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1 Introduction 
We consider real valued Z2-solutions V>> V> ^ 0, of the Schrodinger equation 

(_A + V - J 5 ) ^ = 0 inR», „ > 2 (1.1) 

with suitable assumptions on V : R" -» R and with E real. For 4> € Lfx(R
n) n C°(R n) 

with 0(zo) = 0 for some Xo € R* we define the order of vanishing of V> in *o by 

^ ( 0 ) := sup{o.: Hm Jr t o ~" / g tfäz < oo}, (1.2) 

where £R(XO) = { i 6 R n : \x - x 0 | < R). If 0 is C°° in a neighbourhood of z 0 , then this 
definition coincides with the usual one, namely 

/ i r o ^ ) = i n f { | / ? | : ( ^ ) ( x o ) ^ 0 } , 

where ß denotes amultiindex (ft , . . . ,&) , |0| = E*»i ft and ̂  - ^/(dxf1.. .dxfr). 
From unique continuation theorems it is known [11] for a very general class of po

tentials that such solutions 0 do not vanish locally of infinte order, so that /^(VO < °°-
P u c e bounds to t^ty) might be considered as quantitative versions of unique continu
ation results. Such estimates were recently obtained by H. Donnelly and Ch. Fefferman 
[8] for Laplacians on compact Riemannian manifolds. They consider -Au* = A*u* on 
such a manifold M, where A* -* oo for k -» oo, and obtain the asymptotically optimal 
estimate 

**9Uuk)<Cy/\k (1.3) 

with some constant C = C(M) < oo. In their proof the compactness of M is used. 
For solutions to the Schrodinger equation in all of R n the situation is quite different. In 
particular it is not even clear when sup{l x (^): x € R n } is bounded for a fixed solution 
V» of (1.1). 

To get some intuition we consider the Schrodinger equation of the Hydrogen atom (in 
suitable units) 

{-*-!.-EM-* inR3, (1.4) 
Fl 

where Eh = -k~7, k 6 N and the eigenvalues Ej, are ife'-fold degenerate. The corre
sponding real valued eigenfunctions can be written as (see any textbook in quantum 
mechanics) 

* - i / x 

iM*) = E E CmAkftAr)Yl,m(-) 
tmO mas-t T 

with r « |x|, where the YliV% are the usual orthonormalized surface harmonics. The /*,* 
satisfy in R + 

-Ä - ;£* + (—r11 - ; + *")//,* - o M) 
(' denoting d/dr), and //,* ~ r1 for r -• 0. The c^,* are real constants. 
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Clearly we have for x0 = O 

loM<k-l = ~X==-l forJbGN. (1.6) 

vl£*l 
Since £ \ —• 0 for Jb -• oc the above particularly implies that lotyk) may tend to infinity 
for k —» oo. Another explicit example showing such a behaviour, but with Ek —» oo for 
k -* oo, is the Schrodinger equation for the n-dimensional harmonic oscillator (—A + 
|x|2 — Eu)i>k = 0. Note that for any reasonable potential V — V(\x\) for which - A + V 
has infinite discrete spectrum {Ek, k € N}, eigenfunctions V*> k € N exist, such that 
lotyk) —* oo for k -* oo. The hydrogenic case is a particularly illustrative one and it will 
be referred to below. 

In Section 2 we study /^-solutions of (1.1) and derive a sharp upper bound to (Xo(^) 
in terms of x0, E and V, under unfortunately rather restrictive assumptions on V. The 
proof is partly based on methods developed in [9]. In section 3 we show for V smooth that 
an upper bound to l*,(^) implies an upper bound to the dimension of the eigenspace 
associated to E. 

2 Statement of the Results 

From now on we assume that V : R n —> R, n > 2 has the following properties: 

For some x0 6 RB, V 6 Cx(Rn \ { i 0 }) and 

I* " * 0 r ' V , \x - *<>r'(* - *o) • VV € L&(R") 

for some 6 > 0, where p = 2 for n > 4 

and p = n/2 for n = 2,3. 

In addition we assume that either 

V-»0 , r|VV|->0 for r-» oo (Bl) 

or 

{A) 

(B2) 

for some $>, # > 0 with #, < /? there is an Ä > 0 

such that C,r* < V < C2r
0 and 

CXT*> < \{x - xo) • VV| < CjrP for r > Ä 

with some C\y C% > 0. 

