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Considerations of bunch-soacina options for multi-bunch 
ooeration of the Tevatron collider 

G. Dugan 
December 14. 1989 

0. Summary 

This discussion will consider a number of points relevant to 
limitations, advantages and disadvantages of various arrangements 
of bunches in the Tevatron proton-antiproton collider. The 
considerations discussed here will be limited to: (a) bunch spacing 
symmetry and relation to the relative luminosity at BO and DO and 
the beam-beam interaction with separated beams; (b) bunch spacing 
constraints imposed by Main Ring RF coalescing and the optics of 
beam separation at BO and DO; and (c) bunch spacing constraints 
imposed by injection and abort kicker timing requirements, and by 
the Antiproton Source RF unstacking process. 

1. Introduction 

The pattern of bunches assumed in this report will be 
described in terms of the following definitions: 

A batch is a group of equally spaced nl bunches, where nt is 
greater than or equal to 1. The bunches in a batch are all spaced at 
the minimum spacing lo (in RF buckets), as shown below in Fig. 1: 

Bunch 

I-= ‘b 

1 BATCH: n,=s lo q 3 

Figure. 1: A smgle batch 
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The total length of a batch is lb= (nl-l)lo. 
The spacing from the end of one batch to the start of the next is 

the quantity 11 (in RF buckets). 
For purposes of injection, we consider all the bunches in a 

batch to be injected into the Tevatron at the same time (i.e., on a 
single Main Ring cycle). 

We assume three-fold symmetry, so that we fully describe the 
ring by specifying l/3 of it (in section 2, the consequences of 
breaking this symmetry are discussed). The number of batches in 
l/3 of the ring is the quantity n2. The number of buckets from the 
end of the last batch to the end of the l/3 ring is labelled 12; in 
general, this is different from 11. Because there are IS = 1113/3 = 371 
buckets in l/3 of the ring, we must have: 

Is = (n2-1)11 + n2lh + 12 = n2(nl-1)lu + (n2-l)ll + 12. (1) 

The total number of bunches in the ring is B=3nln2. One-third 
of the ring can be represented by the diagram shown below in Fig. 2: 

Is =371 

One-third of the ring 
n 2= 5 

Figure 2. 

The entire ring is represented in Fig. 3. In this figure, the 
symmetry points in the bunch pattern (which must correspond to the 
centers of the BO, DO and FO straight sections) are located a distance 

lc = 1/2&-12) = 1/2(n&, + (n2-l)ll) 

from the beginning of the “l/3 ring” pattern. This is illustrated in Fig. 
3. This also implies that A0 is in the center of the gap formed by the 
12 empty bunches between FO and BO. 
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The entire ring can also be represented by the diagram shown 
in Fig. 4 below, which corresponds to the specific case of n2 = 1: 

BO 

Figure 4: The entire ring 

2. Symmetry considerations and the abort gap 

The above discussions illustrate a situation which is completely 
three-fold symmetric. (It is assumed that the bunch pattern is 
identical for protons and antiprotons.) There may be reasons to 
break this symmetry. A gap in the bunch pattern is required for the 
abort kicker at A0 to rise when beam abort is necessary. This gap is 
called the abort gap (its length in RF buckets will be designated la). 
In a three-fold symmetric situation, it is naturally provided by the 12 
empty buckets whose center is located at AO, as shown in Fig. 3. The 
same gap can also be used to load the proton and antiproton bunches 
into the collider at 150 GeV; it is repositioned appropriately for 
injection by the injection point cogging hardware. Although the 
injection kicker rise times are determined by the minimum bunch 
separation, independent of the abort gap, the fall times are related to 
the length of the abort gap (see section 5 for a more detailed 
exposition). The quantity 12 naturally gets smaller and smaller as the 
number of bunches increases, for a fixed minimum bunch spacing. 
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For large numbers of bunches, then, in order to ease the 
requirements on the injection kicker fall times and the abort kicker 
rise time, one may consider artificially lengthening the abort gap. 
This can be done by leaving out some of the bunches in the two 
batches on either side of the 12 empty buckets whose center is 
located at AO. This is shown diagrammatically in Fig. 5. 

Deletion of the bunches from the two batches must be done 
symmetrically about A0 in order to preserve the symmetry about 
this point required by the abort kicker. If we leave out ng bunches in 
each batch, the number of empty buckets added to the abort gap is g 
= nglo on each side. In this situation, the abort gap is extended to la = 
12 + 2g. This situation will be referred to as the “symmetric extended 
abort gap”. It provides more time for the injection kickers to fall and 
for the abort kicker to rise but breaks the three-fold symmetry of 
the bunch pattern. 

