 dependence follows immediatly from the form of the potential energy
-ittr

2.
This in spite of the fact that the coefficient turns out to be roughly 1/2 that of Eq.(47)

hence demanding the introduction of a residual interaction for a more realistic evaluation
[81,82] of the GDR structure. The above two seemingly alternative pictures have been
shown by Brink [83] to be equivalent.

The total integrated strength is at least (as in the previous models where there are no
exchange forces) of one classical sum rule ^f- ^-. Hence it is giant because it is collective
in contrast with other transitions to discrete levels. A straightforward consequence of the
above prediction that the mean energy of the collective state excited by the dipole operator
varies inversely as the nuclear radius follows in deformed nuclei.

It is well known that deformed nuclei exist with a permanent intrinsic quadrupole
moment different from zero [84]. This means that the ordinary spherical shape of radius
R, can turn into an ellipsoidal one either prolate or oblate.

Most nuclei are prolate, with a major axis 6 along the (intrinsic) symmetry axis z' and
a minor axis a in the x',t/ plane.

It is then obvious that an optical anysotropy can result according to along which axis
neutron proton oscillations take place.

Therefore one expects that correspondingly the GDR energy be split into two denoted
with obvious meaning by Ea and EI, such that

f-: (53>£/t a

More sophisticated calculations of the eigenmodes in the hydrodynamic model [85] confirm
the previous result to the percent.

It is also well established that these nuclei are characterized by rotational spectra and
that the ground state is a member of rotational band. The radial parts of the matrix
elements associated with transitions between the collective giant resonance and all the
members of the ground state rotational band are the same. The physical reason for that
lies in the possibility of applying the adiabatic approximation, since the nucleus changes
its shape in a time ~* 1/(1MeV) (typical energy of the rotational band, which is very long
compared to the giant resonance oscillation time ~ 1/(15MeV).
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The scattering to this rotational band is known as Raman scattering. A phenomeno-
logical description of both photon scattering and photoabsorption is then obtained (spe-
cializing our formulas the simple O+ ground state case to avoid Clebsch - Gordanries)
by

dtr\ 1 + COs 2 O 1 W 2 __,____^__^_
1 " 2Eb
5» + w) 1I+

1I/ AM1 '

~ 2 l 2Eb
.\(Eb -u- «Ti/2)-1 + (E1, + ̂ )-1I+ (54)

13 + cos2 9 u* I<2+\([DZ,,H}D:,}\0>
' O l O IT1

O I ^£/(90
-^(E6+ w)-1!- (55)

^^|(£a - a; - «T.,/2)-1 + (Ea + ̂ ]] |2 ,

and
_.^_o_" . r/2

The previous formulas are obtained from Eq. (25) by properly recombining seagull and
time ordered part of the amplitude to separate out the c.m. effect (86).

The angular distributions for the scalar and tensor components of the scattering am-
plitudes are simply obtained from the corresponding D.tD.t' by analyzing polarizations
into irreducible tensor operators

1 T 1/- -IX2! 13 + COS2 9 , .
92 = j[l + g(«')2] = - ̂ - (58)

where the second set of equality holds only for the unpolarized case we are considering.
Of course, in our O+ case the vector component 171 is identically zero. Moreover, in

(an)fla the relation (J = u has been used.
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Of course in poor resolution experiments the sum of elastic and Raman scattering and
for unpolarized targets total photoabsorption cross section aa + a\, is actually measured.
Note that these equations have a meaning only in this limited energy range and that data
can be reasonably well accounted for by some exchange contribution of the order of .2 -
.3 in addition to the classical sum rule.

In other words one cannot account at the same time for the total integrated cross
section and for the GDR region of energy EGDR with the same value of the enhancement
factor K.

Still in other words one sort of artificialy distinguises in going from < 0|D|n >< re|D|0 >
to the double commutator with the Hamiltonian between the GDR-region and the other
domain up to the pion threshold and higher up where additional contributions of dipole
character (exchange discussed previously) but not of collective (in the sense of depending
upon nuclear dimensions) origin, yield K = I .

Of course this separation is arbitrary, ill defined (on top of the fact that the dipole
sum rule itself is ill defined) and contrary to the very concept of a sum rule from which, by
definition, no informations about the strength location can be gotten. For this reason we
have refrained from any considerations about the presumed connection between exchange
enhancements in photoabsorption and for magnetic moments K = 2Sge [87]. In the previous
equations one can envisage the possibility of different enhancement factors coming from
the double commutator along the different axes, namely

< OIK- - *j-)%io >*< oiw - *;-)%-io > (59)
This entails, contrary to the hydrodynamic model , / duera(u)/ / duai,(<jj) / 2 and corre-
sponding differences in the photon scattering expressions.

Data seem to be better describes by allowing for anysotropic exchange forces [88]. As
an illustration typical photoabsorption cross sections are shown in Fig.6.

Of course at this rough phenomenological level , all the much more sophisticated nu-
clear details entering the dynamic collective model [90], (which however disregards the
above possibility) i.e. coupling of surface vibration with the GDR and explicit microscop-
ical calculation of F are absent.

So in these sketchy considerations have we disregarded the whole interesting area of
the isospin decomposition of the sum rules [91,92,93] as well as the consideration of higher
multipoles. Likewise there is no attempt at explaining direct (7, N) reactions as calculated
in a realistic way by the Bologna [94] and Pavia [95] group. The previous formulas are
only meant to suggest how one can exploit angular distributions, especially if polarized
beams are available, in consistent measurements of photo-absorption and scattering to
obtain nuclear structure informations [96,97].
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4 The A region

4.1 The pion photoproduction amplitude

The two basic problems to be overcome in order to provide a satisfactory treatment of
pion photoproduction are unitarity and frame independence.

The first problem exists already for the nucléon whereas the second is peculiar to nuclei
in the sense that in this case nucléon momentum components orthogonal to the incoming
photon are necessarily present in the nucleus, resulting in a non-trivial connection between
the nucleonic transverse (i.e. k.?= p.e = O see below) and nuclear case.

Here the model of Ref's [98,99,100], constructed in terms of a background (Born) and
of an elementary A, will be presented.

This picture is in contrast with the original Chew-Low one [107] where the A resonance
is dynamicaly generated by a rescattering series. For the time being let us simply recall
that Chew-Low equations predict the possibility of a resonance in the (3,3) channel whose
realization depends however on a number of approximations, in addition to the value of
the nNN form factor cut-of A.

The relation to the fundamental works of the past, [101,102,103] using the previous
picture, will be commented upon in the nucléon case after having obtained the explicit
formulas.

The consideration of the resonant multipoles will sort of justify a posteriori the basic
inputs of the model. The photoproduction amplitude, necessary for a non-relativistic
treatment of nuclear physics, is constructed according to the following program.

Tf — TT is intrinsically related [104] to nN whose dynamics in given partial waves is
naturally expressed in the TT - N c.m.s. (hereafter all quantities in such a system being
labelled by a tilda). This connection, known as Watson's theorem, states that, as a
consequence of unitarity i.e. of probability conservation,

W2J1ZT= I M2J12TIe1'*"-"- (60)

i.e. that below 2 TT threshold ths photoproduction multipoles M in a given channel (char-
acterized by the total angular momentum J and isospin T have the same phase of the
corresponding (unitary) irN scattering amplitudes /2j,2r = e'l3J-3T sin S2J1ZT • m a cor'
rect treatment unitarity is automatically satisfied. Therefore the starting point is a non
relativistic reduction in the c.m. frame, followed by rescattering which makes such an
amplitude unitary. Because of the smallness of the corresponding phase shifts (S < 20°)
rescattering in channels other than the resonant (J = 3/2,T = 3/2) = (3,3) is neglected.

With nuclear applications in mind, the amplitude is expressed in an arbitrary Lorentz
gauge, so as to yield both the transverse and longitudinal parts, necessary to prove its
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gauge invariance.
Finally the transformation from the TT — N c.m.s. to an arbitrary frame (in our case

the nucleus rost frame) is made, by proper non relativistic transformations yielding a
rearrangement between " old" longitudinal and transverse parts, resulting in the final
T - J T amplitude, which is frame independent to the order of the original non relativistic
reduction.

We start from TTJV.
By considering the background alone and by projecting the crossed ir — N Born diagram

onto the (3,3) channel we approximately have

< > • -*• <6"
Here M is the nucléon mass, g the pseudovector coupling constant (j2/4jr = 14.5),

q — 9(S1/2) and w$ the pion momentum and energy in the c.m. frame at total invariant
mass s1/*= W.

Eq. (61) gives the unitarized background amplitude in Born approximation i.e. to
O(8g) which is a very good approximation in view of the smallness of OB (see Table
I). It is worthwhile noting its meaning in terms of diagrams when the renormalized JT N N
coupling constant is used in the calculation. In fact for small Sg one has exp(i6g) ~ l + 6g
so that Eq.(61) corresponds to the sum of the first two diagrams of Fig.7c) (where the
second, because of its smallness can be neglected at will) where only the imaginary part
from the intermediate propagation is retained in the second one, the real part having been
reabsorbed in the renormalized coupling constant.

At this level the one loop approximation is therefore totally justified, were it not for
the possibility of dispersive effects which will be commented upon later on.

Now we come to the resonant part of the amplitude. To the lowest order in /B we
have to perform the sum of the last three diagrams of fig.Tc), where the A propagator is
to be understood as the dressed A propagator. Here again the real parts from the vertex
correction given by JT scattering through the background mechanism (diagrams (b) and (c)
of fig.7) go into the definition of the renormalized JT JVA coupling constant. Then we need
consider only the imaginary part from the intermediate JT propagation, i.e. by denoting
with /H(^) the resonant amplitude (third diagram of Fig.Tc)), one has for the sum :

2iSB) ̂  /fl(?) exP(2i'5B) (62)

Here fn(q) has been separately unitarized so as to be written in a unitary form i.e.

/*(«) = e"B«n*H (63)
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where
hM- M 1/i 2MM3vj(g) ( }
fR(q> ~ ~ W/' 3 ml s - IW* + .-MAr(«) * '

and
2/1 Af 5»«iK) f ,

- (flB)

which is the width that one would calculate from the A self-energy diagram with the
«normalized coupling at both vertices.

By summing the unitarized background Eq.(61) to the A mechanism with distorted
pions Eq.'s(62,63) one gets in terms of

S = S33 = 0B + SR (66)

a total unitarized amplitude

eis° sin SB + fR(q)e2iSt3 = eis (e~is" sin SB + sin SReiSs ) = eil sin S (67)

This represents the so called phase addition rule [108], for combining a background
and a resonance in the case of a single open channel. Notice how rescattering, i.e. pion
distortion is essential in the A term Eqs.(62, 63) to make the amplitude automatically
unitary.

It is worth stressing that this phase addition unitarization procedure to O (Sg) in the
presence of a background is the only physically correct one.

In particular, in contrast with other prescriptions only in this way F corresponds to
the width one would calculate from the standard formulas for 3/2 — > (1/2,0) decays,
staying positive even away from the resonance. In this sense, given the TT JV JV interaction,
there is no arbitrariness (as in a general case) in the separation between background and
resonance.

The best fit to the 833 phase shift is reported in Table 1. It yields (for the TrJVJV
coupling constant the standard /^^-/4'r = .08 without form factor has been assumed) for
the JT JVA form factor v&(q) = (c^ + A2)/(§2 + A2) where qn ~ 236 MeV is the momentum
at resonance a cut-off A = 705 MeV, for the it JVA «normalized coupling constant /A/(4ir)
= .43 and for the renormalized A mass MA = 1241 MeV.

In this connection some comments are in order.
As regards the A mass, it is obvious that because of the presence of a background with

a positive phase, and because of the phase addition rule we have a A mass which is higher
than the resonance energy (S = JT /2). Indeed, the often quoted value of 1232 corresponds
to the no background (crossed Born) case and entails a cut-off of ~ 300 MeV .
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In that respect our A can be regarded as somewhat more " fundamental" . As regards
the nN& coupling constant, the value /l/(47r) = .43 differs from the standard Chew-Low
value .32 ; as before this outcome is just a consequence of the different dynamics of our
model.

Likewise the A width, also reported in Table 1, is considerably bigger (at resonance
F/2 ~ mr) than the one usually quoted.

All these different effects combine to reproduce the only physical quantity i.e. the
phase-shift.

The consistent implementation of such a scheme into photoproduction is immediate.
As before pions are allowed to rescatter, so that the usual photoproduction diagrams

in the Born approximation, are followed in the (3,3) channel by the previous (3,3) black
box.

1 f ds'
The contribution of all loop diagrams is given by the dispersive integral — / — —

JT J S — S — IC

of the proper projected amplitudes. If only the imaginary part of the loop, corresponding
to on-shell pion propagation is retained (the dispersive part having been reabsorbed in the
renormalized coupling constants) the total contribution in the resonant channel (S = 633),
is proportional to

l + isin6eis =cos6eis (68)

(where the first term comes from the diagram in the tree approximation) and has the
same phase, as demanded by Watson theorem, of the corresponding TrN channel. This
happens for the crossed Born and for the pion in flight, whereas the A term gets a factor
1 + ÎÔB ~ e'*B because of rescattering.

