ftT 90 00 Ott

UWThPh-1989-47

On Nodes of Local Solutions to Schrödinger Equations

 $\mathbf{\hat{z}}$

M. Hoffmann-Ostenhof¹ and T. Hoffmann-Ostenhof Universität Wien, Austria

^{&#}x27;Supported by "Fonds sur Förderung der wissenschaftlichen Forschung in Österreich", Projekt Nr. P70U

We shall consider the behaviour of a real valued solution ψ of a Schrödinger equation **in the neighbourhood of a zero. Let**

$$
(-\Delta + V)\psi = 0 \text{ in } \Omega,
$$

where Ω is a domain in \mathbb{R}^n , $n \geq 2$ and $V \in C^{\infty}(\Omega)$ with V real valued. (1)

Without loss we assume $O \in \Omega$ and $\psi(O) = 0$.

Note that $\psi \in C^{\infty}(\Omega)$ by elliptic regularity. Further let $\varepsilon > 0$, $B_{\varepsilon} = \{x \in \mathbb{R}^n | |x| < \varepsilon\}$ such that $B_{\epsilon} \subset \Omega$. In the following we present a survey of results recently obtained in [8] on the behaviour of the nodal set and the nodal domains of ψ in B_{ϵ} . Let $\mathcal{N}_{\epsilon} = \{x \in B_{\epsilon} | \psi(x) = 0\},$ **a** component D of $B_{\epsilon} \setminus \mathcal{N}_{\epsilon}$ will be cailed a *local nodal domain (l.n.d.) of* ψ *in* B_{ϵ} *and we* **define**

$$
\mathcal{D}_{\epsilon} = \{1 \text{ n.d. } D \text{ of } \psi \text{ in } B_{\epsilon} \text{ with } \mathcal{O} \in \partial D \}.
$$

Let $C_{\epsilon} = \{x \in B_{\epsilon} | \psi(x) = 0, \nabla \psi(x) = 0\}$. It is known (see [2,3,4]) that under the above assumptions the manifold $\mathcal{N}_{\pmb{\epsilon}} \setminus \mathcal{C}_{\pmb{\epsilon}}$ is as regular as the solution $\pmb{\psi}.$ and that the Hausdorff dimension of $C_{\epsilon} \leq n-2$. So clearly the case $\mathcal{O} \in C_{\epsilon}$ is the interesting one, and given $D \in \mathcal{D}_e$ one may ask whether it satisfies an interior cone condition. Furthermore we shall **also deal with the question of the cardinality of** *V^t .* **To investigate such problems we rely heavily on a result of Bers [1]:**

Proposition: Let ψ satisfy (1). Then there exists a harmonic homogeneous polynomial $P_M(x) \neq 0$ of degree $M \geq 1$ such that for $0 < \nu < 1$

$$
\frac{\partial^{l}(\psi - P_M)(x)}{\partial x_1^{i_1} \dots \partial x_n^{i_n}} = O(|x|^{M-l+\nu}) \quad \text{for } |x| \to 0 \tag{2}
$$

for $\ell = 0, 1, \ldots M$, where $\sum_{i=1}^{n} i_i = \ell$.

Using polar coordinates $x = ry$ with $r = |x|$ and $y = x/|x| \in S^{n-1}$, S^{n-1} the $n - 1$ -dimensional unit sphere, we can write $P_M(ry) = r^M Y_M(y)$ with Y_M some surface **harmonic, and (2) implies**

$$
r^{-M}\psi(ry) \to Y_M(y) \quad \text{for } r \to 0, \quad \text{for } y \in S^{n-1}.
$$
 (3)

We denote the nodal set of Y_M with $\mathcal{N}(Y_M)$ and the set of nodal domains of Y_M with $\mathcal{U}(Y_M)$. (The components of $S^{n-1} \setminus \mathcal{N}(Y_M)$ are called nodal domains of Y_M .)

For dimension $n = 2$ Cheng [3] showed that the nodal lines of ψ look locally as the **nodal lines of** *PM,* **which are straight lines intersecting in** *O* **and forming an equiangular** system. So for ϵ small, \mathcal{D}_{ϵ} and $\mathcal{U}(Y_M)$ have the same number of elements.