There are several consequences of a break in the three-fold 
symmetry of the bunch pattern; they are all related to how the 
bunches interact. The pattern of interactions of the bunches when a 
symmetric extended abort gap is present is illustrated in Fig. 6 
below: 

FO 

Proton gap: 

Antiproton gap: 

Figure 6: Three batches with an extended abort gap 
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This figure corresponds to the specific case of n2 = 1, as in Fig. 
4. However, the general remarks regarding the consequences of a 
break in the three-fold symmetry due to a symmetric extended 
abort gap are well illustrated by this situation. The batches are 
labelled 1,2,3 for the protons and 1, 2, 3 for the antiprotons. 
Initially, as shown in fig. 6, we have collisions of batches lx cat BO 
and 2x ? at DO. After l/3 of a turn, the situation is as shown in fig. 
7: 

FO 

BO 

Figure 7: Figure 6 after l/3 turn 

This figure corresponds to batches 3x 2 colliding at BO and lx 3 
colliding at DO. After another l/3 of a turn, the situation is as shown 
in fig. 8: 
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FO 

BO 

Figure 8: Figure 6 after 2/3 turn 

Here we have batches 2x 3 colliding at BO and batches 3x r colliding 
at DO. 

In order to evaluate the number of bunches colliding at BO and 
DO in each of these situations, it is useful to refer to Fig. 9. This figure 
is essentially a space-time diagram for the batches shown in figs. 6 
through 8 above. Space (distance around the ring) is plotted on the 
horizontal axis, and time (in units of ring revolutions) is plotted on 
the vertical axis. Proton batches (1,2,3) move diagonally up to the 
right in this diagram, and antiproton bunches ( 1, 2, 3) move 
diagonally up to the left. Each batch is delineated by a band between 
two cross-hatched thin lines; the batch centers are shown as dotted 
lines. The dark cross-hatched areas indicate the regions associated 
with a symmetric extension of the abort gap. The intersections of the 
proton and antiproton batches at BO and DO are shown by the dark- 
outlined diamonds, which are labelled to show which batches are 
intersecting in each case. 

The number of bunches which collide in each of the diamond- 
shaped regions is proportional to the length of the line along the time 
axis not included in a dark cross-hatched area (where there are no 
bunches). A diamond with no dark cross-hatching (e.g., the diamond 
“2x 2?’ at DO) corresponds to nt bunches colliding (the total number 
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of bunches is B=3nln2, and n2 = 1). For every cross-hatched region 
appearing in a diamond, we must subtract ng bunches from nl. Using 
these rules, we can make Table 1 showing how many bunches collide 
at each batch intersection and at each collision point: 

Batch crossing Collision Point 

3x 5 BO 
2x T BO 
IX i BO 

TOTAL BO 

Number of bunches 
colliding 
ni - ng 
nl - ng 

nl - 2n, 
B - 4n, 

lx !J DO nl - ng 
3x i DO nl - ng 
2x 2 DO nl 

TOTAL DO B - 2n, 

Table 1: Numbers of bunches colliding at BO and DO for each batch 
crossing with a symmetric extended abort gap 

Note that for the first two batch crossings at DO, although there 
are two gaps one only looses ng bunches each time because the gaps 
“collide”. The total number of bunches colliding at each interaction 
point is just the sum indicated in the above table, where we have 
used B=3nt, 