It is therefore clear that the three contributions are separately unitary to the given
order, irrespective of the photon coupling constants.

The dispersive contribution, relevant for the connection of renormalized to unrenor-
malized coupling constants, is separately unitary and proportional to e"5 sin S. It will not
be considered in the following formulae.

It then results very naturally, by projecting forth and back, that the whole amplitude is
simply obtained by the addition of a rescattering contribution proportional to » sin 8 exp[i£]
to the terms in the tree approximation. This can be best obtained by the introduction of
" projection operators" . The lowest order ones, necessary for the usual multipole analysis,
are summarized in Table 2. All relevant operators can be expressed as a proper linear
combination of them.

Notice that this alternative choice (with respect to the C.G.L.N. Fl, F2, F3, F4) has
the advantage that if such an operator is multiplied by an angle independent amplitude, the
latter just provides the appropriate multipole. Of course crossed and t-channel diagrams
intrinsically have such a dependence in the propagators, resulting in an infinite series of
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Legendre polynomials. It has been checked [98,99], as expected, that the fundamental
one is that obtained by neglecting the angular dependence of the denominator i.e. that
corresponding to the pure projection operator. In practice this procedure yields a very
good approximation for the lowest multipoles.

It is therefore clear that, in c.m. frame, rescattering is taken care of by simply dropping
the y dependence in the denominator (y = cos 9 being the angle between the photon and
the pion momenta) of those terms whose numerator provides the relevant multipolarity,
and by multiplying them, as mentioned before, by t sin£exp[t'£j.

As regards the isospin analysis, we report the usual relations between physical and
isospin amplitudes M(O), Af(I), M(S)10, 1,3 standing respectively for isoscalar, isovector
T = 1/2, isovector T = 3/2.

M(O) = l/2[M(7p -> P7r°) - M(-yn -> nff0)]
Af (1/2) = 3/2[Af (7fi-.nir°) + v^Af (7P-UMT+)]
M(3/2) = M(7n -» njT°) + l/-v/2M(7n -* px~) = ^ '

Here, the energy-momenta of the incoming, outgoing nucléon, photon and pion respectively
are p,, = (E, p);p'M = (E', p'); k^ = (u, k); ?M = (uq, q) and we define

-M* (70)
D* = (q- *)» - ml

The relevant photoproduction amplitudes obtained from a pseudovector JT ̂ V JV inter-
action read in an arbitrary frame

(71)

e + v/2/3[AM1+(3/2)]

(72)
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.?+ 2/3[AM1+ (3/2)]

(73)
where

AM1+ (3/2) =
1 f /AJA 2MA»A(g) «, _es_ 2(/V1^O _ J _ « * (74)
3 \

x
In the given expressions, the choice, based on our previous arguments, has been made

to divide the amplitude into the traditional unrescattered one and the rescattering part.
This explains the notation AM in the sense that, of course, part of M is contained in
the standard terms. As a matter of fact it is immediate to see that, if one does not
allow neither JrN nor 7^ Born terms to rescatter AM contains only the usual A-term
with final plane wave pions. With respect to this unrealistic no rescattering limit, the
main difference embodied in the previous expressions amounts to a reshuffling (e.g. the
pion-in-flight contributes to neutral photoproduction as well) .

Born terms are of immediate interpretation. They correspond (see fig.Ta) to the contact
term, to the pion in flight and to negative energy states as well as to photon absorption
by the full e.m. current (i.e. convective plus magnetic) for positive energy states in the
direct and crossed Born terms.

In these expressions absolute momenta intervene, as one obviously expects from Fey-
mann diagram recipes. On the contrary in AM, relative momenta show up. This is man-
ifest in the expression of AM, but happens of course also for v&, FA, &B and 6 appearing
in braces of Eq. (74) . Momenta are then transformed according to the general Lorentz
transformation from the rest frame (~) of a system of total momentum P^ = (Po, P) and
a large invariant mass W = (P§ — P2)1/2 [109]. For any four-vector a^ — (CLQ, a), to the
leading order in |P|/W one can write :

a = S- aQP/W (75)

5o - aa - (P.3)/W + aQP*/2W2 (76)

where the last term in eq.(76) can be consistently neglected if also CQ « W .
In our case one has P — p + k and W ~ M + w. Accordingly one transforms also the

denominators e.g. DT\y-o = -2w<I>,,.
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Only in the A denominator in the neighbourhood of the resonance terms of O(p2/M2)
have to be kept in W in order not to influence the peak position.

Since e = ij_ = e — (e.k)k such that, as usual, J^«*ey = % — ̂ t^y, 3^ terms along fc
A

in Eq's(71 - 74) necessary to prove the gauge invariance of the amplitude (see Appendix)
automatically drop.

Notice also that because of the transformation the A as well, because of the term ^p

can get a longitudinal (i.e. along K) component and hence contribute to the longitudinal
response function in e, e'). The fact that the magnetic A excitation has no 4<h component,
because of current conservation, in the c.m.s. then explains why in Eq.(74) in the general
frame only momenta have been transformed.

Of course, for a real photon only the transverse part (in the Lorentz gauge) contributes
in any frame. This can be immediatly seen by applying ^e11 = O and k^J^ = O in both

the c.m.s. and in an arbitrary frame to get Jj.êj. = Jj.fj. , -L standing for transverse

(where of course J(q, k) is the transformed of J(q, k) according to Eq.(75), both as regards

J and its arguments q,k).
One can specialize to this transverse (Coulomb) gauge only in the final expression.

Indeed e.g. recoil terms in p in the preceding equations which derive from JQ, would
be identically zero had we (wrongly) imposed the (non covariant) Coulomb gauge in the
c.m.s.. It is also easy to prove, given the expression of JQ (see Appendix) that our non
relativistic reduction is consistent with the frame transformation to O(jj-f). (of course,
since g/2M = frfiN/*nr the coupling constant in front has not to be confused, as done
by some authors, with an expansion parameter).

To that aim our formulas somewhat differ from the usual ones, in the sense that the
propagators of the Born terms have been kept in the original Lorentz invariant quadratic
form . This introduces small differences of 0(p2/M2) which are beyond the accuracy of
the present non relativistic reduction and makes anyhow easier the formal proof of gauge
invariance and frame independence.

Let us conclude by stressing that a consistent N.R. reduction to 0(p2/M2) using as
starting point the unitary description in the it — N c.m.s. and a subsequent frame trans-
formation would turn out exceedingly complicated with respect to the present treatment
so as to really question its applicability.

The adequacy of our general elementary operator can be immediately tested by switch-
ing back to the c.m.s. (p = —k,pf = -q) and by comparing our predictions with experi-
mental data.
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We w:!l consider the differential cross section

and the resonant (3,3) mulfcipoles i.e. the previously defined AMi+ (3/2) M we^ as tne

electric AEi+ (3/2) given by

where

corresponds to the projection of Table 2.
Such a term had been omitted in Eq's(71 - 73) because of its little numerical relevance

and because of its cumbersome expression in the general case.
It is however a crucial test of our theory. Prom the previous formulas the difference

between our scheme and C.G.L.N.'s emerges quite clearly. Apart from their use of a TrJVW
pseudoscalar interaction, in the case of no direct (renormalized) 7 JV A magnetic coupling
constant g&, Born terms only would appear in AM1+ (round bracket in Eq.(74)) and
MI+ (3/2) and EI+ (3/2) would have the same cose"5 behaviour. In the latter multipole
only the pion-in-flight diagram contributes, whereas in the former both the pion in flight
and Born magnetic terms (roughly in a 1 to 3 ratio) would generate the multipole. With
respect to that, C.G.L.N.'s total non-pion-in-flight contribution to MI+ (3/2) is, on the
contrary, simply proportional to el5sin5.

This comes about because of their assumption for the solution ("we do not understand
at present how to justify their selection") of their dispersive equations. This can be

explained by noting [98] that in the case g^/m* is equal to -*-̂  - — - - in such a
2M

way that in the in and TrW case the possibly different Born and resonance mechanisms are
proportional, the first two terms of Eq. (74) combine with the Born terms to yield a total
contribution related to the K N scattering amplitude i.e. to elS sin 5. This is not fortuitous
since the previous relation corresponds to the quark model prediction.

In this case the shift of the zero of the real part of the multipole with respect to the
maximum of the imagniarny part, observed experimentally, is entirely due to the "extra"
pion-in-flight mechanism.

The fact that rescattering is essential, can be easily seen precisely from the pion in
flight contribution to the electric resonant multipole. Indeed, since Ei+(3/2) ~ -(I +
« sinfie'*) = — cos5e's (1 coming as usual from the properly projected Born part) one gets
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straightforwardly in a parameter free way a double zero at 8 — it/2 for !ReE1+ = - cos2 6 as
well as SSmEi+ c- — sin 5 cos 6, both reproducing pretty well the seemingly rather peculiar
structure of this multipole.

This does not imply of course the absence of an elementary 7./VA quadrupole coupling
but only that the dominant mechanism (against which it bas possibly to compete) is
simply due to a " peripheral" rescattering induced mainly by the ordinary pion-in-flight
diagram.

More than that, the simultaneous consideration of the two resonant multipoles (see
Fig.8), by explicitly introducing dispersive effects our framework, makes it possible to
draw conclusions, in an almost model independent way [100] about the nature of the A
resonance.

Is it namely an elementary particle (quark model) or is it dynamically generated by
irN multiple scattering [107] ? In other words the A which has been introduced in the
model and is dressed by the JT N continuum, does really represent an elementary particle
or rather simulates a " Chew-Low resonance" build up by the infinite rescattering series ?

Calculations in the JT JV case indicate [105,106] that the A is an elementary particle,
but due to the separable approximation and to crossing violation, are not fully conclusive.

In order to give a precise meaning to the previous question, let us recall that the 7./VA
vertex reads in a non relativistic form

, ,
l ^

where QM 9E and gc are respectively the magnetic transverse, electric quadrupole and
Coulomb coupling constants. The TrTVA vertex S+.q combines with J&.eto yield (apart
from a conventional factor 3) the proper M1+,E1+ and L1+ multipoles. It is then clear
that Born mechanisms may simulate an elementary 7./VA coupling.

Indeed, as mentioned before, the rescattering contribution following Born photopro-
duction has an on-shell ie'*sintf part which combines with the original Born to yield
elS cos S plus etS sin 5 times a real dispersive (off-shell) contribution.

In our previous scheme this terms has been considered to be constant and reabsorbed
in the definition of the renormalized coupling constant 7ATA JA — 9^ ~ $? B3^- PV.\R
i.e. the sum of the bare one plus the dispersive integral contribution (where \R = "at
resonance", the subscript A stands here for M, E and C, and B indicates the proper
projected Born term).

In the case of a dynamically generated resonance, one has to put for all couplings
g& = O. The dominant e'ssin5 term, necessary to explain the M1+ resonant behaviour,
could then come only from the principal value part.
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However (apart from the fact that this is contradicted by explicit although model
dependent calculations [10O]) such a huge dispersive contribution would in parallel show
up, due to the structure of the multipoles, in the E1+ case as well and should be cancelled
by a direct bare coupling.

Therefore an elementary A
It is also worth mentioning the overall tendency for the ratio R — QE]SM to be defi-

nitely bigger (apart from the different sign) in the unrenormalized than in the renormalized
case. In other words, the pion cloud tends to bring to a symmetric situation an "elemen-
tary" rather deformed object.

In conclusion once care has been taken of rescattering i.e. once the background has been
duely unitarized, from the experimental data of the resonant multipoles the elementary
(renormalized) coupling constants can be extracted in a model independent way.

This means that at S = n/2 where the rescattering contribution vanishes one reads
off from STTJ M1+(3/2) gM =; 0.13, and from the shift of the intercept of Sin E1+(3/2)
(accompanied by two distinct zeros in Die E1+ (3/2)) - 0.02gjif > JJE > O (which will be
hence neglected so that in the formulas g& = CM)-

The extraction oîgc from the longitudinal multipoles [110] might give additional pieces
of evidence for the previous picture. Indeed, the reason for having explicitly separated the
transverse from the longitudinal part in Eq. (79), is to underline that (due to the number
of independent covariants [111] ) gc and CE are independent unlike for Born mechanisms,
where longitudinal and electric multipoles are related [103].

Coming back to the amplitude, total cross sections and angular distributions are plot-
ted respectively in Fig's 9,10. Our results (full line) have as only free parameter g& — .13.

With the provision that new more accurate experimental data [112,113,114] would
surely be most welcome, (in particular it is worth stressing that in the Tm1PJr" case data
are intrinsically model dependent because of their extraction from the deuteron which
suggests considering the inverse process), we see that our treatment does rather well. The
comparison with the less predictive (in the sense of more parameters) and less consistent
treatments available shows that we are, at least, as good.

In particular the essential feature of the angular distribution, peak position and height
do come out pretty well. The importance of unitarization has been tested by surrepti-
ciously switching off rescattering (5 = 0 dash dotted line).