Our assumptions on V imply (via quadratic form techniques) that there is a unique 
semtbounded self adjoint operator H associated to - A + V with core (7g°(Rn) (see e.g. 
[16]). Note that if V obeys (Bl) then clearly a,„H = [0, oo) and (1.1) has no ^'-solutions 
with E > 0, and if V obeys (B2) then H has only discrete spectrum (see e.g. [15]). 

We remark that each eigenfunction iß of H is Holder continuous, ij> € W2,7{Rn) and 

e a V € L2(Rn) for some a > 0 (2.1) 
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(see [15,16]). This and (1.1) implies 

x - V 0 6 L 2 ( R B ) . (2.2) 

In addition our assumptions on V imply via unique continuation [11] that 

4 0 (V)<<» f o r x 0 € R " . (2.3) 

Theorem 2.1 Let V : A" -» R, n > 2 satisfy condition (A) and either (Bl) or (B2). 
Assume that r/> € I 2 ( R n ) , 0 ^ 0, is a real valued solution of (1.1). 

Define for Jfc € R + 

X^(k) = J $ R J ) ( / R , ( * | V v > i 2 + ^ 0 ( | x | )M 2 )dx l JRt \tfdx) (2.4) 

where WXo: [0, oo) —»R satisfies the following conditions: 

r 2 _ 'H^ 0 ( r ) - • 0 for r -• 0 for some 6 > 0, \ 

sup(-W«o,0) is bounded for r > 0, and > (2.5) 

W*{\x - x 0 |) < V{x) + | ( i - i 0 ) • W ( x ) for x € R n . J 

Suppose that £To(if>) > 0, then 

(i) there exists a unique ko > n — 2 such that 

A,0(*o) = £ and tt0(1>) < I f o - r H - 2 ) . (2.6) 

(ii) Inequality (2.6) is best possible in the following sense: Let for i g N and x 6 R n , 
r = | x | 

V(r) = {21 + n - 2 ) 2 ( r* + 2 n - 6 - 2 r M + " - 4 ) , ' 
(2.7) 

E = 0 and Wo = V + | r V 
then 

^(x) = r / e x p ( - r M + " - 3 ) n ( - ) (2.8) 
r 

(with Yt a spherical harmonic of degree /) is an I3-solution of (1.1) with V and E 
given in (2.7), 

£ o (0) = t and Ac(Jfeo) = 0 with *b = 2* + n - 2. (2.9) 

Remark 2.1 

a) The assumptions on V guarantee the existence of a Wt0 obeying (2.5). 

b) Theorem 2.1 particularly implies 

**o(2**oW + " - 2 ) < £ . (2.10) 

Since it is straightforward and might be illustrative we now give the 

file:///tfdx
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Proof of Theorem 2.1 (Ü): Let V ( r ) = e x p ( - r M + n - 2 ) and note that L2Yt = i(£ + 
n — 2)Yt, where L2 denotes the Laplace-Beltrami operator on the unit sphere 5 n - 1 . Then 
with i> = rfyYf according to (2.8), 

r 

where with Jfco = 2£ + n — 2 

V>' = -*tor t 0 -V, and v>" = *b(*or"»-2 - (*b - l ) r * ° - V 

Therefrom AV> = V0 follows with V given in (2.7). On the other hand it is easily seen 
that 

_y __,,' + - 1 ^ = 0 
r fco 

implying (2.9). 0 

Remark 2.2 

a) Away from x0 we could have allowed for rather mild singularities of V and hence of 
WXo (compare [9]). But since we were not able to handle the physically interesting 
case of a one-electron molecule with fixed nuclei, we refrained from doing so. 

b) For dimension n = 2,3 the assumption (A) could be probably relaxed allowing for 
an |x - xo|"' +* singularity, but then the approximation arguments in the proof of 
(2.6) would become more involved. 

Remark 2.3: Even for V 6 C°°(Rn) our methods do iiot lead to a bound to swp{£Xo(ij>): 
XQ € R n } . Such global estimates seem to be out of reach at least for n > 3. 