For a fixed proton bunch intensity, the luminosity at each 
interaction point is proportional to the number of bunches colliding 
(B,) times the antiproton intensity per bunch I$ : that is, L = flpBe. 
Without the symmetric extended abort gap, Bc = B and I$ = P/B, 
where P is the total available antiproton intensity; hence L = F 
With a symmetric extended abort gap, the number of bunches is now 
B - 2ng (since we leave out 2n, bunches) and therefore & = P/(B 
- 2n, ). Using the values for Be from the above table, we conclude 
that the luminosity at DO with a symmetric extended abort gap is L 
= P(B - 2n,)/(B - 2n, )= l? This is the same as without an extended 
abort gap. However, at BO the luminosity is L = F(B - 4ng) /(B - 2ng ) 
= PRg, where Rg = (B - 4ng)/(B - 2ng ) = 1 - (2ng)/(B - 2n, ) < 1. 
Hence one consequence of a symmetric extended abort gap is a 
reduction in the luminosity at BO (but not at DO) from the case of no 
extended gap by the fraction Rg 
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Another consequence of the break in the 3-fold symmetry due 
to the symmetric extended abort gap is related to the beam-beam 
interaction. This can also be seen by looking at Fig. 9. If we consider 
one of the proton bunches in, for example, batch number 3 as it 
travels around the ring starting at FO, the encounters it makes with - - 
antiproton bunches in batches 1, 2, and 3 can be seen clearly in 
Fig. 9 by simply following the diagonal band corresponding to proton 
batch 3 upward to the right. We can see that a proton bunch in this 
batch will see nl antiproton bunches at each antiproton batch 
crossing except for the crossings near AO, CO, DO and FO (where the 
proton bunch encounters an extension of the abort gap and so misses 
ng bunches each time). Because the beams are separated except at 
the exact centers of the BO and DO IR’s, in all cases these “misses” 
would be misses of long-range beam-beam interactions. Hence a 
proton bunch in batch 3 has 2 head-on and (6nl-4ng -2) long-range 
interactions per turn. 

Similarly, we can follow an antiproton bunch in batch 2 
starting from DO: it misses ng p roton bunches at CO, BO, FO and EO 
due to the extended abort gap. These are all long-range interactions 
except if the antiproton bunch happens to be one of the ng bunches 
on the left edge of batch Tin Fig. 9: in this case, one of the proton 
bunches which it misses at BO is a head-on interaction (since it 
occurs exactly on the solid line in Fig. 9 corresponding to the center 
of the BO straight section). Thus, for the ng antiproton bunches on the 
left edge of batch 2, there will be 1 head-on interaction and (6nl- 
4ng -1) long-range interactions per turn; for the rest (nl-ng) of the 
antiproton bunches in batch 2, there will be 2 head-on and (6nl- 
4ng -2) long-range interactions per turn. 

Using this procedure, we can construct Table 2 which specifies 
what happens to the bunches in each of the six batches during one 
revolution in the presence of a symmetric extended abort gap: 



Batch 

1 

2 

3 
TOTAL 

Number of Number of Number of 
bunches long-range head-on 

interactions per interactions per 
turn turn 

nl-2ng 6nl-4n, -2 2 
“g 6nl-4ng - 1 1 

nl-ng 6nl-4n, -2 2 
“g 6nl-4ng - 1 1 

nl-ng 6nl-4n, -2 2 
3nl-4ng 6nt-4ng -2 2 

2n, 6nt-4n, - 1 1 

i nl-2ng 6nl-4ng -2 2 
- 1 1 

2 
“g 6nl-4n, 

nl-ng 6nl-4ng -2 2 
“g 6nl-4ng - 1 1 

3 nl-ng 6nl-4n, -2 2 
TOTAL 3nl-4ng 6nl-4n, -2 2 

2n, 6nl-4n, - 1 1 

Table 2: Numbers of head-on and long-range interactions 
experienced by the bunches in each batch when a symmetric 

extended abort gap is present. 

Thus, for both protons and antiprotons the situation is the 
same: B-4n, bunches have 6nl-4n, - 2 long-range interactions and 2 
head-on interactions per turn; 2ng bunches have 6nl-4ng -1 long- 
range interactions and 1 head-on interaction per turn. The fraction 
of the total number of bunches which suffer only 1 head-on 
interaction per turn is 2n, /(B-4ng) ; note that this is the same 
fraction by which the BO luminosity is reduced. Since the bulk of the 
beam-beam effects are due to the head-on interactions, the beam- 
beam interaction will be only roughly half as strong for these 2ng 
bunches as for the others, and they will have only part of the tune 
shift which the other bunches experience. We anticipate using 
independent tune control for each bunch species to compensate for 
the beam-beam tune shift experienced by the majority of the 
bunches; this will mean that we will be overcompensated for the 2ng 
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bunches which collide only once. This may or may not be a problem, 
depending on the magnitude of the overcompensation in comparison 
with the inevitable beam-beam tune spread. 