We see in this case a sizeable effect on MI+(3/2) and EI+(3/2) and still a sensible
effect on the differential cross section particularly in the charged case. For the neutral
pion the effect is limited to the backward direction.

We can therefore summarize that both frame transformation (see also next §) and
unitarity have sizeable effects.
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Let us conclude by commenting on the dynamical inputs of the present theory.
In the past, the role of the w and of the crossed A has been much emphasized.
One has for the crossed A

(80)

(which has to be multiplied by the isospin coefficients ±\/2/3 for JT* and 2/3 for JT°).
For the w, it is immediate to reduce non relativistically the dominant vector coupling
ufltu.£ltl,plre''kpqa to get in addition to q x k.e (from the ^ = O component), contributing
a term Tu = egw(gwNN/mr)q x îc.ë/[(q - fc)£ - m*], (w,fc - ug) x j.e where j =

(q + Ie) /ZM + iff x (q — fc)/2M (where all quantities in the previous expressions are to be
understood in the c.m.s.).

In order to have a T matrix correct to O(p/M) both contributions have to be included
in principle. In practice however what really matters is the numerical relevance of the
terms considered.

By the standard procedure the contribution of T^cr and Tw can be incorporated in
da/dfl and in the various multipoles. Concerning these latter ones, it can be seen [99] that
the w somewhat improves the Eo+(S /2) and that the crossed A overshoots the MI- (1/2)
multipole (the contribution of a T = 3/2 object to a T = 1/2 multipole comes naturally
from the isospin reduction of the intermediate 1 ® 3/2) state).

This last fact is not surprising since the N "(1470), which is an essential ingredient in
the dynamics of the nN /n amplitude [115], has been left out.

Therefore, in addition to the problems connected with the ambiguities inherent to the
mere introduction of a crossed A (same coupling constant at 2m*- masses away from the
resonance, off-shell behaviour) it is clear that if these candidates are to be considered,
much more dynamics should be included on the same footing to account simultaneously
for TfN.

The recent claim [116] that the consideration of the crossed A alone is crucial for the
reproduction of the Af1-(I^) multipole [117] lies in the misunderstood fact that in the
second reference a choice has been made for describing the A propagator which contain
" extra" (1,1) component which can be thought of as an effective W(1470).

However, it can be seen that the inclusion of the a» and of the crossed A has practically
no effect already on the differential cross section. The reason is twofold. In the first place
part of these contributions, as explained above, is suppressed in the resonance region by
the factor cos 6 because of rescattering in the (3,3) channel. In the second place the two
contributions tend to cancel each other. This is demonstrated in Fig.9 for the JT° case
where a sizeable effect is shown at higher energies for the w alone (without crossed A)
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(dotted line). When the crossed A is included the curve cannot be distinguished from the
full curve, in which both terms are disregarded.

Therefore in addition to the above mentioned reasons of consistency, we see that at this
level the dropping of these contributions, contrary to the statements of some literature,
is absolutely legitimate. This should obtain equally well in a nuclear context where the
overall compensation between these different mechanisms should not be sizeably affected
because of their short range nature.

4.2 Sum rules

The gross features of pion photoproduction on the nucléon, which are summarized in Fig's
11), 12), can be roughly summarized by saying that the integrated cross section over the
resonance region is practically all Ml in the JT" case (both on the proton and on the
neutron) and half Ml and half El in the charged case.

Since neutral and charged cross sections are comparable we have roughly a ratio of 3
to 1 for the total isospin averaged cross section over the A region which turns out to be
of the order of 90 MeV mb.

Hence of the order of 6 classical sum rules per nucléon with respect to 1 of the sub-
threshold £1 exchange contribution (^- 60 ~ ^ 60 MeV mb). With this in mind, we
now turn to nuclei to see whether the gross features of photoproduction in the A region
can be understood in simple terms.

Keeping to the Ml operator, one is indeed entitled to assume " A dominance" [118,119,120,121]
which means to disregarded the (small) magnetic Born terms and hence consider the A
rather than the TrN system to provide the final state.

This allows a considerable simplification ; in particular sum rules can be immediately
obtained along standard lines.

Indeed, the total integrated cross section takes naturally the form of an energy weighted
sum rule, whose most important contribution stems form the JVA mass difference, and is
hence linear in A [122]. To prove it, let us recall that from the previous form of the pion
photoproduction amplitude, one has for the -yiVA Hamiltonian in the laboratory

.W m* W

b.c. standing for the hermitian conjugate, which transform a A into a nucléon and which
will be dropped since we assume no A components in the ground state (in line with
explicit calculations [123] which estimate the A admixture at the percent levels) and T
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standing for the standard JVA isospin transition matrix. It is then clear that, due to
the appearence of the relative momentum in the 7 AT A coupling, and neglecting for the
moment the term proportional to the nucléon momentum p, in the laboratory the effective
A coupling constant gA over the resonance region gets decreased with an average value
< a'* >~ SA(I - 5^) =• 0.1.

The photoabsorption cross section then reads

*M = - E E -I < H E — £•* * &i
2 A t ï i n «' 1^""- (82)

x e-** (O > [2S(En,, -«)

and remembering that k = AIw it is straightforward to realize that / dw<r(u) can be imme-
diately cast in the usual double commutator (of the nuclear Hamiltonian H with /T-JJVA)
form. Taking H = TJV + TA + U& + V)VAT, where TJV and TA are the (nonrelativistic)
nucléon and A kinetic energies, U& is the excitation energy, and VfiN the nucléon-nucléon
potential, the various terms of the sum rule are then easily calculated with the result that

}, (83)

where the first dominant term comes from the TVA mass difference and the standard
approximation < Enn >= UR has been made to obtain the second. It is worth stressing
that the contribution from the nucléon-nucléon potential is always the same, no matter
whether the potential is local or not, in contrast with the situation met in the Bethe-
Levinger sum rule. This happens because the A is a distinguishable particle from the
nucléon and it must be destroyed at the same point where it is created by the current
operator. The corrections to the main term SM are of the order of 10-15%.

Alternatively [124] one can directly use closure in Eq.(82), thus obtaining in £i Ey SjS,,
i = j terms, obviously proportional to A again, plus i ̂  j terms which vanish if no A are
present in the nuclear ground state, due to the obvious fact that one cannot create a A at
z,- and annihilate it at Xy. These corrections will, of course, depend on the details of the
wave function.

In conclusion in this alternative approach we see that possible deviations from a linear
dependence on A, are proportional to n^ (also because of the h.c. term) i.e. to the
probability of finding a A in the ground state and hence again small.

At this point a quick estimate of the neglected term of Eq. (81) shows that (|fc| = w) it
is O(^) with respect to the first. Its contribution is hence smaller than A<^f

> , K standing
for the kinetic energy, whereas the « = j interference term identically vanishes. It can be
hence neglected.
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Numerically by taking WH = 6M = 2mff, we obtain a value of 100 MeV mb per
nucléon for the sum rule, which compares favourably with the experimental outcome [125]
of 90 MeV mb for the cross section integrated from the pion threshold to 440 MeV. By
considering that the tail of pion photoproduction extends higher up but that we have at
the same time neglected the El contribution we see that one is not that badly off. Of
course one should not insist too much on these figures.

What should be emphasized is the relevance of the sum rule in predicting with very
little dynamical assumptions, an overall gross behaviour of the integrated cross section
proportional to A In spite of the strong spreading with respect to the proton, (see Fig. 14),
experimental results form A = 9 to A — 208 do indeed show a linear dependence on A.
This is in complete disagreement with a shadowing hypothesis [126], since even a mild
assumption like ffnuc\tarIffmidton = -A0'9 yields a factor of 0.80 for A = 9 but of 0.59 for
A = 208.

In this connection the assumption underlying Eq.(81) will be critically examined in
chapter 5.

Let us now come to the El part.
Here a sum rule cannot be obtained in such simple terms. However, using explicitly

the operator introduced in § 4.1, one can essentially obtain for the integrated nuclear
photoabsorption cross section [36]

-/JTt:
=,A(l-4(<">)) (84)

where the proportionality constant is of course the nucléon integrated cross section and
where K'V in the long wave length limit can be identified with the enharcement factor of
the dipole sum rule w: hout the seagul' contribution .

The minus sign is due to the Pauh principle that allows less phase space for a nucléon
in the nucleus with respect to the free one.

One therefore explicitly obtains a partial realization of the G.G.T. mechanism, i.e. a
strength shift from above to below threshold. It is threfore appealing, just as a consequence
of the Pauli principle, within the same approximation in the derivation of the Bethe-Leving
sum rule and in the treatment of photoproduction, to view part of El exchange effects
below pion threshold as originating from a hindrance of the photoproduction cross section
above it.

Of course, these considerations are highly non quantitative not only because of their
obvious dependence on the nuclear model but also because of the repeated remark that
the very use of a sum rule should prevent from idle discussions about strenght location.

However, in that spirit, part of K^ (low energy nuclear physics pion exchange) is likely
to contribute in the A region, as well as part of the above depletion will come from the
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higher energy domain.

4.3 Medium effects
Obviously the first place to spot some dynamical features which go beyond the gross
properties embodied by the sum rule, is the total integrated cross section. Interestingly
enough, although experimental measurements span the whole periodic table, there is only
one existing calculation for medium heavy nuclei, which specializes to the case of 208Po.

Let us recall the essential ingredients of the model which because of its simplicity
allows a simple understanding of the nuclear A dynamics.

First of all, A dominance is again assumed, with an effective coupling g'^ = .116,
somewhat bigger than the " mere effective" A coupling constant used for the AfI sum
rule calculation, to account in some way in (T(W) for the neglected El part.

A uniform medium is then assumed which should be well suited for large nuclei and
which trivially provides a cross section proportional to A.

Let us start with the simple Fermi gas model in which a nucléon can be excited to a
free A. From the optical theorem :

v(u)lA = -(g£/ml)(3K2/2k3
F)u ImKl(U, , k = u) (85)

with 3 - (86)= ~ f
9 y

From eqs.(85), (86) the leading term of the sum rules is immediately recovered by ne-
glecting the A width as well as nucléon and kinetic energies. The result of eqs.(85), (86)
is plotted in Fig. 13 (dashed line). (Note that in eq.(86) in the energy dependence of the
A-width, kinetic energies have been neglected and the standard form for T(OJ) has been
used). It is apparent that the peak position is almost reproduced whereas the shape of the
curve is inadequate. More realistically we have to introduce a A-hole interaction, which
in the channel of the photon is usually schematized as a p-exchange plus repulsive short
range correlations embodied in a Landau-Migdal parameter g' [115]. The cross section the
reads

, ,
l '

where /^ is the n-JVA coupling constant3

3In the actual calculation the contribution of the particle-hole Lindhard function in the polarization
propagator is also included and form factors of monopole type with cut-off momenta of 1,3 GeV/c and
2.5 GeV/c for the TT and p vertices respectively are introduced.
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By using strong /i-coupling Cf = 2.3 and the fashionable g1 = 0.5 we obtain the dot-
dashed curve of Fig.13. The peak position is now shifted to higher energies. To restore
it to the right place it is therefore necessary either to reduce g1 (the dotted curve of
Fig.13 refers to g1 = 0.3) or to admit an JVA binding energy difference by roughly the
same amount. Note that the use of weak p-coupling requires even larger corrections.
Nevertheless in this case too the shape is badly reproduced. For this reason we recall
that the A inside the nucleus is strongly affected by the surrounding medium. Here we
shall apply the results of the model of réf. [128].. In this model care is taken in treating
properly the long range part of the A interaction due to the infinitely many rescattering of
the real pion. This is achieved by a self-consistent solution of two coupled Dyson equations.
On the other hand the effects of short range processes are controlled by few parameters
which include besides the already mentioned g', a cut-off momentum A together with a
parameter a(0 < a < 1), which modify the JT JV A vertex for the nucléon above the ferrni
sea (a correction not accounted for by g1) and a Hartree potential VQ for the A. Since
the self-consistent solution is obtained in the quasi-particle approximation for the pion
propagator, Vb has to take partly into account off-shell affects from short range processes
which involve the TT exchange itself. These include also absorptive contributions like the
annihilation process AJV —* JVJV so that VQ has an imaginary part. For further detail
we refer the reader to the quoted paper. The output of this calculation provides a A
propagator in the medium to be used in calculating !!^(w.fc) in eq.(87). The result is
given by the full line of Fig.13 for the following set of parameters : g1 = 0.3, A =750
MeV/c, a = 0.7, V0 = (-100 - i40) MeV and a binding of p/pQ 60 MeV together with an
effective mass Meff = (1 - 0.25 p/po)M for the nucléons below the Fermi momentum. It
must be stressed that the parameters g', A, a, and VQ act all in a common way in modifying
the peak position, leaving the shape of the curve practically unchanged. So, it is possible
to vary them within wide ranges to get substantially the same fit. For instance a larger g1

implies a larger JVA binding energy difference and/or a smaller value for A. For this reason,
together with the uncertainties brought about by the above mentioned approximation, it is
not possible from the present analysis to infer separate informations on these parameters.