For dimensions $n \geq 3$ the situation is more delicate as can be seen from the following **harmonic function in R³**

$$
\psi(x_1,x_2,x_3)=x_1x_2+x_1^2x_3-x_3^2/3
$$

which has a zero in *O* **of order 2. The corresponding harmonic homogeneous polynomial** is $P_2(x_1, x_2, x_3) = x_1x_2$, so obviously $\# \mathcal{U}(Y_2) = 4$. On the other hand studying the intersection of the nodal set of ψ with planes $x_3 = c$ with $c < 0$, $= 0$ and > 0 , it is easily seen that ψ has only 2 nodal domains.

To state our results we need the following definition: For $D \in \mathcal{D}_{\epsilon}$, D arbitrary but **fixed, let**

$$
S(r) = \{y \in S^{n-1} | ry \in D\} \text{ for } 0 < r < \varepsilon.
$$

Further we denote $|\{\cdot\}| = \int_{\mathcal{L} \setminus \mathcal{L}} d\sigma$, with $d\sigma$ the surface measure on S^{n-1} .

Theorem 1: Let $n \geq 3$, suppose ψ satisfies (1), and let Y_M denote the surface harmonic **for which (3) holds.** Let $D \in \mathcal{D}_{\epsilon}$, D arbitrary but fixed, with $S(r)$, $0 < r < \epsilon$ given as **above.**

Let $M \subset S^{n-1}$ denote the union of all nodal domains *U* of Y_M with the property that there exists a sequence $\{r_my_m\}$ with $r_my_m \in D$ for all $m, r_m \to 0$ and $y_m \to \bar{y}$ for $m \rightarrow \infty$ for some $y \in U$.

Then $M \neq \emptyset$ and $|M \setminus S(r) \cup S(r) \setminus M| \rightarrow 0$ for $r \rightarrow 0$.

This result, which implies $|S(r^{\prime\prime} \rightarrow |\mathcal{M}| \neq 0$ for $r \rightarrow 0$ in particular rules out that *S(r)* "shrinks" for $r \rightarrow 0$ into a subset of $\mathcal{N}(Y_M)$. There are some rather immediate **consequences:**

Corollary:

- (i) There exists a cone *K* with vertex O and $K \subset D$.
- (ii) $\#\mathcal{D}_{\epsilon} \leq \#\mathcal{U}(Y_M)$, furthermore $\#\mathcal{D}_{\epsilon}$ is constant for ϵ small enough. ($\#\{\cdot\}$ denotes the cardinality of $\{\cdot\}$.)
- (iii) Let $\psi_0^2(r) = \int_{S(r)} \psi^2 d\sigma$ and $\psi_{av}^2(r) = \int_{S^{n-1}} \psi^2 d\sigma$, then

$$
r^{-M}\psi_0 \to (\int_{\mathcal{M}} Y_M^2 d\sigma)^{1/2} > 0
$$

and

$$
\psi_0/\psi_{av} \to (\int_{\mathcal{M}} Y_M^2 d\sigma / \int_{S^{n-1}} Y_M^2 d\sigma)^{1/2} \quad \text{for } r \to 0.
$$

These findings show that the local properties of ψ in the neighborhood of a zero are **determined to a certain extent by global properties of the nodal set of the corresponding surface harmonic.**

Of course it would be desirable to study the local behaviour of the nodal domains of ψ with weaker regularity assumptions on V . It would be also of interest to extend **the foregoing results appropriately to the case where the Laplacian is replaced by more general elliptic operators.**

Let us sketch the main idea of the proof of Theorem 1 (for the full proof see [8]): The difficult part of the proof is to verify that $M \neq \emptyset$. For this purpose we investigate the

asymptotic behaviour of $\psi_0(r) = (\int_{S(r)} \psi^2 d\sigma)^{1/2}$ for $r \to 0$ and proceed similarly as in [6] where we studied the asymptotics of a solution ψ of a Schrödinger equation for $r \to \infty$. We suppose indirectly that $M = \emptyset$, which implies

$$
|S(r)| \to 0 \quad \text{for } r \to 0. \tag{6}
$$

Let for $0 < r < \varepsilon$, ε small

$$
\lambda^{2}(r)=\inf_{\varphi\in C_{0}^{\infty}(S(r))}\int|L\varphi|^{2}d\sigma/\int|\varphi|^{2}d\sigma
$$

where *—I?* **denotes the Laplace-Beltrami operator on 5 n-! , then we obtain from (6)**