At this time, it is not clear how serious these consequences of 
the breaking of the bunch pattern three-fold symmetry are, in 
comparison with the advantages gained in injection kicker fall times 
and abort kicker rise time. This question will probably only be 
answered experimentally. Therefore, we will plan on providing the 
ability to operate both in the symmetric situation (i.e., with no 
extension of the abort gap) and also in the situation with a 
symmetric extended abort gap, which provides the possibility of 
either less stringent kicker timing requirements or a larger number 
of bunches with roughly the same kicker timing requirements. 

Two final comments are probably worth making. First of all, 
the above discussion only considers extensions of the abort gap 
which are symmetric about AO; this is because this symmetry is 
required for the abort kicker. However, as the discussion below on 
kicker timing will explain, extensions of the abort gap are also useful 
for providing more time for injection kicker fall times. In this case, 
symmetry about A0 is irrelevant, because of the freedom provided 
by injection cogging. Hence an asvmmetric extension of the abort gap 
( e.g., gaps in proton batch 1 and antiproton batch 1 only) can help 
with injection (but not abort) kicker requirements. The advantage 
here is that an asvmmetric extended abort gap can be constructed in 
such a way as NOT to introduce a difference in the luminosities at BO 
and DO (although the problem of having some bunches see only 1 
head-on interaction per turn cannot, of course, be avoided). There 
may be some situations in which this is desirable, but it will not be 
further explored in this discussion. The detailed formulas for this 
case can in fact be rather easily deduced following similar 
considerations as those given above for the symmetric extended 
abort gap case. 

The second comment regards a variant of the symmetric 
extended abort gap. Referring to figure 6, one may imagine a 
situation in which there are (equal) gaps only associated with proton 
batch 3 and antiproton batch i (or, alternatively, only proton batch 
1 and antiproton batch 3). This is essentially still a situation which 
is symmetric about A0 as far as the abort kicker is concerned. In 
fact, if the length of each of these gaps is 2g, then the abort gap 
length is effectively extended to 12 + 2g. It is also true that all of the 
above relations for relative luminosity at BO and DO, and the 
relations related to the number of beam-beam interactions, are still 
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valid (this can be seen simply by considering figure 9 modified 
appropriately for this situation). One advantage of this variant is that 
only one of the batches of each species must be modified (i.e., some 
bunches left out) to extend the abort gap; this may prove to have 
some operational benefits. 

3. Constraints due to Main Ring coalescing and beam-beam 
separation 

Because of the requirements on coalescing in the Main Ring, we 
must have lo = hn, where h=21 and n must be an integer greater 
than or equal to 1. Also, since we can at most have Bin < 1113, this 
means that Bhn < 1113, n < 1113/B/h = 53/B. Thus n can range from 
1 to the largest integer equal to or less than 53/B; since n must be 
greater than or equal to 1, B must be less than or equal to 53. 

The Main Injector is planned to have a harmonic number of 
588 = 21x14~2. Hence, it is conceivable to imagine a coalescing 
scheme utilizing h=14, suitable perhaps for coalescing fewer, more 
intense, bunches. In this case th, upper limit on B rises to 79 (and lo 
= 14 : about 250 nsec.) 

There is, however, an additional constraint imposed on 10. This 
is related to the optics of the beam-beam separation at BO and DO. In 
the current design, the proton and antiproton closed orbits, which of 
course intersect at BO and DO, are not separated by the required 50 
until approximately rt 58 m on either side of the IP. Thus, to maintain 
55 beam separation at the crossing points adjacent to BO and DO, we 
must require that half the minimum bunch spacing (which is the 
distance between adjacent crossing points) be greater than 58 m. 
The RF wavelength is 5.65 m, so in units of RF buckets this constraint 
is 

lo/2 2 5U5.65 = 10.3, 
10221. 

Thus lo = 14 is ruled out by this constraint. In principle, 
however, we may be able to get around this by introducing a 
crossing angle at the IP using the separators, which provides a more 
rapid separation of the beams. The details of such a scheme have yet 
to be worked out; hence, for the rest of this discussion, we will take 
lo = 21 as the minimum bunch spacing. 
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4. Relations between IO, II and 12 

The relation between 11 and 12 is given by the above equation 
(1). This can be considered to be a line in (11,12) space of the form: 

Nt = 371-No = (n2-1)lt + 12, (2) 

where No = nzhn(nt-I). 

If n2 = 1, then 11 has no meaning and 12 = Nl. If n2 is greater 
than 1, then there are families of solutions as shown in Fig. 10: 

I 
2 

N1 I 
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I 
-- 
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J I 4 9’ 
If’ I b 

'0 11 

Figure 10: Relations between 11 and 12 

The solutions lie along the line shown, at integral values of 11 
and 12. The line connects the points (ltJ2) = (Nl/(n-l),O) and (0,Nl). 