In conclusion we stress once more that only part of the width originates from ImVo-
The net result is due to the cooperative effect of these short range parts, which yield
smooth contributions to the A self-energy, and of its energy and momentum dependence
which is explicitly calculated in the model of réf.[128]. In this respect the analysis of the
total photoabsorption cross section alone provides only a poor test of the model, since one
might think that experimental data might be mocked up by an arbitrary ImVo.

In addition, one should of course remark that the agreement is less satisfactory at low
energy. This is due to the fact that the El contribution (dominant a.e) which is known
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to be more relevant just in that region has been accounted for by simply rescaling the Ml
contribution.

More stringent constraints should come as usual from exclusive measurements. In this
connection let us discuss the medium modifications of the previous amplitude. First, as
regards the pion momentum, if we work for simplicity in infinite nuclear matter, so that
a simple expression in momentum space can be used for the pion self-energy ïl(qo, g), one
has to replace the free space momentum q satisfying the free pion dispersion condition
(uiq = go) with qn defined as the root of the in medium dispersion relation

i.e. by the in-medium pion momentum.
Such a replacement at all places in the amplitude keeps the gauge invariance of the

current and is also totally consistent with all our on-shell propagation scheme in rescat-
tering : the pion in the loops now propagates on-shell in nuclear matter with modified
momentum.

As a matter of fact, by using for simplicity the 7$ pion-nucleon coupling (and by
omitting unnecessary details : the A is automatically gauge invariant) we have :

(88)
and its divergence

/ 0-1. \

(89)

which is again equal to zero in the presence of the medium i.e. n(<7o> <?) once we renormalize
the photoproduced pion momentum by the substitution mentioned above [13O].

Second, additional modifications of the amplitude stem from the A-propagator [121,131],
which is known to be strongly modified in the medium. Such a propagator intervenes in
JA and, if one wants to take into account rescattering as well, in Jresc (in the e>s sin S
factor). In particular the A-width should be consequently modified.

In our model the free A-width is the width that one would calculate from the A-self-
energy of a microscopical model which starts from an elementary A, pions and nucléons so
that a many-body theory, which studies the A-self-energy in the medium can be employed
in a coherent way.

As an illustration of the previous point it is clear that, if in the analytic expression
of the free A-width T(q) - 2/3(M/4jrs1/2)(/A/m)r)

2g3t;^(g) one substitutes, as a first
approximation the pion momentum q with the in-medium momentum qn, a certain class
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of many body effects coming from the dressing of the ^--propagator in the A-self-energy
diagram is taken into account. However if the same substitution is made, rather than in a
well defined microscopical theory with a cut-off for the TrAfA form factor A ~ 700 MeV/c,
in a semiphenomenological description with a typical A of the order of 100 - 300 MeV/c
numerical differences n-.ay result.

This latter case corresponds to the two presently mostly used amplitudes. The first
is the Ahole approach [131], where this results for an inconsistent treatment of irN and
fir dynamics (absence of the Born term in the former case). In the use of the other one
[129] the final pion distortion is taken into account through an optical potential. However
no possible meaningful medium modification of the operator is possible, given the lack
of physical interpretation of intervening parameters, in addition to the problems of self
consistency and unitarity already on the nucléon.

Of course it is difficult to assess, a priori, the numerical relevance of these effects. As
a matter of fact, except in a limited number of cases, angular distributions and partial
transitions measurements which we will not review here, are rather successfully repro-
duced, considering the usual uncertainties connected with nuclear wave functions, by the
standard treatments.

A possible test might come from coherent (7, JT°) where, since the direct and crossed
Born terms practically cancel out, only the A survives (as in the analogous it N case for
spin-isospin saturated nuclear matter [132]). This is under investigation [189].

4.4 The reaction mechanism : quasideuteron ?

The previous discussion has clarified quantitatively both the relevance of Ml excitation
in the A region and the degree at which different dynamical details intervene. Indeed
one can see e.g. how a dip at higher energies in the (ifp, rur"*") cross section due to the
El — Ml interference disappears in the total cross section on the proton because of the
overwhelming role of the A, so as to allow, at this level, for a A dominance approximation.

It is therefore no great achievement just to reproduce cross sections. In particular
the fact that various models have been able to parametrize part of or the total nuclear
photoabsorption cross section in terms of that of the deuteron does not seem to us to be
particularly exciting or illuminating. Indeed, below threshold the quasideuteron model
has a physical basis because of the predominant El np photoabsorption mechanism.

However, above, this is absolutely not so. As a matter of fact Ml ip —> px° is
comparable to El + Ml -yp —» TMT+ in such a way that, due to the isospin coefficients for
JT° and TT* reabsorbtion on a second nucléon, one would naively expect a comparable ratio
of pp to np pairs.
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Now the intriguing experimental feature is that there is a strong depression (although
probably not so quantitatively definite as generally quoted) of pp couples.

Therefore the " success" of the quasideuteron model results from the absence of a
channel manifestly absent in the deuteron and in principle quite important in real nuclei.
The total cross section is then made up of a quasi-free part (where a pion is emitted
with various (0,1,...) charged multiplicities as regards nucléons) and a quasi-deuteron
(np only) part when the pion does not escape the nucleus.

Can this be explained at all ?
The problem does not seem to have bothered too much quasideuteron partisans and to

our knowledge has been addressed only by Wakamatsu and Matsumoto [133]. They have
indeed shown, in the Fermi gas model, the hindrance of the pp channel.

Their arguments essentially runs as follows. In the pp case the only relevant graphs are
(see Fig. 15) the above mentioned direct and crossed Ml s. Because of their near equality
and of the antisymmetry of the pp wave function they lead to a vanishing contribution. On
the other hand in the np case the El part is necessarily only of exchange type. Therefore,
its interference with the direct and crossed (equal) Ml terms yields a non null result.

This essentially explains Homma's [134] as well as the old experimental results quoted
in Ref.[8]

Of course, as stressed by the authors themselves, many points (final state interactions, p
inclusion etc...) in the calculation should be treated more realistically. However, their main
achievement i.e. the (pp) suppression, for which it should be probably worth looking for a
more " fundamental" explanation (i.e. non necessarily tied to the FGM since it appears to
be due to symmetry considerations), is a straightforward consequence of treating (7,np)
and (7,pp) on the same footing.

This applies for energies w > 200 MeV. One may of course wonder whether this is so
even around threshold.

The sense of this question can be understood by looking at Fig.(16) where the cross
section per nucléon has been reported for D and for Pb . It significant dip in the first case
is apparent.

This feature and its possible explanation have been discussed at length in Ref's [135,130].
Total photoabsorption cross section has been schematized as pion photoproduction in

which the pion undergoes a final state interaction with the nucleus, described by the pion
optical potential Vopf. In this way, via the many body effects incorporated in Vopt, a unified
picture of photopion physics is given. Exchange effects below threshold appear naturally
as an off-shell continuation of real (distorted) pion production above threshold.

The basic assumption in this phenomenological approach lies in the use of threshold
values for the optical potential parameters and in a common off-shell extrapolation. In
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such a way the relevant term of the imaginary part of Vopt to which the cross section is
proportional, is the one quadratic in the density.

In other words, the nonstatic pion, photoproduced on one nucléon, is absorbed by an-
other nucléon pair. This is in contrast with the usual microscopic calculations of exchange
effects [136,137,138,139,140] in which the f is assumed to produce on one nucléon a static
pion which is absorbed (because of off shellness) by another one only.

The picture of the underlying mechanism for photoabsorption is therefore totally at
variace in the two approaches, namely, three body versus two body exchange effects.

The mechanism has been extended, in a parameter free way to (e, e') and found to
account semiquantitatively for the analoguous dip observed in all nuclei between the quasi-
elastic and the A peak [141].

The point to be stressed is, that also in this picture there are not two different mecha-
nisms at work réf. [136], namely, exchange effects and A production but just the production
of more or less virtual pions, described by the usual elementary amplitude which of course
contains the A. As a matter of fact we explicitly have as decay products of our inter-
mediate A resonance a final nucléon which obeys the Pauli principle and the pion whose
propagation and absorption are " realistically" described by the optical potential. Its role
is again the same as in photoabsorption, i.e., that with respect to the free case in which
electroproduction starts off at a given threshold, virtual pions are present below it once
Vopt is taken into account. In the literature on the opposite,exchange effects in which a
pion is created and reabsorbed by another nucléon, have been distinguished in terms of
the asymptotic final state (two nucléons above the Permis sea, only one with possibility
of interference with the one body quasi-elastic contribution, etc.) and added incoherently
to the quasi-free A production.

A simple way to consider part of this presumed effect is to consider only the A term
in the " A dominance" approximation as in Eq.(82)).

In such a way the complicated structure of the final two body state can be disregarded
as well as the problem of the modification of the operator (q —» qji) and of the pion
distortion.

Indeed, it has been shown that in inclusive reactions, final state interactions can be
treated consistently with the exclusive case through the introduction of the imaginary part
of the optical potential [142,143].

This simply amounts then to the substitution 6(En,, - w) —» ;/infin -J-WnIz where
in our case F pertains to the A in the medium.

The common feature to all treatments of many body JT nucleus dynamics is the recog-
nition that although a collective A nucleus state does not develop in the usual (low energy)
sense, A properties are sufficiently modified by the surrounding medium. In particular,
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whereas its position remains practically unchanged its width increases because of different
mechanism.

Probably the most striking difference with respect to the free case is that at threshold
F is different from zero, due to the fact that the emitted (static q ~ O) pion can now be
absorbed because of energy momentum conservation by a couple of nucléons.

It is then straightforward to obtain, due to such a mechanism, a photoabsorption cross
section at a; = mr of 30 n barn per nucléon with P of the order of 50 MeV.

This possible contribution, in addition to those of the electric ff.e term, would then
result, in an increased pp and (nn) yield.

Of course, the kinematic reconstruction of the (in the c.m.s.) back-to-back pp cou-
ple would be necessary to ascertain the existence of this mechanism against final state
interaction effects.

Difficult but clean exclusive experiments are therefore awaited, not only in this con-
nection, to really test our theoretical models and prejudices.

4.5 Compton scattering and dispersive effects

Two experiments [144,145] have recently revived interest in the possibility of using Comp-
ton scattering to extract information about nuclear structure. They were performed on
12C and 208Fo at fixed angles by elastically scattering photons both eft intermediate en-
ergies (u s mT) and in the A region. The main results are that the differential cross
section approximately reproduces in shape the photoabsorption cross section, i.e. a flat-
tish plateau at intermediate energies and a resonance shape at the A, and that in the latter
region experimental results are greatly at variance with respect to a simplistic treatment
based on a cross section governed by the nuclear form factor squared (see below). On
the theoretical side, the complementarity of Compton scattering to the other photoreac-
tions (7 and (e,e')) had already been suggested (ref.[146j) stressing the features of this
two-current process, where, as in electron scattering but with a different structure of the
operator, energy and momentum transfer can be varied independently.

Let us start from the A region. The gross features of the process can be understand in
the A dominance approximation and by assuming no A to be present in the ground state.

At this level we also neglect the effect of the spreading potential in the energy domina-
fcor (or in other words the possibility that a A created at TJ can decay via the A-nucleon
interaction and hence re-emit the photon at Xj], so that a sort of closure can be applied to
the sum over intermediate state (\n > £)„ < 71IV(^nn — w — iTn/2) with the introduction
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of a mean (A) energy E and width f. Therefore, the elastic cross section reads

fc „ = è EA Ie < °K^)2E,-(S,,*' x ^Tf)+(Si-S x e7?)/_.l__
-ei(P-S).S,-|0 > +cr.|2

i.e. the sum of one body operators (of spin independent part |(fc' x ?).(£ x e) with
the obvious exponential behaviour proportional to the elastic form factor F(q2) where
q = k'-k.

By neglecting the crossed term

do 4 2 2

(£- u,)' + (r/2)2

The previous expression is partially constrained, because of the optical theorem, to
account for the experimental photoabsorption cross section. Of course in the absence of a
model the position E, F = constant, i.e. no momentum dependence, cannot correctly re-
produce the spread, i.e. T(UI), of the peak. It is nevertheless enough for a semi-quantitative
estimate of the scattering behaviour with ~E = 300 MeV, F = 140 MeV.

Its most relevant features (especially in Pb) is the dramatic depression (O (10°)) brought
about by the elastic form factor. This is totally at variance with experimental results. The
reason has been given by Arenhôvel et al [147] and a refined treatment in the A — h model
made by Vesper et al. [148]. Indeed one must not neglect the possibility to reach, with
the same operator of Eq. (90), because of energy resolution, slightly inelastic state < /|.
In such a case the cross section is proportional to the response function and, by neglecting
the small inelasticity for the final photon, one gets

da_

dn
cos20 f

/0
where AE is the final energy resolution. (Experimentally AE/E ~ .1).

In spite of the linear dependence on A (vs A2 of the elastic term) and of the small
phase space allowed, inelastic transitions can actually (as can be shown straightforwardly
e.g. in the FGM) turn out to be more than competitive.