Remark 2.4: For the 2-dimensional case there is for smooth V another, topological 
approach, which leads to an upper bound to 4<,(V0: By a result of L. Bers [2| and via 
a suitable version of Euler's theorem on polyhedra [1,12] the number of nodal domains 
of $ is greater than or equal to tXo(i/>) + 1. This together with Courant's nodal theorem 
[7,11] implies 

4 o ( ^ ) < i - l fora0€Rn, j€l\ (2.11) 

with the corresponding eigenvalues Ej orderet! in a nondecreasing sequence. 
Next we consider Theorem 2.1 for potentials which can be estimated by some poly

nomial r* and obtain in (2.6) an explicit dependence on the eigenvalue: 

Corollary 2.1: Let the assumptions of Theorem 2.1 hold. Let XQ = 0 and assume that 
inR f t 

V + \x • VV > Car01 for some a > -> - 2 , a ^ 0 l 
(2.12) 

and some ca with sgn ca = sgn 
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Denote 

and suppose that sgn pa = sgn E. Then 

p l+Ja- 1 

- n + 2). (2.14) MVO < \( £ 
ft» 

Proof of Corollary 2.1: Define for k € R + 

then ^ a ( l ) = Ha- By scaling we obtain 

M*) = * o / ( o + 2 W 

So for fc = **> with /i0(Jfcb) = E, 
E l+2a-

follows, if sgn jia = sgn £. Inserting into (2.6) yields (2.14). ü 

Remark 2.5: Suppose we know that 1*Q(0) '3 integer, then the upper bounds to txo(i>) 
in (2.6) and (2.14) can be replaced by their integer parts. Though this seems likely for 
a very general class of potentials, we are just aware of a result of L. Caffarelli and A. 
Friedman [4] which implies that lXo(ip) is integer under the assumption that 

|A*| < c w + <y v*r 
in a neighbourhood of x 0, for some Cj, C2 > 0 and a,7 > 1. 

Remark 2.0: For the hydrogenic case (compare Section 1) (2.14) implies £O(^E) -
0(1/\E\) for \E\ -> 0 instead of 0{l/yJ\F\). In fact if we consider 

( -A + car
a - E)$E = 0 inR n 

with sgn o = sgn ca, a ^ 0, a > - 2 , a simple ODE-analysis shows that 

«*(**) = 0(\E\^') 

for £? /* 0 if or < 0 resp. for E / 00 if a > 0. This asymptotic behaviour is different 
from that in (2.14) and we do not know (but doubt it) whether there are potentials such 
that (2.14) shows the correct asymptotics. 

Now we give the 
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Proof of Theorem 2.1 (i): Without loss we take x0 — O and suppose that (o(4>) = 
* > 0 . 

We first show 

Proposition 2.1: For all 7 > 0 

r-<-»/2+-»^ r-<-»/*+i+T|VV>| € l 2 ( R n ) . (2.15) 

Proof of Proposition2.1: Since lo(i>) = / > 0 we have according to (1.2) 

Km Rr2t-n+2"' [ rl>2dx < 00 for all 7 > 0 (2.16) 
mo JBR 

with Bft = {x 6 B" : |x| < R}. Let 27 ^ 21 + n and choose 0 < p < e, then we obtain 
by partial integration 

A / B R 21 + n-2fJB„ |„ 

Taking the limit v —* 0 

/ ii,ir-2t-n^dx<cUAl)<oo for7>0 (2.17) 
JB, 

results because of (2.16). For 27 = 21 + n (2.17) is trivial. (2.17) together with the 
exponential decay of iff (compare (2.1)) implies r~t~n,2+yij> € Z 2 (R n ) for 7 > 0, verifying 
the first part of Proposition 2.1. 

Now let / 6 C2{Rn) with / > 0, radially symmetric, where / , |V / | and |A/ | are 
polynomially bounded for r —» 00. Then taking into account (1.1) we easily obtain by 
partial integration 

jftl,(-A+V-E)f1>dx = \\f'1>f 
and further 

!|V/Vf = il/VII2 + J(E - V)fVdx. (2.18) 
But by Cauchy-Schwarz and t ie arithmetic-geometric inequality 

IIWU2 > i | | / v v f - II/VIP (2.19) 
so that 

| | / W f < 4II/VII2 + 2J(E- V)f*>4x (2.20) 
results. Now we choose for / functions /,»,/*> 0 denned in the following 