By definition, we must require that 11 be at least as large as lo, 
the minimum bunch separation. Thus the largest possible value for 12 
will be given by 11 = lo . From equation (2) above, this implies that 

NI = (nz -I)10 + 12 = 371 - rq(nl -I)IO, 
12 = 371 - ln(nln2 - l), 

12 = 7(53 - n(B-3)) 
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where the latter result follows using lo = 21n. As will be discussed 
below, in general the maximum value of 12 makes the abort gap the 
largest and hence will be the most favorable situation from the point 
of view of injection and abort kickers. Thus, we will choose this value 
for 12, with the consequence 11 = lo . 

Two points can be made with regard to this choice: 
1. Both 11 and 12 are multiples of 7. The result of this is that the 

set of all RF buckets in which bunches can be found is reduced from 
1113 to 1113/7=159. These 159 buckets are equally spaced around 
the ring and appear at a given azimuth with the same frequency as 
that of the TVBS clock (about 7.5 MHz). This constraint introduces a 
symmetry which may be valuable to (detector and accelerator) 
hardware which must synchronize with beam-beam collisions. 

2. Since lo = 11, for a given n, the bunch pattern is identical for 
any values of nl and n2 for which nln2 = B/3 is the same. Thus all 
patterns look the same as one for which there is only one batch per 
third of the ring (i.e., n2 = 1). However, the concept of multiple 
batches per third is still useful in connection with injection. To fill the 
ring, we need to inject 3n2 times, since we have defined a batch to be 
the fundamental unit for injection. We may now consider nt and n2 
to be different for protons and antiprotons, implying different 
injection schemes, as long as their product is the same. As will be 
illustrated below, this can be advantageous, since the case of n2 = 1, 
nl = B/3, results in less restrictive injection kicker rise time 
requirements, and the minimum number of injection cycles. This 
should be able to be realized for protons, but not for antiprotons, 
because nl > 4 is very difficult for antiprotons (see section 5 for more 
on this subject). 

5. Injection schemes 

The fundamental unit for injection will be the batch, consisting 
of nl bunches. The total number of batches is 3n2 ; this is therefore 
equal to the number of injection cycles (for a given particle species). 

The space in the ring available for injection of a batch will be 
called the injection gap. Since the space available in the ring for 
injection depends on the number (and particle species) of batches 
already in the ring, the injection gap starts out at 1113 RF buckets 
and decreases as more batches are injected. The minimum value of 
the injection gap is the value which sets the most stringent 
requirements on the injection kicker rise and fall times, so this is the 
value which determines the kicker design requirements. As the 
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discussion below will show, this value is directly related to the length 
of the abort gap. 

Scheme A: Iniection of all moton batches followed by all 
antinroton batches. 

This is the scheme which is favored operationally because of 
the scarcity of antiprotons. 

Proton injection: 

The general case for the injection of the last proton batch is 
shown in the figures 11-14: 

Kicker start rise 
(earliest) 

EO 

+ 

Tevafrfl isi: & + la 

Main Ring 

Figure 11: Proton injection kicker start rise 

Kicker at full field 
EO 

Main Ring 



Figure 12: Proton injection kicker at full field 

Kicker start fall 

(earliest) 
EO 

Tevatron A I a bfl + 

Figure 13: Proton injection kicker start fall 

Kicker end fall 

Tevatron 

EO 

JI 

Jij ‘a mm+ 

I 
I 

Figure 14: Proton injection kicker end fall 

The quantity 1, in the above diagrams is essentially the 
required spacing between the batches. Thus: 

1, = 11 if n2 > 1 

1, =12 if n2 =l. 

From the above figures, we can see that the kicker rise time lo, 
flat top IT, and fall time IF, must satisfy the requirements: 

1R =1,-&l; where 61 is arbitrary in the range 
1, 2 61 2 0; 

1~ = lb + 62 ; where 62 is arbitrary in the range 
lar62zo; 

1F 5 1, - 62 . 



To ease the rise time requirement, we want 1, to be as large as 
possible and 61 = 0. In general, 12 > 11, which is why injecting a batch 
with n2 = 1 is the least demanding arrangement for the injection 
kicker rise time. In this case, the large gap (12) between thirds of the 
ring is used for the kicker to rise. The fall time is eased by making 62 
= 0 (i.e., no more flat top than is necessary) and by making la as 
large as possible (i.e., an extended abort gap). 