Below threshold, the first formulation in the intermediate-energy region was based on
the (questionable) extrapolation of low-energy theorems [146], [13,14] which guarantee the
low-energy behaviour of the amplitude.

The elastic cross section then reads

,3)2 ^
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where the first term is due to the low energy limit scattering off protons whereas the
second to scattering off np couples.

It would correspond in a non " low energy theorems" language to dispersive effects
coming from the electric part of pion photoproduction.

The same dispersive effects originating from the A, Eq.(90) have to be necessarily
included in the comparison with experimental data.

In this region, on the contrary, one has not to worry about inelasticity, due to the fact
that, given a constant AE/ E, one has at the same time a smaller momentum transfer
which depresses much less the elastic form factor, and smaller phase space for inelastic
transitions.

However, the possibility of actually " measuring" the exchange form factor, although
the extrapolation of low lying nuclear contributions of the time ordered product seems to
the harmless,is probably not so straightforward due to all mentioned effects.

In general the problem of the energy resolution or of the detection of the final state
is really a severe one and is paramount before Compton scattering can really serve as a
complementary tool to pinpoint nuclear dynamics as first expected.

In this respect it is worth mentioning that (C1C1Tf), °nly apparently more complicated
because of extra diagrams (which are however under control because of the kinematics), is
in reality gaining ground as a bridge between (e, e') and Compton scattering by allowing
at the same time for final state detection as well as for the study of nuclear distributions
through the momentum transfer variation [149].

Dispersive effects from the A do not influence only intermediate energy Compton
scattering but also its low energy properties [15O]. As a matter of fact one immediatly
obtains for the Compton amplitude for the nucléon (N)

. (94)
x ?).(fc' x £ ')

The obvious advantage of using the Compton amplitude rather than dispersion relation
Eq. (39) is that a direct expression for all intervening quantity can be explicitly obtained.

In the latter case on the contrary, as already mentioned, electric magnetic and retar-
dation effects are all mixted up.

The paramagnetic susceptibility XAT defined in Eq. (34) strongly depends on g&.
By using JA = -13 as from chapter 4.1 one obtains XN = 17 10~4 fm3 , at variance

with the quark model estimate of 8 10~4 fm3 [51,52,53,54,55,56,57].
In this connection some comments are in order. The first is that finite size and retar-

dation effects which are negligible for atoms and small for nuclei, are paramount for the
nucléon.
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They indeed contribute so EIS almost to cancel the paramagnetic contribution to yield
the final magnetic structure constant /3 which is the only measurable quantity.

Hence these effects should be consistently evaluated in our model which yields

^- = .05 (95)
/A

in good agreement with the quark model, but /^ and g& separately at variance, (let us
recall that in the quark model g^ = J^(UP - Un) = .1055 or g(£ = j&^Hp = .0885).
This is no surprise because of the presence of background (Born) contributions. If one
regards this picture as more physical, then because of current conservation {/A ~ 3&(k —

(k + p))} one cannot have the same coupling constant e.g. at w = UIR =; Zm^ and
at zero energy in the laboratory (as e.g. in the current non conserving formulation of
Ref.[l29]).

This proviso is simply meant as a warning against too hasty conclusions from the
preceding numerical estimate. One should indeed consistently work out the contributions
from crossed Born and pion - in flight (remember e.g. the markedly different numerical
role of the crossed Born for nN at resonance and at threshold).

Within these limitations, a more " realistic" estimate of XN can be got by considering
not the A but the nucléon plus a pion of momentum q to constitute the intermediate state
\n>.

Correspondingly, the electromagnetic current has different dimensions due to the fact
that it connects a nucléon to a nucléon plus a pion. It is therefore given by the photopro-
duction amplitude of the pion.

Moreover the sum £)„ over intemediate states is replaced by a proper integration
/,,<39, , • This will result in an extra -!formation on the off-shell behaviour of the TT NA-
l*flj 4EUg

vertex and in the possibility of calculating corrections (although in an admittled crude
model as the Fermi gas model ) in nuclei. This has been done in réf. [150] by using both a
monopole and dipole JT JVA form factor v& .

Two main points emerge. The first is a large sensitivity of XN to the cut-off para-
meter A. This is expected because one is dealing with a non-convergent integral where
the integration extends over all possible momenta. One should remember , however, that
the cut-off form factors v(A) are derived from a fit of the n-JV-phase shifts in a limited
momentum range. Different forms which lead to essentially the same results there thus
yield for XJV different predictions.

This can also be understood rather easily by noticing that the paramagnetism, which
is totally an off-shell effect can be thought of as a much more sensitive probe of the
off-shell properties of different formulations of the photoproduction amplitude which are
apparently almost equivalent in the A region.
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The second point concerns the behaviour of the susceptibility AXW of a nucléon in
a nucleus where AXW stands for the quenching of the paramagnetic susceptibility (per
nucléon) due to the Pauli principle, i.e. to the fact that in the simple FGM of réf. [150]
only the states where the final nucléon momentum lies above the Fermi sea are allowed .
As well known, this entails a corresponding modification with respect to the free nucléon
due to the momentum range q < 2kp.

This explains the insensitivity of AXW to the cut-off and to the particular form factor
used.

The values between 0.20 and 0.25 times 10~4 fm3, obtained by using <4 as in [150] in-
dicate that the paramagnetic susceptibility of a nucléon embedded in a nucleus is quenched
by a few percent depending upon which values is employed for the free nucléon. The use
of a more realistic nuclear model with dynamical correlations would increase this value.
Apart from its exact value the essential point, is that the quenching of the static magnetic
polarizability is a direct consequence of a corresponding quenching of the photoproduction
amplitude in the A-region. It is based on the idea discussed in chapter 2 in connection the
anomalous magnetic moment [22,23], and taken up again recently [151] for the quenching
of a + /3.

We finally remark on the relative importance of the different parts of the paramagnetic
susceptibility coming from the excitation of nuclear states below the pion threshold and
above. If we denote the former by \n we have as typical average value resulting from
experiment [152] *„ ̂  2.4.10~2/m3

This value is grossly overestimated by independent particle shell model calculations
indicating a sizable quenching. Taking lead we obtain with XN =8.10~4 fm3 AXN —
16.lO"1/™3 i-e. a value which is roughly an order of magnitude larger than Xn- This
result, of course, is not peculiar to lead but is obtained also for other nuclei. It emphazises
the strong influence of the A-resonance on the magnetic susceptibility . As pointed out
above, the value Xw °f a free nucléon is altered by the value AXW for a nucléon inside the
nucleus. We can therefore write the total susceptibility as

X = Xn + A(XW + AXW) (96)

(Note that AXW carries a negative sign). Comparing Xn with AAXW wc stress that there
are strong shell effects in the former and none in the latter quantity and that in particular
cases, also depending on a more realistic evaluation of AXW they can be of the same order
of magnitude.

Finally, let us confront the situation of the magnetic dipole polarizability with the
corresponding electric dipole polarizability. We thus have in analogy to Eq. (96)

a = an + A(aN + Aaw). (97)
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Given thr experimental .El-photoabsorptionone sees immediately that a » A(ajv+Aajv),
i.e. the nuclear El-polarizability is mainly determined by excitations below the pion
threshold (giant resonance, quasi-deuteron absorption, ...), in complete contrast to the
magnetic case treated here. This holds true in spite of the fact that XN and ajy are of the
same magnitude as known from photoabsorption in the A-region.
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5 TTTT and above

5.1 Two uncorrelated pions
As can be seen from experimental data Fig.lTa) ^p —> PTTTT, whose threshold occurs at
u ~ 300 MeV, begins to be sizeable at u ~ 400 MeV and reaches a broad maximum at
a; ±; 600 MeV extending higher up with a value of 70-80 fib.

The general situation and can be roughly summarized as follows [153].
Out of the three main possible contributions to the final two pion states i.e. a) ATT b)

TTTT (P wave proceeding via the J = T = 1 p) c) TTIT (S wave, through J = T = O er) it seems
to be well established that the A mechanism, i.e. the one in which one pion resonates with
the nucléon, is by far the dominant one from threshold up to w ~ 700 MeV. Mechanism
b) and c) which are of course possible are found to be much smaller.

With increasing energy they play a bigger role. The overall treatment is complicated
by the fact that nucléon resonances in the intermediate state may of course add up.

Their (ir) relevance for the ir~A++ mechanism is shown in Fig,17a). Their inclusion
does not seem to alter the conclusions about the role of mechanism b) and c).

Mechanism a) is constructed, in complete analogy with single pion photoproduction,
in terms of the elementary TrJVA coupling.

The photon is attached to the charged pion, A and nucléon (whose convective term
vanishes in the Coulomb gauge in the c.m.s.) to make a gauge invariant amplitude together
with the seagull firJVA interaction. This term, which is obtained from the principle of
minimal e.m. coupling in the Tr]VA coupling j^-^^q^^, reads in the non-relativistic

limit S.e (analog of ff.e of (-y, T)) and dominates at threshold.
This isotropic S wave real contribution, yielding a rapidly rising cross section con-

stitutes the essential test for the success of the model [178,179,180] against the possible
but too low background of S wave resonances. The A then decays via the standard S* .q
interaction.

Numerically it turns out that one has essentially to add only the pion-in flight term
(~ 25% of the cross section) to the dominant contact as shown in Fig.l7c). The elementary
amplitude then takes the form

l* -1»)

where R° = k + E - p° is the actual energy of the intermediate A and ER = [M^ + (fc +
p- /Z)2]1/2 its on-shell energy. The momenta and the energies of each particle are labelled
in Fig.l7b). The coefficient C due to isospin determines the weight of the different JVirir
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channels. It is obtained from the AWn- Clebsch-Gordan G(A++ ->• pn+) = (A -> nn )
= V^G(A+ —» ITT+) etc .. which appear at the two emission vertices. They are usually
used to predict e.g. a ratio of ff("tp —* jr~A++) to f(7p —+ »r+A0(pjr~)) of 9 and to
7« -> îr~A+(jr°p) of 9/2. Whereas the agreement of the first figure with reported data
[153] is fair that of the second is less satisfactory. Obviously Clebsch-Gordanries do not
summarize the dynamics entering the amplitudes, which may drastically alter the previous
estimates (for instance a(ip -» pn°)/cr(ip -* UTT+) is well different from the C.G. ratio of
2)-

The values of the coupling constant /£, of the mass AfA and of the width F used
in the quoted references are not consistent with the corresponding quantities entering
the photoproduction amplitude of the previous chapter. It should be stressed in this
connection that in this energy region single and double pion photoproduction cross sections
are comparable and that the A plays a dominant role in both of them : its consistent
treatment in the KIT case might be desirable in the future.

It is also worth stressing that because of the dominant electric S.ë term the A in the
TTTT region is not transverse. Hence a substantial contribution of the A in the longitudinal
response function in (e, e1) may be expected.

5.2 Vector meson photoproduction

Photoproduction above the p threshold can come from three different mechanisms : a)
diffractive dissociation, b) resonance production, c) Born production.

The first, as can be seen from Fig.lSa), corresponds to the coupling of the photon to
two pions one of which scatters on the nucléon (where the black box probably contains
mainly a A) and eventually recombines with the othei one. This resonant (TTTT) final state
interaction of the mechanism of §5.1 might increase at high energy the previous cross
section which decreases as (^).

However this process has never been quantitatively estimated and will be ignored in
the following discussion.

As regards mechanism b), the substitution of the TfJVA vertex /A^. q with gpN&.S.qX. p
where JPJVA — /A and a rule of the thumb estimate with respect to Born production (see
the following), show that this term may not be negligible.

Since we are away from the resonance, both direct and crossed A terms must be
considered (remember that N.R. the propagators go like a_^a and U+WR respectively)
with a corresponding partial cancellation in the spin and non spin-flip terms according
to the p charge. However, as mentioned in Chapt.4.I, the treatment of the crossed A
introduces additional theoretical ambiguities.

Let us finally discuss mechanism c) [29].
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The basic question to be answered amounts to whether the principle of minimal e.m.
coupling in the free p Lagrangian

where p^v = 8^p1, - d^p^, the arrow denoting isospin, yields the correct photoproduction
amplitude. Such a prescription results in the standard ~fpp vertex [154]

with the symbols as in Fig.(19).
In addition, because of the pNN tensor coupling in

a 7 JV JVp seagull term appears, so that the total amplitude (if the momentum variation of
form factor is neglected) is by construction gauge invariant.

In the previous expression the tensor coupling has not to be regarded as fundamental,
in total analogy with the nucleonic e.m. current

3 3 iiM\(102)

of general use (as for instance in pion photoproduction) . However if one imposes invariance
under a local isospin transformation [155] for the interacting ps and nucléons (i.e. for
Eq. (99) (101) and for the free nucléon Dirac equation), which amounts to assess the
freedom of choosing the phase independently from spectators, Eq. (99) is inadequate in
two respects. The first is that p*^ must go into

P11U = drfv - 9,,P1I. + J[P^, pv\ (103)

where g = gpNN and where the last term is due to the non abelian structure of the group.
Second the rho must be massless, because the mass term is not invariant under such a
transformation .