/„(r) « (r 2 + /i J)- T O/ 2x(r) with m = £ + f - l - 7 ' 
where x e C?(B2), x = 1 in fli, x > 0 and [ (2.21) 
radially symmetric. 
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Then (2.20) yields for ft > 0 

||/MVV>||2 < 8(||X'(r2 + /* 2)-m /V|| a + m a||r(r 2 + / i 2 ) -^- 1 x0| | S ) + 
+ 2j(E-V)fWdx< 

< 8(||x'r-"*^||2 + m»|r—"jtfl 1) + 2\\J\E - V\r-m

Xtl>\\2 < c(m) < oc 

where we used assumption (A) on V and (2.17). For ft J, 0 we obtain therefrom by the 
monotone convergence theorem r"mxVV> € L2(Bi) and hence 

r -*-" / 2 + , ^ |V^ | € lUR*) for7>0. 

Finally to verify that 

r-'-B/2+1+T|VV>| € £ 2(R n) for7>0 

wc choose 
/*( r) = (T^-r)mx(r) with m > 0 and ) 
X € C°°(Rn), bounded, radially symmetric, x > 0 J (2.22) 
supp x C (R n \ Bi) and x = 1 for r > R > 1. J 

Again inserting into (2.20) we arrive at 

ll/Wf < 4||(x' + x(i + Ar 1 )( T ^:) m ^f + 2||^-v|/^|| 2 < 
< C(R)(U\\2 + ||r- xVi| 2) + 2\\yJ\E- V\rmx1>\\2 < const < oo 

where we used assumption (Bl) resp. (B2) on V and (2.1). By the monotone convergence 
theorem we obtain for n —* 0 the desired result. O 

Our main tool to verify Theorem 2.1 is the following 

Proposition 2.2: Let A = x • V + n/2 be denned on C$>(Rn) and let / € C°°(Rn) 
be strictly positive and radially symmetric. Suppose that V satisfies condition (A). Then 
for <f> 6 C0°°(Rn) 

Ke((A-l)MJ(-& + V-E)<f>) = 

= 2((r<n-3>/7$', r 3-»/7- 1(r< n- 2^ 2/0V)+ 
(2.23) 

+!(*, (-4T/«/- 1 - rff" + 5r/'/" - 3 / / " + 5 / " - r " 1 / W ) ~ 

-(f+,{V + l*-VV)f4) + E(f+J4) 

where (•, •) denotes the inner product in L 2(R n). 
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Proof of Proposition 2.2: In [9] identity (2.23) was derived for <f> e CS°(Rn \ BR), 
Ä > 0 under the assumptions V, x • VV € L}x(B.n). Taking into account assumption (A) 
with x 0 = O it is straightforward to verify that (2.23) holds for <f> € Q°(R n ) . G 

Now suppose that identity (2.23) still holds if we insert formally <i> = ip and / ( r ) = 
r_ ( 2/ + n_2-^)/a ^ j j V > o gmjji, xhen we have 

Lemma 2.1: 
((-A + l)r-*/V, r-*/*(-A + V - E)t(>) = 0 = ) 

where Jk = 2£ + n - 2 - i > ( i / > 0 small), 
(2.24) 

y = r<
n-2-fc)/3V>, and' denotes d/oY 

The proof of Lemma 2.1, given in an Appendix, follows by standard approximation 
arguments from Proposition 2.2. 

Rewriting (2.24) in polar coordinates gives 

/ f W * + (V - E + \TV)y2)rdrde = 0 (2.25) 
J$n-l JQ I 

where da denotes integration over the unit sphere Sn~x. 
That the above integrals are finite can be easily seen: The assumptions on V imply 

that 
/5--» / o ° W + |V - E + |rVV)rrfnfc < 

(2.26) 
< consi/R„[r-*-2(V>2 + rfy*) + r " k ( r - ^ + r0 + |£|W 2]dx 

and the r.h.s. is finite due to Proposition 2.1. 
Now we define 

Vl(r) = ( / S B _ , y2da){r) 

and note that (because of Cauchy-Schwarz) 

V'J < fsn_% fdo. (2.27) 