18 

Antiproton injection: 

After proton injection, the protons are injection cogged to line 
up the abort gap as shown in the figures below. The general case for 
the injection of the antiprotons using the abort gap is shown in 
figures 15-18: 

Kicker start rise 

(earliest) 

EO 

Tevatron 
protons 

Tevatron 
antiprotons 

Main Ring 

Figure 15: Antiproton injection kicker start rise 
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Kicker at full 
field 

EO 

4 

Tevatron 
protons 

Tevatron 
antiprotons 

Main Ring /q f- 

I 
I 

Figure 16: Antiproton injection kicker at full field 
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Figure 17: Antiproton injection kicker start fall 
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Kicker end fall 

EO 

$ 
I 

Tevatron 
protons Jj ‘a l’ 

la! 

Figure 18: Antiproton injection kicker end fall 

In these figures, 1, has the same meaning as in the proton 
injection figures. From the above figures, we can see that the kicker 
rise time lo, flat top lo, and fall time IF, must satisfy the 
requirements: 

1R =1,-&l; where 61 is arbitrary in the range 
1, 2 61 2 0; 

1~ = lb + 62 ; where 62 is arbitrary in the range 
la - lb - 1, 2 62 2 0 

1F 2 la - lb - 1R - 62 ; 
1F 5 la - lb - 1, + (61 - 62 ) . 

The requirement is basically (1~ + 1~ + 1~)s la, since the kicker 
must fit into the abort gap. As in the case of proton injection, we ease 
the rise time requirement by maximizing 1, ; however, in this case 
the fall time requirement is thereby made more stringent. Generally, 
fast kicker fall time requirements are more difficult to satisfy than 
rise time requirements, so for antiproton injection in this scheme we 
want 1, to be small, which implies n2 > 1 (i.e., 1, = 11 ). The fall time 
requirement is eased by making the flat top no longer than 
necessary (62 = 0), making the batch short (nl small and n2 large), 
and, as in the case of the proton injection kicker, by making the abort 
gap as large as possible (an extended abort gap). The fall time 
requirement may be further eased by making the rise time less than 
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I, (i.e., 61 > 0). Essentially, we can trade off faster rise time for slower 
fall time. 

Scheme B: Iniection of all antimoton batches followed by all 
proton batches. 

In this scheme, the roles of the protons and antiprotons in the 
above discussion are simply reversed. One of the disadvantages, of 
course, is that the antiprotons must remain in the Tevatron all during 
proton injection, and any problems occurring during proton injection 
might cause loss of some or all of the antiprotons. 

On the other hand, there is a significant advantage to this 
scheme. For the antiprotons, we now want n2 = 1 and nl = B/3; the 
rise and fall times for the antiproton injection kicker are much less 
demanding than in scheme A. The proton injection kicker now has 
the demanding requirements. However, the transverse dynamics of 
proton and antiproton injection into the Tevatron are not symmetric; 
the antiproton kicker must deliver a substantially larger kick than 
the proton injection kicker. Thus, in this scheme, the stronger kicker 
has the less demanding timing requirement, which is of course the 
desirable situation. 

However, there is a real problem with the requirement nl = 
B/3 for the antiprotons in the case of B > 12. Since the Accumulator 
ring has h = 84 @ 53 MHz, for lo = 21 RF buckets a maximum of nl 
= 84/21 = 4 bunches can be assembled as a single batch in the 
Accumulator for transfer into the Main Ring. Thus, for B > 12, to 
achieve n2 = 1 (i.e., nl > 4) requires loading at least two Accumulator 
batches into the Main Ring adjacent to each other to form a single nl 
> 4 batch. This batch can then be accelerated on one Main Ring cycle 
to 150 GeV for injection into the Tevatron. There are, however, at 
least two problems with this. First, it requires a new fast rise ( 1R < 
11) antiproton injection kicker in the Main Ring; the existing 8 GeV 
antiproton injection kicker is not fast enough. Second, it requires at 
least 2 unstacking cycles of the Antiproton Source; typically these 
cycles last at least 1 second each, so the antiproton batch which is 
first injected into the Main Ring must coast at 8 GeV for 1 second or 
more, during which some loss may be expected due to the poor 8 
GeV Main Ring lifetime. 