Even forgetting about the mass problem, of course the minimal substitution by using
PIIV Eq.(103), modifies the pp7 vertex prescription of Eq.(lOO). In addition in such a
scheme vector meson dominance (VMD) enters as an assumption i.e. that for virtual
photons the 7 does not couple directly to hadrons but is mediated by the p.

The satisfactory solution to all these problems comes by demanding invariance of the
theory under a local SU(2)i X U(l)Y (I = isospin, Y = hypercharge) symmetry in total
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analogy, mutatis mutandis, with the corresponding electro-weak case. Hence only the
basics will be recalled.

An isospin triplet of massless spin one vector bosons Vf1 is introduced in addition to
the e.m. potential BM.

The covariant derivative for the fermion field is thus

D^ = (3ll + ig0^-t-eaBlt)^ (104)

The boson mass is generated in a standard way through the spontaneous symmetry break-
ing due to Higgs bosons. In the simplest way (consistent with the global SU(Z) symmetry
of our problem) they are a scalar complex isodoublet i.e. four fields, three of which go
into the longitudinal components of the now massive gauge bosons, the surviving fourth
(of non-zero vacuum expectation value < H >= IJIQ) realizing the spontaneous symmetry
breaking mode. Its interaction with V11 and B11 yields a mass term

^So2IVj1'' + V^] + j*gfa>V* - C0B11)* (105)

which can be diagonalized through a rotation in terms of the physical p° and A1^

ç go
where

Hence the physical photon is massless as due, and there is a mass splitting between charged
and neutral ps

2 nv^£± = (£)« (107)
mf g

which yields for g2/4ir = 2.3 (see below), Am = 1.22 MeV.
This prediction has to be compared with the weighted experimental average of 0.3d:

2.2 MeV [157]. New and consistent measurements would be welcome.
This relation has been originally obtained by Bando et al [158,159,160] in a non lin-

ear theory of pions where nucléons appear as solutions of the corresponding Skyrme La-
grangian.
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In this electro-strong coupling, the new free parameter of the theory is given by the
Higgs mass ma- Since the Higgs couples to pa with a coupling go7r.P (times isospin coeffi-
cients), it might be observed in the p photoproduction process ^N —» NpH as well as in
e+e~ -> p°H.

As in the analogous electro-weak case, its confirmation is essentially an experimental
problem.

However due to the strong coupling ( jjj < 1) the phenomenological analysis relevant
in that framework [161] cannot be simply taken over to our case.

As regards its mass the only handwaving consideration one can make at present is that
because of the coupling H —» (pp)NN, a. light Higgs mass is forbiddent by the analysis of
the nucléon-nucléon potential [162].

Whether the Higgs is a reality or simply an artifact to account for more fondamental
things is not clear [163]. In order to further check the present picture one should concen-
trate rather than on the Higgs itself on possible tests of the non abelian structure of the
theory.

In this connection it has to be stressed first that the previous diagonalization is possible
at all k2-values i.e. also for virtual particles. It entails that in considering the propagators
of the physical p° and A11, the off-diagonal term V*B11 is absent.

To see the consequences in the interaction with matter fields let us first introduce the
coupling with electrons

One has therefore the standard ^ee coupling, plus a direct p°ee interaction of strength

In all electromagnetic processes i.e. e+e~ —> e+e~ or Bhabha scattering, propagators
combine so as to yield

1 e2 1
e2(e + ̂ fc2^) (l09'a)

the momenta of both virtual particles being labelled by k as from Pig. 19. The following
comments regarding Eq.(109.a) are in order. At low momentum transfer (fc2 « m2) the
photon contribution dominates and one measures, as due, the physical electric charge e.
This is clearly seen by considering that at high momentum transfer the photon propagator
just gets multiplied by e2(l+^a) = e§ explicitly showing the strong interaction contribution
to the electric charge renormalization. This is obvious since in the latter limit masses can
be neglected and there is no mixing so that only BM, because of quantum numbers, can
couple to electrons. The result of Eq.(108) is consistent with the experimental limits on
strong interaction modifications of the above mentioned electromagnetic processes as well
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as with the standard treatment of the strong interaction vacuum polarization in the g - 1
of the muon [164].

When considering e+e~ —» p+p~, if and only if, as due from the rotation in the 3-linear
coupling in the analog of pMI/ p*1" where V11 fields, enter,

: (2?,, - K11)C0V - (q + If)0Q^1, - (q - 2k)vgalt

the fields appearing at the vertices Eq.(108)(110) naturally combine to yield the propaga-
tors

I e 2 I e2 m l

i.e. the VMD recipe [156].
As a consequence of Eq. (110), the ipp vertex has additional contributions with respect

to the prescriptions of Eq.(lOO). The possibilities of using e+e~ as an additional test of
the present framework by predicting in a parameter free way (because of the fixed ppp
and pppp couplings) the large 4;r and 6jr cross sections [165] will be examined elsewhere.

Additional hadrons can be introduced in the present scheme, by requiring their total
interaction to be invariant under the total SU(Z) x 17(1) group under consideration.

Let us consider pions.
In this case the only possible (universal) coupling between the gauge fields and pions

obeying the symmetry group requirements is

£».ml = 9oV^.(f X d^ff) (lll.o)

(in elementary terms since the pion current is an isovector it can only be coupled to the
isovector gauge field in order to form an isoscalar interaction).

By reexpressing V11 in terms of the physical fields one has for the third component

£,.,-„«" = 9(Pl + -gA^ x c^Tf]3 (111.6)

i.e. both the p°ir+ir~ and the standard direct isovector coupling of the photon (irrespective
of whether it is real or virtual).

It is worth stressing the general validity of the previous result which has also been
obtained in the non linear sigma model of Réf. [158] with a particular choice (a = 2 repro-
ducing the KSFR relation) for a sort of a Lagrange multiplier a in the total Hamiltonian.
In ee —> JTTT scattering (in all channels) the fields entering Eq.'s(108,lll.b) combine as in
P+P" case Eq.(109.b) predicting the p dominance of the e.m. pion form factor .
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In the present approach the whole axial sector as well as the interesting speculations
about the description of baryons in terms of effective mesonic degrees of freedom only
[166], has been left out. It is more economical for our purposes to regard the nucléon as
well as an explicit degree of freedom for low-energy phenomena.

It is then clear, by taking for simplicity only the vector part, that Z-/NN and £PJVJV
Eq's (101,102) derive by «expressing again the gauge fields appearing in the covariant
derivative entering the VNN interactions as

One gets therefore at the same time the usual coupling constant g = gpNN (apart from
small O(rj) isospin breaking effects) of the p to nucléons and a corresponding e for the
e.m. field.

As before, for the isovector part A11 and /J° appear in the right combination because
they are stemming from the V° coupling, which makes the propagators subtract, thus
reproducing also in eN — » eN the VMD result.

The direct coupling of the photon and of the p both to (e, e') and to (AT, N') makes
clear that, automatically, such a combination is possible also for the induced tensor part
only if

K
v =K" = 3.7 (113)

This sort of generalized VMD results quite naturally in our scheme since also induced
tensors must come from the original VNN Lagrangian through the same rotation which
makes A11 and p^ appear in the e/g ratio for the vector interaction Eq. (112), necessary to
reproduce the VDM recipe without assumptions. The prediction of Eq. (113) may seem in
contradiction with the value usually quoted KP ~ 6.6 [167]. In this connection it has to
be observed that the extraction of the tensor coupling from experimental data is a model
dependent procedure.

In particular the result by Hohler and Pietarinen is based on the neglect of the inter-
mediate A in the iteration of the "background" one pion exchange potential.

Indeed these numbers should not be taken at their face value. In spite of their impor-
tance as regards for instance the sign of the net (pion + p) NN tensor force, they have
a significance only in a given context i.e. depend on the other ingredients present in the
model and in the wave equation used (let us remark in passing that K/ ~ 6.6 for the Bonn
potential [61] whereas Kf ~ I for the Paris potential [168].

As regards the isoscalar part one has to enlarge the previous SU(Z) group to accomo-
date the w in order to have the proper orthogonal combinations.
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Whence one understands the equality between the isoscalar photon- and w-NN tensor
coupling constants.

It is therefore worth stressing that from the knowledge of the nucléon anomalous
magnetic moments Eq.(102) and from the experimental p,u — * e+e~ widths (F ~ -^m),
i.e. from purely e.m. processes, one can predict quantitatively the vector boson part
of the nucléon nucléon potential, namely the near equality of the repulsive 01 term due
to the vector coupling and of the attractive p determined by the tensor coupling. This
predictivity holds up to form factors included (as discussed below).

The same mechanism we are advocating shows up also in C. V. C. [169,170] revisited. In
other words the "weak magnetism" term also derives from a field rotation in the induced
tensor part of the interaction. It is amusing to realize that the e.m. value of KV =3.7
determines the corresponding weak as well as strong interaction coupling constants.

The previous results combine straightforwardly to derive the p photoproduction am-
plitude in the simplified case of no momentum transfer variation of the form factors at the
vertices. Pedagogically one can separately discuss neutral and charged photoproduction,
without and with induced tensor coupling.

Denoting the general amplitude by e*1 P11M^, one can immediately verify in the neutral
case that both

= Q

and
q^M^ = O (114.6)

i.e. that the amplitude is both gauge invariant and p transverse . In the charged case
without tensor terms, provided ones uses the final on-shell rho transversality condition
q"pv = O (pv denoting the rho polarization), both prescriptions Eq. (100) and Eq. (110)
lead to a gauge invariant amplitude.

This is obvious since the two differ by

&VaiiV = -kag^ + kvgalt (115)

which corresponds to a (k divergenceless) unit anomalous magnetic moment for the p.
However only the second prescription leads to a p-transverse amplitude, in accord with

the general principles of Yang-Mills fields [171].
The introduction of tensor terms shows, again, that only if KV = KP p transversality is

satisfied. If one considers in addition electroproduction, VMD is obtained automatically
only thanks to the above-mentioned proportionality among ^NN - pNN and ~tpp — ppp
vertices. Also in such a case the amplitude is transverse, proving the strict connection
between universality and transversality. It is parenthetically worth stresssing that the
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shadowing properties for real photons (see next §) have to be determined by a mechanism
where only the «y enters (Hm. fc2 —» O in Eq.(109.b)) and moreover that -y and (e, e1) (where
both particles intervene) do not have to have, a priori, the same shadowing behaviour .

In conclusion the requirement of invariance of the theory under a local SU(Z) x U(I)
group provides a consistent framework to accomodate predictively and consistently for a
number of physical properties which were separately known or assumed.

One should note in particular, because of the link between e.m. and strong interactions,
that the presence of genuine (i.e. non arising from iteration) three-body parameter free
forces due to the ppp vertex (in addition to those coming from pirn) follows naturally,
although their numerical relevance is at present far from settled.

In addition, there is a parallel link among e.m and strong form factors.
Let us first recall that the isovector electromagnetic form factor of the nucléon is only

measured in the time-like region for a > 4M2 and in the space-like (t < O) region where it
is reasonably well reproduced by a dipole fit (jp^j)2 with A ~ 800 MeV.

Hence JPJVJV(*) — ff/>wjv(0) J^TJ, this additional intrinsic form factor with respect to
the one naturally provided by VMD being simply understood as originating from vertex
corrections due to intermediate pions (and pa).

The usual parametrizations of the pNN vertex from the JVJV potential as A,J^P with
A' ~ 1300 MeV reproduce the variation of the previous form in the relevant — m2 < t < O
region rather well .

As regards the pion, its form factor is measured for all t and s values. The p coupling
leading to Eq.(109.b), with the proper introduction of the p width, essentially accounts
for all of its structure i.e. gpr^(t) ^ const = gPmr(Q).

Deviations from a strict constancy can be appreciated from the comparison of the

measured %F = 2.3 = £ with af"^ ~ 2.8
Because of its manifest lack of structure, the first process yields the universal g coupling

constant in agreement with the measured g/,** and Jpjyjv at t = O. Of course such a

universality should not hold at s = m2 since, whereas 3p" /^v —1.1 the information from
r ffpinr^UJ

e.m. form factors guarantees that S f N N TV > 2, according to the extrapolation.

The only place where one can measure gfNN(rn^) is represented by p photoproduction
(in the Born graphs of fig.18). Once form factors are allowed however, the photoproduction
amplitude is, as well known, no longer gauge invariant nor p transverse. Because of the
previous discussion, both these properties have to be always obeyed by adding countert-
erms not uniquely determined by low energy theorems [192,193,194]. To get an idea about
the orders of magnitude involved one immediately obtains for charged ps at threshold, the
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analog of the Kroll-Rudermann

,ktdff _ , M \^ef?NN g-xtf
2PoI "1O (116)

coming from the seagull plus the direct Born with pNN and 77VW vector vertices. Notice

that fe- = (1 + K')^ so that fpNN = if'pNN.