Application of (2.27) and (2.5) to equation (2.25) leads to 

r^y'^^{^o-E)ylv)vdr<Q. 
Jo 

Let if: R 2 -+ R be given by J/(Z) = i/a„(|x|), then clearly 

M*) < / R , ( * W + W0(\*\)l2)dx/jRj \v?dx < E 

follows, and therefore \o(2£ + n - 2 -«/) < £ for all v > 0 small enough. The strict 
monotonicity of Ae(ft) in k implies that there is a unique k0 with Xo(k0) = E and 
U + n - 2 < k0. D 



3 Multiplicity of Eigenvalues and Order of Vanish
ing of Eigenfunctions 

We consider again X3-solutions of (1.1), but assume now that V € C°°(Rn) in addition 
to the assumptions (A) and (Bl) or (B2). This implies that ^ e C^R"). Let £ € odiacH 
and let NE denote the corresponding eigenspace with multiplicity vg. If 0 € NE-, then 
tx9{i>) and VE are related by a simple inequality. This will follow from the observation 
that one can construct an eigenfunction ij> by linear combinations of fa € NE, 1 < i < VE, 
whose order of vanishing at a given arbitrary x 0 depends on vg. 

Theorem 3.1: Let V and F satisfy the above assumptions and define for x0 £ R n 

t{x0; E) = sup{l € N|3^ € NE with txoty) = £}, (3.1) 

then £(x0; E) is finite and 
vE< inf C(l(x0;E)) (3.2) 

aro€Ä w 

where 
C(/\ - (" + *-2)?(n + 2 l - l ) 

Vice versa, if M 6 N is chosen such that 

C(M - 1) < uE, (3.4) 

then for each x 0 there is a if> € NE with 

(Xe(i>)=M- (3-5) 

Remark 3.1: 

a) It might be possible that such observations already exist in the literature since the 
proofs are elementary. 

b) Of course, bounds like (3.2) hold under less restrictive conditions on V. Foi instance, 
if V is only smooth in & subset ft C R", then (3.2) still holds if we take the infimum 
over ft. 

c) For the hydrogenic case considered in Saction 1 it can be easily seen that we have 
equality in (3.2), thoufh Theorem 3.1 does not apply for x 0 = 0. 

Naturally we can replace l(x0; E) in (3.2) by an upper bound. Specifically we have 
from Corollary 2.1 
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Corollary 3.1: Suppose that V and £ satisfy the conditions of Corollary 2.1 and that 
V is C°° in a neighbourhood of the origin, then 

«* < C{[\ 
E_ 
Pa 

with C(-) defined in (3.3), and where [•] denotes integer part of •. 

1+20- 1 

- n + 2]) (3.6) 

Remark 3.2: If oa^E consists of infinitely many points, then (3.6) implies 

uB = 0(|£p + o)( f l- ,)/°) (3.7) 

as E / oo for a > 0, or as E f 0 for a < 0, and this asymptotic bound shows the same 
shortcomings as the bound to lf0(^>) in Corollary 2.1, which was discussed in Remark 
2.6. 

There is a rich literature on bounds to multiplicities of eigenvalues (a recent reference 
is for instance [3]), and the 2-dimensional case is special (3ee [3,6,14]). For n-dimensional 
compact Riemannian manifolds there is a bound due to Li (see [13,5]) which is a little in 
the spirit of our findings. 

Proof of Theorem 3.1: We first show that (3.4) implies (3.5): Let {i/^,.. .,ipvs\ span 
NE, fix Xo € R" and suppose that M satisfies (3.4). Obviously it suffices to show that 
the homogeneous system of linear equations 

£&Ci(0 o ^)(*o) = O, V a e / m , 0 < m < M - l ) 
(3.8) 

where Im = {a = ( a 1 ? . . . , a „ ) : a< 6 N 0 Vt with £?=i â  = m} J 

has a non trivial solution (ci,...,c„E) € R*E. Thr cardinality of Im, denoted by d m , is 
given by 

4-C-r1)- (3-9' 
and we have therefore T.mZo dm equations in (3.8). We will show now that for m > 2 the 
number of equations can be reduced because some of them are linearly dependent, since 

I 
1*1 

( -A + V - £ ) £ c , ^ = 0 i n R n . (3.10) 

Hence for m = 2 the number of equations in (3.8) reduces from d2 to d2 — d0 {d0 = 1). 
Now let a 6 Jm-2i 3 < TO < M - 1 , then we obtain from (3.10) 

- E E ^ Ä 2 ^ * » ) + E ^ W ) ) ( * o ) = o , (3.ii) 
j s l »=1 OXj »»1 
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where the second term vanishes since 

£ Ci(iyty,)(*0) = 0 for ß 6 Ik with k<m. 