On balance, the disadvantages associated with antiproton 
injection before proton injection seem to outweigh the advantages; 
hence in the conclusions of this report only injection scheme A will 
be discussed. 
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6. Abort 

We consider here only the case of an abort gap of length la, 
which is symmetric about AO. In fact, if the gap is extended 
asymmetrically, the simple relation derived below is still valid if one 
substitutes for 1, that part of the gap which is symmetric at AO. 

The general situation is shown in figures 19 and 20: 

Kicker start rise 

(earliest) 

Tevatron 
protons 

Tevatron 
antiprotons 

I 

‘a 

Figure 19: Abort kicker start rise 

Kicker full field 

Tevatron 
protons 

Tevatron f-- 
antiprotons ‘a 

I 

Figure 20: Abort kicker at full field 
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From these figures it is clear that the abort kicker rise time 1~ 
is simply required to be less than or equal to the abort gap: 

7. Results 

The results of a computer calculation incorporating all of the 
above considerations is presented in Tables 3 through 17. These 
tables are grouped into 5 sets of three tables each (3,4,5; 6,7,8; 
9,10,11; 12,13,14; 15,16,17). Each set corresponds to a particular 
value of the extended abort gap parameter rig, ranging from 0 (the 
symmetric situation) to 4. In calculating the kicker times from the 
relations presented in sections 5 and 6 above, all the 6 quantities 
have been taken to be equal to zero. 

The definitions of the quantities in tables 3 through 17 are 
given by the labels on top of each column, and should be obvious 
except perhaps for the last 5 columns. In these columns, bOco1 and 
dOco1 give the number of bunches which interact respectively at BO 
and DO per turn. The numbers nbOc, nblc and nb2c are the numbers 
of bunches which experience respectively 0, 1 and 2 head-on 
collisions per turn when the beams are separated everywhere except 
at BO and DO. 

For each set of three tables, the first table gives all possible 
combinations of nl and n2, corresponding to B ranging from 3 to 48, 
and subject to the choices for lo, 11, and 12, defined above in sections 
3 and 4. The second table looks at the restrictions imposed by proton 
injection kicker times: because we are only considering injection 
scheme A, only n2 = 1 is considered. Options in which the kicker 
times do not satisfy the requirements shown at the top of the table 
are eliminated. The abort kicker rise time requirement shown at the 
top of the table is also imposed. The third table looks at the 
restrictions imposed by antiproton kicker times: again, the limits on 
the kicker times which have been used to select on the options 
displayed are shown at the top of the table. In this case, since we are 
only considering antiproton injection, we also require that nl< 4, for 
the reasons discussed above related to unstacking from the 
Accumulator. 
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8. Conclusions 

In table 18, the information in the detailed tables 3-17 has 
been reduced and summarized to give the basic parameters of the 
best option (i.e., largest number of bunches) for each value of ng. 
This has been done for both the 21 and 42 bucket spacings. Options 
requiring very large (>20) numbers of antiproton injection cycles 
have been excluded as impractical. 

The cases of most interest are the symmetric case (ng = 0), and 
for ng > 0, the case which maximizes the number of bunches. These 
cases have been underlined in Table 18. Examination of this table 
shows that for the 21 bucket spacing, the symmetric (ng = 0) case 
gives 36 bunches; as ng is increased, the number of bunches peaks at 
44, with ng = 2. For this case, there is a penalty of a 9% luminosity 
reduction at BO and an equal fraction of the bunches having only 1 
head-on interaction per turn. The case of ng = 1 gives almost as 
many bunches with less of a luminosity reduction, but requires 15 
antiproton injection cycles with 3 antiproton bunches per batch: this 
would require a suppressed-bucket h=4 system in the Accumulator 
for antiproton unstacking, which is an additional complication. For 42 
bucket spacing, the symmetric case has 18 bunches; the maximum 
number of bunches, 22, is provided by the ng = 1 case, again with a 
9% luminosity penalty. 

The injection and abort kickers will be designed to 
accommodate all of the possibilities associated with the cases 
underlined in table 18. A summary of the kicker timing 
requirements is then: 

Abort kicker rise time < 2632 nsec. 
Proton injection kicker rise time < 1053 nsec; 

flat top(variable): 3948-5922 nsec 
fall time < 2632 nsec. 

Antiproton injection kicker rise time < 395 nsec; 
flat top (variable):790-1184 nsec; 
fall time < 1053 nsec. 
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