The previous term is not as dominant as in the pion case since corrections in the former
case are U(^-) whereas here O(^) . This underlines the importance of the correct form
for Van? since, as can be immediately seen e.g. by a non relativistic reduction at threshold,
p-in-flight terms are a substantial correction to the seagull.

An estimate of Eq. (116) with the quoted value for the coupling constants at t = O
yields ~ I2p.b/Sr for charged ps i.e. roughly the same magnitude than for charged pions.
To have the final correct amplitude already on the nucléon, of later use in a nuclear
context, all mentioned problems connected with form factor variation (with some possible
additional ambiguities concerning the momentum transfer at the seagull vertex) have to
be explicitly worked out.

Let us finally come to p exchange effects, and let us first establish the connection
between the commutator of the dipole operator with the p exchange potential and vir-
tual p photoproduction in the unphysical long wavelength and static limit as used in the
derivation of the Bethe-Levinger sum rule.

In this limit no differences arise (see Eq.115) from the use of the correct prescriptions
for the IPP vertex intervening in the />-in-flight diagram.

As regards the other terms it is immediate to check that in Eq. (23) the term S.p x e,
corresponds to the previous N.R. limit and (a x q.p2qe)/(q2 + mjj.) to the N.R. limit of the
first term in V17111, of the p in flight diagram (i.e. the pedestrian attitude of treating the
rho in flight in total analogy with the pion in flight).

The term qvga^, even if present in principle because qvp" = O does not hold for off-shell
particles, does not contribute when the virtual p is attached to a conserved current i.e.
to the second nucléon. Therefore the only additional contribution comes from the non
contact p photoproduction off the nucléon.

Of it, only the part coming from positive energy states can be dropped if p correlated
ground state wave functions are used. As usual a potential formalism inherently yields
an approximate form of virtual photoproduction. Consequently also as regards nuclear
Compton scattering the cancellation (necessary to ensure the low energy Thomson limit,
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outlined in Réf. [19] for the pion) between KP and the negative dispersive effects due to
real rhos plus the genuine seagull (i.e. two photons at the same point) off the exchanged
p ia not exact. This can be regarded as a first approximation and as proof of the limits
implicit in a Hamiltonian formulation at low energy.

The above considerations explain in any case the preference for a microscopical poten-
tial rather than for a phenomenological one, since in the former case the double commu-
tator can be naturally connected to a genuine photoproduction process.

Therefore the standard attitude of identifying Kf with the integral up to the pion mass
of the experimental photoabsorption cross-section which was already shaky in the ff case,
is totally non quantitative in connection with virtual rhô photoproduction.

In the closely related and much more studied [172,173,174,175] (e,e') process, because
of the higher momentum transfer e.m. form factors must be introduced and the amplitude
obeying Eq.(114) can be reconstructed in a non unique way.

As regards the interaction a non linear ppp coupling had already been used in Réf. [174]
together with the VMD assumption of attaching the virtual 7 to the p with a coupling

X-
In the light of our previous considerations it corresponds in the end to the correct

formulation provided one uses at the same time KP = KV .
Such an approach obviously and correctly differs by a factor of two in the transverse

exchange current due to the extra anomalous magnetic moment Eq.(100) with respect to
the recipe Eq.(lOS) used in Ref.[176] and in Ref.[177].

5.3 Shadowing

The fact that reactions on nuclei initiated by non strongly interacting particles might
show a departure from a linear dependence on the atomic number A, has been pointed
out a long time ago by Bell [181] and by Stodolsky [182] and extensively considered in the
literature [183,184].

These authors have explained the apparent paradox that a particle with a very long
mean free path can be substantially shadowed by other nucléons in traversing a nucleus.

Indeed, according to classical arguments whereas it is easy to understand shadowing
for a strongly interacting particle, since the beam intensity, due to the large cross section,
decreases in traversing the nucleus, with a corresponding geometrical A2/3 behaviour, the
appearance of such a phenomenon in photoreactions may seem puzzling.

As well known one already talks about shadowing in the classical scattering of light
[185]. In such a case the forward propagation through an infinite slab of material of the
unscattered beam is changed, because of the interference with the coherently scattered
waves (secondary wavelets) by the amount exp(«27T(£ / z/fc), (where d is the nuclear density,
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k the photon momentum, / the forward scattering amplitude and z the distance travelled
in the medium). This leads to a complex index of refraction and to a corresponding
damping of the transmitted wave proportional to the total electromagnetic cross section
(optical theorem). Hence generally speaking this quasielastic mechanism can provide an
effect of the order of the percent.

The substantial shadowing observed in the region a > 2 GeV (see Fig. 20), has been
explained either in the vector meson dominance scheme or by using a description where
photons are decoupled from rhos.

Although " the question of whether the photon changes into a p before or after reaching
the nucleus is a purely matter of taste" [184], we prefer to keep the second (less misleading)
picture for two distinct reasons.

The first is that in a correct treatment of the e.m. interaction of rhos and nucléons,
ps are decoupled from photons as shown in the previous §. The second is that one must
explain at the same time why shadowing is not observed, on the contrary, in the A
region(see e.g. Ref.[7]) where ps play manifestly no role.

A common framework is then required. This is provided by the obvious observation
that photoabsorption at a given energy is simply given by photoproduction of the real
allowed particles eventually followed by final state interactions.

As regards the A region, sum rules have been derived for the magnetic part of pho-
toabsorption [122,124] predicting a linear dependence on A in this region in contradiction
with earlier results obtained from dispersion relations [126]. However both results are
unreliable.

The first because is based on the assumption of a final A and hence misses the possibil-
ity of interference (see below) . The second because both the theoretical knowledge and the
experimental photoabsorption strength entering dispersion relations in the " asymptotic"
region considered (~ 20 GeV) prevent from any definite conclusions.

Shadowing is a simple quantum mechanical interference effect between one and two-
step processes, whose presence or absence is governed by the A dependence of the coherent
photoproduction mechanism [187].

As a matter of fact the amplitude for the general [O >— » |n > transition is given in the
plane wave Born approximation for the final particle by

M ~< n| Ei e'ti-^'iLffi + K)\0 >

,.. d3q' <0|E,.e''W'-E)-a'K|0>
'

where f ( q , q') is the amplitude for inelastic scattering on the nucleus of the intermediate
particle of momentum q1 and energy iaqi produced by a photon of momentum fc to a final
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particle of momentum q. In standard notation L stands for the spin flip part of the
photoproduction amplitude and K for the spin independent.

For simplicity the small nucleus recoil has been neglected. We are then reaching the
same nuclear final state |n > via the direct process plus the one in which a neutral particle
(nQ,p°) is coherently photoproduced (spin independent part of the Hamiltonian) on the
nucleus, followed by inelastic rescattering in all three charged states.

By assuming on shell propagation to be dominant (or at least indicative), such a
mechanism does indeed reduce the initial wave (in fact the spin independent part K if
we neglect the spin structure of / which is known to play a small role) since we get +i
from the energy denominator and +t from the imaginary part of /. The one and two-step
mechanism of Eq.(117) are respectively reported in Fig.2Ia) and b).

In writing down Eq.(117) several approximations have been made.
The first concerns the crossed term which yields manifestly always only an off-shell

contribution and has hence been neglected in accord with our previous position.
The second regards the fact that in the two step mechanism it is possible to reach the

final state < n| via any intermediate state |n' >.
Whether it is legitimate for our purposes to drop it, will be discussed in the following.
All the usual quantum mechanical considerations appropriate to two-step processes can

be applied to the second term of Eq(IlT). In particular (see e.g. [195]) the second step
represents the probability amplitude for reaching |n > via the final strongly interacting
particle.

Its evaluation which is essential for our arguments, is intrinsically difficult for a number
of reasons. The first is that estimates are generally based on a geometrical " eikonal" model
of mean free path.

This is questionable not only because of its probable excessive simplicity, but also
because of the fact that when considering the problem with correct boundary conditions,
the modification of the in medium momentum introduces residues [188], which can be
easily evaluated only for a uniform medium. Hence A independent. Whereas on the
contrary a finite geometry is necessarily used for the disappearance probability.

With this proviso in mind, the probability for the second step, i.e. that a particle with
mean free path A = ^ survives after having quasielastically scattered through a nucleus
of radius R, is given by the ratio of the mean free path times the scattering cross section
over the nuclear volume i.e. by the well known expression P = 4/3^3 — \ 5^53 where

« = *&[! - (l/2y2) + (l/2y*)(l + 2y)e-
2"], y = f.

Already for A = ^ the term in brackets differs from 1 by about 10% so that the
cross section practically corresponds to the geometrical (black disc) one. Therefore the
amplitude probability of the second step is given by ^/3/4(\/Ro)A~1/6 = \/P1A~l/G.

65



In the one step part, of course all final states |n > are allowed, so that one has to
consider coherent photoproduction in addition to all quasielastic transitions (|n >^ \0 >).
Keeping to these latter ones, which are generally thought to represent the bulk of the
process it is obvious that their contribution to a goes like A (hence A1'2 in the matrix
element).

Therefore shadowing can happen only if the two step contribution has a different A
dependence.

From the previous arguments, for all photoproduced particles the sum over excited
intermediate states |n' > would modify the one step part amplitude by a term proportional
to A"1/6, hence resulting in a small antishadowing common to all energy domains, which in
view of our necessarily very simplified evaluation, we regard as consistent with constancy.

Therefore shadowing can come only from the coherent effect of an elastic first step, and
explicitely depend on the form of the photoproduction amplitude. In this connection it is
worth stressing that shadowing cannot be counterfeited just by using an optical potential
for the outgoing particle ; this approach misses the essential point i.e. interference .

Let us now consider the different energy regions.
i) A region and pion photoproduction.

Experiments on i,ir° [190] exist, but since the (small) coherent part of the process has
not been separated out, they are inconclusive in this respect.

Theoretically, K is given by the well known q.e x k term, and the amplitude by

fd3rp(r)t

where p(f) is the spherical nuclear density and <f>* the pion wave function. By assuming
for simplicity a plane wave for the pion one obtains q.k x fAF(\îc - q\) where F is the
nuclear elastic form factor, with the usual normalization .F(O) = 1.

The fact that the coherent amplitude does not go like A has been somewhat recognized
in the literature.

Indeed, in the A - A model the possible shadowing effect we are talking about [131]
(which is needless to say completely general and not peculiar to that model) has been
considered and it has been argued that " the A2 factor associated with a coherent process
(in the cross section) is more than compensated by damping of the pion wave function and
by the nuclear ground state form factor" . However, for technical reasons calculations do
not go beyond 16O so that reliable predictions about the A dependence cannot be made.

Some heuristic considerations have been recently made [188] observing that application
of Green's theorem to the previous expression yields
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This suggests that the production mechanism is probably more sensitive to the surface,
rather than to the bulk of the nucleus, with a corresponding A2/3 dependence. In addition
also a realistic treatment of the distortion of the pion wave function favours a surface
peaking. In this extreme case the A dependence of the second term of eq.(117) is the
same A1/2 of the direct term (ff ~ |M|2 ~ A). Therefore even an increasing acok (i-e-
a — 4/3 > 1), provided it does not exceed a typical 10% at most (i.e. in heavy nuclei) of
the quasi free process to which it must be added, does the job, since its additional effect
as a shadowing agency in the two step process is null.

The previous study case can therefore be considered as an upper limit for the non-
occurrence of shadowing. Of course, iiffeoh. goes like A" with a < 1, shadowing necessarily
does not take place.

With the warning that of course in all these considerations there is no universal A
dependence but that it may differ as a function of u;, preliminary results of a detailed
calculation all over the nuclear table [189] show a decrease in A of coherent (7, JT°).

This substantiates the simple idea that shadowing does not occur in the A region
because of the surface nature (q.k x e which acts against collectivity) of the coherent TT°
photoproduction amplitude,

ii) 500 Mev < u; < 1000 MeV
In this region the Dominant mechanism has been shown to be the two pion production

via the A contact term S+.qS.e. In this case, as well, the non spin flip part i.e. 2/3q.e is
a surface interaction,, depressed in the forward direction (£a(9-«.\)2 = 92sin2 O). Hence
we predict no shadowing in this region either,

iii) p production (w > 1 GeV)
Here, we can indeed have coherent p° production with the desired properties (i.e.

volume effect) via P^e11 terms (p standing here for the rho polarization), as confirmed e.g.
by an explicit calculation of Born diagrams.

This can be immediately understood in more physical and simple terms by recalling
that since the p has the same quantum numbers of the photon one can think of the above
term as deriving from the corresponding e*1^ of Compton scattering.

In such a case the one and two step processes give a contribution to quasielastic
scattering a ~ A(I - zA1/3)2 where x — ï/P^.a stands for the probability amplitude
mentioned above times the ratio of the coherent to quasielastic amplitude. To this we must
of course add aeoh — a2A2. It is then easy to see semiquantitatively that an increasing
coherent cross section can nevertheless indeed cause shadowing.