$$
\lambda^2(r) \to \infty \quad \text{for } r \to 0. \tag{7}
$$

It can be shown that $\psi_0 = r^{(n-1)/2}\psi_0$ satisfies

$$
(-\frac{d^2}{dr^2} + \inf_{y \in S^{n-1}} V + \frac{(n-1)(n-3)}{4r^2} + \frac{\lambda^2(r)}{r^2})\psi_0 \le 0 \quad \text{for } 0 < r < \varepsilon \tag{8}
$$

in the distributional sense. The proof of the following inequality is rather involved (compare Lemma 3.2 in [6]) and we note that the C^{∞} -assumption on *V* plays an essential role **here. We have for some** *C >* **0**

$$
\tilde{\psi}_0 \ge C \left(\frac{r}{\lambda(r)} \right)^{2\gamma} \quad \text{for } r < \varepsilon
$$
\nwith $2\gamma = M + \frac{n-1}{2}$.

\n(9)

Now we take into account (7) and obtain from inequality (8) by standard comparison techniques that

$$
\dot{\psi}_0 = O(r^m) \quad \text{for } r \to 0 \text{ for all } m \in \mathbb{N}.
$$
 (10)

On the other hand combination of (8) and (9) yields

$$
-\tilde{\psi}_0'' + \tilde{\psi}_0^{1-2\alpha} \leq 0 \quad \text{for } 0 < r < R_\alpha \tag{11}
$$

for some $\alpha < (2\gamma)^{-1}$ and some $R_a < \varepsilon$. Finally a further investigation of this nonlinear differential inequality shows that ψ_0 vanishes polynomially in ${\cal O}$ contradicting (10). Hence $M \neq \emptyset$.

In connection with the results given here more detailed questions about the local behaviour of nodal sets arise in a natural way. For instance one might ask whether *S{r)* is connected for $r > 0$ sufficiently small. This we could not answer, but for dimension $n = 3$ we obtained more detailed results about the set M .

Theorem 2: Let $n = 3$ and suppose that the assumptions of Theorem 1 hold. Let $\{r_my_m\}$ be a sequence with $r_my_m \in D$, $\forall m$ and $r_m \to 0$, $y_m \to \bar{y}$ for $m \to \infty$ for some $y \in S^{n-1}$, then $\bar{y} \in M$. Furthermore M is connected (M denotes the closure of M).

•

Note that the case $Y_M(\bar{y}) \neq 0$ is trivial since per definition $\bar{y} \in \mathcal{M}$. To verify that $\tilde{y} \in \mathcal{M}$, if $Y_M(\tilde{y}) = 0$ we used the fact that on S^2 there are only finitely many zeros of **order greater one of** *YM.*

Though we could not prove it we believe that Theorem 2 holds also for dimensions $> 3.$

As already noted the methods for the main part of the proof of Theorem 1 have been developed in [6] to investigate the asymptotic behaviour of nodes of solutions *of* Schrödinger equations in exterior domains for dimension $n \geq 3$. We remark that there the situation is much more complex than here, even for the 2-dimensional case it is rather **delicate (see [5]). For a survey on these results see also [7].**

References

- **[1] L. Bers, Local behaviour of solutions of general linear elliptic equations, Comm. Pure Appl. Math. fi, 473-496 (1955)**
- **[2] L.A. Caffarelli and A. Friedman, Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations, J. Differential Equations, fifi, 420-433 (1985)**
- **[3] S.Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helvetia 51, 43-55 (1976)**
- **[4] R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, Preprint (1988)**
- [5] M. Hoffmann-Ostenhof, Asymptotics of the nodal lines of solutions of 2-dimensional Schrödinger equations, Math. Z. 198, 161-179 (1988)
- [6] M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, On the asymptotics of nodes of L^2 -solutions of Schrödinger equations in dimensions ≥ 3 , Commun. Math. Phys. 117, **49-77 (1988)**
- **[7] M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Asymptotic properties of nodes of solutions to Schrödinger equations, Symposium "Partial Differential Equations", Holzhau 1988, Teubner-Texte zur Mathematik, Bd. 112, 157-162**
- **[8] M. Hoffmann-Ostenhof anr! T. Hoffmann-Ostenhof, "On the local behaviour of nodes** of solutions of Schrödinger equations in dimensions ≥ 3 ⁿ, submitted for publication