Hence also the first term in (3.11) vanishes. This implies that for each m with 3 < m < 
Af—1 it suffices to consider instead of dm only dm—dm-i equations. Therefore the system 
(3.8) is reduced to a homogeneous system of 

M-\ 
£ (dm ~ dm-%) + n + 1 = dM.x + d;4-2 
m*2 

linear equations in VE variables. But (compare (3.3)) 

dM.i+dM_2 = C{M-\) 

and because of (3.4) the system has a ion trivial solution verifying (3.5). 
The proof of (3.2) is now immediate. Suppose first that for some i 0 , l{x0; E) is infinite. 

Then there are sequences V ( m ) = TZ*\ cj"Vn V>. € NB, £ £ i c j m ) 2 = 1, so that these V ( m ) 

have zeros of order M(m) at x 0 with M(m) -» oo for m -* oo. This implies that there 
is a subsequence { ( q m ' , . . . , tf^)} of {(c| m ' , . . . , <%£)} which converges for m' -> oo to 
some (cj, . . .,dVB) 6 5" B - 1 . Clearly V> = Er=i cJV'» n a s a zero of infinite order in xo, and 
this contradicts unique continuation. Herxe £(x0, £) is finite. 

(3.2) follows now from the fact that C(l) is monotonically increasing in £, and that 
(3.4) implies (3.5), where we used that vE is finite. O 

It seems likely that Theorem 3.1 still holds under weaker smoothness conditions on 
V, but then substantial modifications of the proof are certainly necessary. 

Appendix 

The proof of Lemma 2.1 is based on Proposition 2.2. We first note that it is straightfor
ward to show that 

(r2 H- lp'fy G W 2- 2(Rn) V 7 > 0 (1) 

by taking into account (1.1) and Proposition 2.1. Pick 7 > max(/?, 1) and let 

,7 = (r 2 -;- lp'V and r,K = 7}*pk, h > 0, (?) 

where />,, € Co°(Rn) '" * mollifier, such that J/A converges pointwise uniformly to i) for 
h —»0 in every compact set and 

11% ~ n\\w>* -* 0 for A -» 0 (3) 

(see e.g. (10]). Further let 
V»»-(ra + i r V (4) 
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Then y^ converges point wise uniformly to tf> for h —» 0 in every compact set. Since 
(r' + 1)-T/», IVlr2 +1)-^/ 2 | and A(r2 + l p / 2 are bounded we easily conclude from (3) 

llVfc - *l>\\w** -*• 0 for fc -• 0. 

Further obviously 

\\x.v[</+ir%h-T,))\\< 
d 

< 7lfofc-*ll + |Vfo»-ij) | | -»0 f o r A - 0 

because of (3). Hence 
II* • V(<Ph - VOII -• 0 for h -> 0. 

Next we choose <j> = <ph and / = /« with 

/ , = ( r 3 + e 2 ) - * / 4 , Jfe = 2£ + n - 2 - J / ( i />0 small) 

and define 

Inserting into (2.23) we obtain 

( M + l)/tV>Ä, /.(-A + V - £)?*) = 

. _ , . (Jfc2-4fc)r6 ( 6 * - * 2 ) r 4 2Jfcr2 

where Gt(r) = \ ' + \ ' r——. 
(r2 + e 3 ) 3 (r 2 + e 2 ) 2 r 2 + e 2 

We show that 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) l.h.s. of (9) - • 0 'or A -»0: 

Obviously we have 

ll.h.s. of (9)1 < (||(A -1)/,(vfc -0)|J + ||(A -1) / ,* | | ) • | | / , (-A + V- E)(<ph - 0 ) | | . (11) 

Since 

(12) £ = 4 Z5-T7i/« and |/.| < 1, 
2 r ' + £ ' 

and (5) and (6) hold we immediately obtain for h -* 0 

| p - l ) / ^ - ^ | | + ||M-l)/e^||< 

< Co(*)(||/«(^ - 0)|| + H/,011 + ||/«* • Vfo ~ 0)|| + ||/«* ' V0||) < 

< c(Jfe) < oo. 