Let us also mention that the rho has been considered as a stable particle and that
the relaxation of this assumption results in smaller effects because of a reduced mean free
path due to decay. Of course with increasing energy this effect will disappear following
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the relativistic time dilatation.
To get,an idea about the order of magnitude of the effect let us recall that the per-

centage of cross section per nucléon at w ~ 2630 MeV1 respectively for D, O, Ca and Pb
is .96, .89 ± .02, .83 ± .02, .83 ± .02.

By recalling that ff(pN) ~ 40 mb yields A ~ 1.4 fm, we see that this is somewhat
accounted for by a ~ 1 -f- 2%, showing that even a small interference can cat--8 appreciable
shadowing effects.

The present considerations are applicable to (e,e'), with the usual conclusion, as re-
gards the virtual 7, that at fixed w (or invariant mass B) fc2 ̂ - O implies more damping of
the nuclear form factor (hence smaller z) with respect to the real case.

As regards the experimental situation, in the same energy loss region we are considering
for real photons, there seems to b<- some evidence at moderate momentum transfer for a
slightly smaller shadowing than for i^.il photons [191].

It is worth mentioning in this cour -ction the possibility, to be explored with future
machines, of a different behaviour of tLe longitudinal and transverse response function. As
regards, the A region it is immediate to realize from the form of the photoproduction op-
erator that no coherent longitudinal TT° electroproduction is possible. Hence no shadowing
will be observed in the longitudinal response function either.

As regards the p region, because of the foregoing arguments, one can have on the
contrary coherent longitudinal p° electroproduction. Its ratio to quasielastic processes
would then determine the independent longitudinal (e, e') shadowing (or antishadowing)
behaviour.

The experimental confirmation of the absence of shadowing in the region of photopro-
duction of two uncorrelated pions and the investigation of the above mentioned possible
different shadowing behaviour in electron scattering are awaited.
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6 Conclusions

As a first general remark, one may provocatively question altogether the advantages and
the extra informations one can get from the electromagnetic probe over strong interactions.
Indeed the fact that photoproduced particles must undergo the same final state interactions
of the corresponding strong process, drastically alters the naive picture of the weak probe.
However in the latter case, due to the different multipolarities of the e.m. field, different
mechanisms of excitation of the same final state are possible first, and second one is in
the presence in the nuclear case, in general, of a volume interaction with the ensuing
possibility of exploring different nuclear density regions.

Therefore photoreactions really furnish complementary pieces of information.
In the present paper photoreactions on nuclei up to the GeV region have been reviewed.
The main features of the three intrinsically intertwined regions i.e. i) low energy up

to the pion threshold ii) A, and iii) vector meson region, into which we have nevertheless
schematically subdivided our treatment are the following. As regards the operators to be
used in the different energy regions, processes in i) are satisfactorily described in terms of
virtual photoproduction, consistently with the corresponding operators used above thresh-
old .

As regards ii) the problems connected with unitarity and frame transformation have
been overcome in a consistent and parameter free way, providing an amplitude of unam-
biguous extension to nuclei.

In region iii) the problem of the photoproduction amplitude of vector mesons has
been solved thanks to a Higgs mechanism, similar to the one operative in electroweak
interactions. However, it has still to be put in a form appropriate for nuclear physics.

As regards the total photoabsorption cross section it is well understood why in region
i) the integrated cross section is Hn .:-> in A with one classical sum rule contribution
from the kinetic part and a comparable one of dipole (El) exchange character. Possible
magnetic (Ml) contributions are on the opposite strongly depressed.

In the A region, the total integrated cross section is again linear in A due to the par-
ticular form of coherent Tr0 photoproduction which might, in principle, cause shadowing.

It is made up both of Ml (magnetic A excitations and of El (contact Kroll-Rudermann
term) contributions, roughly in the ratio 3 to 1. As a consequence whereas the electric
polarizability is determined by low energy nuclear effects, the magnetic susceptibility is
mainly affected by real A photoproduction.

This picture provides a natural framework to understand the physical foundation of
the quasideuteron model at low energy since the dipole exchange contribution necessarily
produces a pair of particles with dipole moment different form zero.
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The corresponding suppression of (pp) in the A region, is on the other hand a priori
unexpected and sort of accidental.

At higher energy shadowing for ps emerges naturally from the p photoproduction
amplitude which allows direct and coherent two-step processes to interfere and to reduce
consequently the intensity of the photon beam.

Of course, this overall seemingly satisfactory portrait, cannot hide all the difficulties
inherent to nuclear physics when one asks for more detailed informations i.e. " true" many
body dynamics, wave functions etc.

It goes without saying however that a progress in our understanding can only come by
refraining as much as possible from a wide-spread dull fitting habit.
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A Appendix

We report here the expressions of the current in an arbitrary frame, entering the scalar
response function of (e, e1) in a more explicit form, particularly as regards rescattering,
than in Réf. [99].

This is relevant for the proof of the gauge invariance and frame independence of
the amplitude used in chapter 4. Moreover, it shows explicitly, in contradiction with
some of the existing literature, the presence of the A resonance in such a response func-
tion, even without an elementary Coulomb coupling, because of two distinct reasons i.e.
rescattering and frame transformation. The Born terms read

^-")! C")

Hi** - ") - ̂ P". - "M

* -DCR'
A common form factor F(Jk^) of the usual dipole form is assumed for all virtual -y couplings.

The reason for such a. choice is that, coherent with our 0(p/Af) N.R. reduction the
amplitude has a range of validity limited to fc < 400 MeV/c. Hence the possibility of
allowing for different form factors will be neglected because of its little numerical influence.
On the other hand the determination of the gauge invariant amplitude in the latter case,
by adding counterterms proportional to Jb^ is beyond the validity granted by low energy
theorems [192,193,194]. Therefore such a reconstruction is an open problem.

From the previous equations it is immediate to realize and the corresponding ones for
J of chapter 4.1, J has a dominant zeroth order term (ff.e) plus all remaining 0(p/M)
pieces, whereas correspondingly J0 has 575, jjf^ versus the rest, plus the pion in flight
in both places to be placed in the first category.

The frame independence of the amplitude (J1, —» J1^) can be proved using Eq.'s (75,
76) consistently with our nonrelativistic reduction up to 0(p/M) included only.

Rescattering of interest for (e, e1) can be expressed in terms of the standard resonant
multipole

ff.k rl (Sy-

~2~ J-i~2
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and of the longitudinal A current

W

This latter term is immediatly seen to satisfy gauge invariance with the longitudinal part
of the A current Eq. (74). We note in passing the obvious current non conservation (except
at w = MA — M ) when the form of the A current of Ref.[129] is used. As before the
phase Sg, F, and VA are function of q i.e. the c.m.s. relative momentum.

The total contribution reads therefore

JoB Jo,A ~t—J-0U-I0/ £)*E sin 5

for TT ~
•v/2 \/2 -c

JK — jit i j — — Sjj_(3/2Ve sin 5 (A 7)

for*-0

Jo" = JO.B + ̂  JO.A - |s1+(3/2)ie" sin S (A.8)

where to the leading order c.m.s. and laboratory quantities can be interchanged in Sj+.
The reason to prefer to work with JQ rather than with the longitudinal component stems
from two distincts reasons.

The first is that the particle physicists' attitude to these the gauge condition in order
to avoid the explicit calculation of JQ is no great gain.

The second is that the extraction of the contributions to the transverse resonant mul-
tipoles via the projection technique, cannot be applied with the same very good accuracy
to the longitudinal ones.

This is due to the fact, which can be best seen at u — O as explained in [99j, that for
the longitudinal part, these is a competing mechanism concerning the angular dependence
between numerator and denominator. We therefore prefer the correct and simple expres-
sions for the transverse part given in the text, and the explicit more cumbersone one given
here for the charge.
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Table Captions

Table 1 Quantities pertaining to TT JV in the A region, q stands for the pion c.m. momentum,
Tr for the lab. kinetic energy, W for the total invariant mass, SB for the (3,3)
Born and, 6&Cr for the neglected crossed A phase shift, 633 = SB + SK for the
theoretical prediction, undistinguishable from the experimental one and F for the
A width. Finally w (lab.) and oi (c.m.s.) are ths corresponding energies in the
pho'oproduction process. All energies in MeV have been rounded off.

Table 2 Projection operators for the lowest order photoproduction (transverse) multipoles.
Second column refers to the multipolarity of the e.m. field, £ to the orbital J to the
total T f - N angular momentum. Pion and photon momenta are denoted by q and k
and e = ex is the transverse photon polarization. All quantities in the c.m.s. .
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W SB $Acr 533

53
77
96
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127
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168
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240
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1.
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.36

.22

0.02
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0.11
0.17
0.23
0.30
0.38
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260
270
280
290
300,
310
320
330
340

Table 1:

Multipole
EQ+

M1-
EZ-

M1+

EI+

e.m. multip
El

Ml
El

Ml

E2

t
O

1
2

1

1

J

1/2

1/2
3/2

3/2

3/2

Operator
iff.e

ff.q.ff.k x ê
iff.ë — 3iff.<

3i(ff.ëq.k -

qq.f

ff.kq.ë) +Zff.qff.k x ë

3i(ff.ëq.k + ff.kq.ë)

Table 2:
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Figure captions

Fig.l Total photoabsorption cross section per nucléon as a function of the photon labora-
tory energy w. From réf. [7].

Fig.2 Real and imaginary parts of the forward scattering amplitude on Be in MeV"1 as a
function of the energy w.

Fig.3 Two body El exchange current due to pions and rhos (dashed lines. Full and wavy
lines for nucléons and photon).

Fig.4 Contribution to Compton scattering. Symbols as before. Diagrams (a)-(d) represent
at the same time the enhancement factor K to the dipole sum rule. Diagram (f),
with an intermediate n° only, numerically negligible.

Fig.5 Compton scattering and dipole sum rule enhancement contributions due to a (a)
and w (b) mesons.

Fig.6 Photoabsorption cross-section for the even isotopes of neodymium. Note the pro-
gressive broadening of the dipole resonance in going from the spherical Nd14^ to the
statically deformed Nd150 where the mode is split into two peaks. Taken from Réf.
[89]

Fig.7 a) Born (lowest order) graphs contributiong to pion photoproduction. Solid lines
stand for nucléons, wavy for photons, dashed for pions and hatched for A.
b,c) Rescattering terms in the (3,3) channel up to the first order in the background
phase shift 6g.

Fig.8 T = 3/2 multipoles vs. the c.m. energy w. Solid line result of the present unitary
calculation without u and crossed A contribution. Dash-dotted line no «scattering.

Fig.9 Total 7p —» nir+, 7« —> pn~, ~/p —> pn° photoabsorption cross section vs. invariant
mass W. Full line result cf the present unitary calculation. Dash-dotted line (undis-
tinguishable in the x° case) without «scattering. Dotted line contribution of the w
term alone. In all three cases w and crossed A neglected in the full curve.

Fig.10 Typical angular distributions at various values of W with (full line) and without
(dashed dotted) «scattering for IT, TT+ (a) 7Jr~ (b) 7, JT° (c). In the last case also
asymmetry at 9 = 90° vs energy o>. All quantities in the c.m.s..
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Pig. 11 Total pion photoproduction cross sections (full curve) function of the c.m. energy
w (MeV). Dashed and dot dashed without the A and without the total magnetic
contributions.

Fig.12 Total photoabsorption cross sections on the proton and on the neutron. Symbols as
in Fig.ll.

Fig. 13 Photoabsorption cross section per nucléon (data from [125], dots refer to Pb and
crosses to U. The dashed line represents the predictions of the free Fermi gas model
(kp = 1.3/m"1 ; dotted and dash-dotted lines refer to the Permis gas model with p
exchange and short range correlations (g1 = 0.3 and g1 = 0.5 respectively). The solid
line is the result of the self-consistent calculation with g' = 0.3, a = 0.7, A = 750
MeV/c, V0 = (-100 - t'40) MeV.

Fig.14 Total photoabsorption cross section per nucléon in the A region.

Fig.15 Relevant one pion exchange diagrams in the A region.

Fig.16 Phctoabsorption per nucléon as a function of ui. Full and broken line are guides to
the eye for the experimental data on Pb and D, respectively.

Fig.17 a) s channel resonance contribution to tr(^p —» ir~ A++)
b) Most relevant Feynman graphs for 7 N —> TrA.
c) Contribution of the electric Born diagrams (calculated in the Coulomb gauge in
thec.m.s.) to v(ip -» TT" A++). From réf. [153].

Fig.18 Vector meson photoproduction mechanisms, a) diffractive dissociation, b) resonance
production, c) - f) Born mechanism. Dashed lines stand for pions, double dashed for
p (and possibly for w and (f>). Thick solid line in (e) for the Higgs boson of unknown
mass.

Fig.19 Vertex Vailv for -yp+/r and for p°p+p~ (see Eq.(llO))

Fig.20 Total photoabsorption cross section per nucléon in the GeV region. From Ref.[7].

Fig.21 One and two-step processes leading to the same nuclear final state. In the interme-
diate siabe in b) only neutral particles can be coherently photoprodaced via a non
spin flip interactions.
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