(13) 
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(14) 

(11) together with (13) gives 

|l.h.s. of (9)| < c(*)||/.(-A + V - E)(Vh - *} | | . 

Due to assumption (A) and (B) on V, and because 7 > max(l,/?) we have 

WfeVfa-WW < const(\\r-»<(vh - * ) | « + WAVH - *)||) < 

< ooMt(||r-^(v»4 - VOIk + 11% - ill)-

But r - , , + * € I'fBi) and S U P B , IV* - V>l - • 0 for A -» 0, together with (3) lead from (15) 
to 

| | / . V f o - * ) | | - » 0 f o r A - 0 . 
(14), (16) and (5) finally imply 

(15) 

|l.h.s. of (9)| -• 0 forA-»0. 

Next we have to investigate the r.h.s. of (9) for h -* 0: Let 

yt = r{n-2)/2ftil> with U defined in (7), 

then by (12) 

V? - r«-*fl{d(r)il> + vf*) with d(r) = i(» - 2 - J L ^ j ) 

and further 

„4-n r 2-n/2 
/ . 

< c(e, n, *)(||V|| + Ik • VVH) < 00 

where we used (2.2). Analoguously 

_4-r. 

Therefore 

M^-r^y**)<<x with y f,h given in (8). 

r 2 - n / 2 ^ r J - n / 2 

< U - T ^ W I W - v».) + r(^ - ^)')|| < 
V r r « 

< c(e,n, *)(||^ - p*|| + ||x • Vf> - ft)|| - 0 for A -• 0 

because of (5) and (6). 

(16) 

(17) 

(18) 

(19) 

(20) 
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Next we note that 
(<Pk,Ufoh)-*(1>tUfrl>) forA-0 

(21) 
mthU = V-E+^x-VV 

which can be seen from the following: Clearly 

Ifo, fiUn) - (*, /?W)| = |fo - *, J?tf (v. - *)) + 2(V, J?tf (v* - *))|. 
Therefrom we proceed as from (15) to (16) and arrive at (21). 

It is easily seen that for all e > 0, r~3G,f, is bounded for r > 0 and therefore 
\{VK,fir-*Gtfh) - W,fr-*GM = 

= \{<Pk ~*, f*r-*Gt(<ph - *)) + 2(<ph -t/,,Psr-*GM < (22) 

< c( £)(||^ - 0|| 2 + llvll • yh - 0||) -»0 for h - 0. 
(20), (21) and (22) together yield 

r.h.s. of (9) - k(y'e, £^y'€) + (*, ßU*) + ± (* /?r"2G.*) for A -» 0. (23) 

Combining (17) and (23) we arrive at 

Finally we have to investigate (24) for e -* 0: With y defined as in (2.24) we clearly 
have for e -» 0, y, -• y and ŷ  -»y' pointwise in R n \ {0}. From (19) 

tfj^^Mr^V + rV8) 
follows, and r"2~*(^2 + r2tl>'2) € /^(R") due to Proposition 2.1. Hence we conclude by 
Lebesgue's dominated convergence theorem that 

( ^ ; J T ^ ) ^ ( V > 2 " V ) fore-0. (25) 

Since Z 2 ^ 2 -* r~*W for £ -• 0 in R" \ {0}, fe < 1, and r-fy2|t/| € Ll{Rn) due 
to our assumptions on V (compare (2.26)) and Proposition 2.1, we obtain also 

(f*1>,UfeiJ>)^(iJ>,r-kUxl>) for £-»0. (26) 
Finally we show that 

W,r~2f*Gtil>)-0 for£->0: (27) 
It is easily seen that 
Gt(r) -* 0 for e -> 0, for r € (0,oo), and therefore ^2r"2(r2 + e2)~k'2Ge -» 0 for 
e -* 0 in RB \ {0}. Further for e > 0 we have for some C < oo not depending on 
«, ^ V V + e2)-*/2|Gt| < CtyV2"* in R" \ {0}, but ^V 2"* € I^R") because of 
Proposition 2.1. This implies via Lebesgue's convergence theorem (27). Combination of 
(25), (26) and (27) completes the proof of Lemma 2.1. O 
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