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ABSTRACT 

In the presence of finite plasma current, the axisymmetric (m = 0) 
magnetoacoustic wave resonance exhibits a frequency splitting for finite toroidal 
mode number (n * 0) between oppositely directed travelling waves. Calculations are 
presented which demonstrate that A(l/f), the difference between the inverse 
resonance frequencies, is duectly proportional to known moments of the plasma 
current profile and, in the limit where the radial wavenumber is much larger than the 
parallel wavenumber, is independent of the plasma mass density and its profile. Some 
aspects of the implementation of a current profile diagnostic based on the excitation of 
these resonances are also considered. 

PACS numbers: 52.35.Hr, 52.70.Gw. 
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I. INTRODUCTION 

Knowledge of the plasma current profile is important for the understanding 
of plasma confinement and stability. Several techniques now exist for its 
measurement. Each involves a radial profile of a parameter related to the plasma 
current density such as i) the poloidal magnetic field measured by the Zeeman 
splitting of a neutral lithium beam*, ii) the Faraday rotation of a far-infrared laser 
beam^ or iii) the density fluctuations of the Kinetic Alfvln wave at resonance layers 
whose radial locations depend on the safety factor3, q. These techniques have the 
advantage that they measure the current profile itself. 

Often however, it suffices to measure a parameter whose value represents 
a known average of the plasma current density. The simplest is the measure of 
A = P + lj/2 provided by the vertical field. In this case the plasma internal inductance 
lj can be obtained by a separate measurement of pV poloidal beta. Changes in Ij can 
be inferred indirectly by comparing the temporal evolution of A with that of p p i 
obtained from the diamagnetic loop. 

The use of the fundamental and harmonics of the magnetoacoustic 
resonance impedance where (n,m)= (0,0) has been proposed to obtain unambiguous 
information on the current profile4. An experiment^ restricted to the fundamental 
resonance, however, has shown little sensitivity of the magnetoacoustic resonance to 
the plasma current. 

Eigenmode resonances of the global Alfv6n eigenmode or the Discrete 
AIfve*n wave (DAW) have also been considered^ as a possible current profile 
diagnostic. To date, however, it is not known precisely what measure of the current 
profile is provided by the DAW eigenfrequency. In fact, more than one profile may 
lead to the same frequency. The DAW frequency does however lead to a fairly precise 
parameterisation of q(a/2) and lj for a restricted set of assumed cur.vnt profiles. A 
major disadvantage is that the frequency also depends critically on the plasma mass 
density and its profile, neither of which can be determined. 

In this paper, we examine an interesting pioperty of the axisymmetric 
magnetoacoustic wave (also referred to as fast or compressional wave) with finite 
toroidal mode number. We show that the splitting of the resonance frequencies of its 
various radial modes is directly related to known moments of the plasma current 
profile. In addition, for low n modes, the frequency splitting is independent of the 
plasma mass density and its profile. 

The siructure of this paper is as follows. In seciion II, the analytical theory 
of the magnetoacoustic resonance splitting in a homogeneous pinsma is discussed 
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and a simple formula is derived expressing the inverse frequency splitting A(l/f) in 
terms of the constant current density. In section III numerical calculations relevant to 
the experimental conditions of a small tokamak are presented which test the 
predictions of the simple formula, examine the effects of profiles and generalize the 
simple formula to the case of an inhomogeneous plasma. In section 4, some aspects 
concerning the implementation of a current profile diagnostic are briefly considered. 

n. THE ANALYTICAL THEORY OF THE FREQUENCY SPLITTING OF THE 
MAGNETOACOUSTIC WAVE IN A HOMOGENEOUS PLASMA 

A. Introduction 

Splitting of the magnetoacoustic wave resonance has previously been 
observed using magnetic probes^ and collective scattering .̂ In these cases, high 
power RF was employed at a single frequency while a density scan swept the 
spectrum. Calculations had shown that the density splitting is given by°, 

*£. . 2nma2 m 
P 3R2(q> * ' 

where a, R are the minor, major radius respectively, <q> the average value of the 
safety factor and Ap/p the fractional density splitting at constant frequency. Terms of 

order rfia^/R^ have been neglected with respect to unity in equation (1). 

The absense of splitting for m = 0 is a result of the model used to derive 
equation (1). The splitting has two origins 1®. The first is the redefinition of k to kn 
when finite poloidal field is introduced into the MHD model. This effect is proportional 
to m and results in a k-shift of the dispersion curves. The second is a slight 
asymmetry resulting from the Jxb force due to plasma current density and wave 
magnetic field on the plasma. Dispersion curves of the magnetoacoustic waves can be 
found in the paper by Ballico ct. al.10. 
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B. Calculation °f lne Frequency Splitting for the Case of a Homogeneous Plasma 

We now give two derivations of the frequency splitting for the case of a 
homogeneous plasma. These are based on the MHD equations including finite 
frequency and plasma current, 

-ioopv = jx B + Jx b and E + vxB =-=^-A\ x B + Jxt) 

Together with V x E = -io>b and V x b =Hoi these relations can be solved 
for a homogeneous plasma 11 to obtain the following Bessel equation, 

d bii idbii „2 rn, . . 

dr2 r dr x
 r2 " (2) 

and dispersion relation, 

k2 (A-k2)2-(fA-Dk,|)2 

A " k l (3) 

-I _ f2 ' * P^O* COci 

D = uoJ/B, m± = m - kD/2, K,, = k + mD/2, 

which is valid when BQ the poloidal field, is much smaller than, Bz the toroidal field 

and the plasma mass and current density profiles are uniform. 

The dispersion relation is a quadratic in k||2 and therefore has two 
solutions; the Alfv£n wave and the magnetoacoustic wave. When there is no vacuum 
gap between plasma and wall, application of the boundary condition br = 0 leads to a 
spectrum of discrete radial modes of the magnetoacoustic wave for all values of (n,m). 
These radial modes have discrete values of kj_ and are labelled by the letter 1 in 
increasing order, according to the number of half wavelengths in the radial direction. 
These modes experience a waveguide cutoff. If there is a vacuum layer1 J then this 
conclusion is no longer valid for the m * 0,1 = 1 modes. These waves propagate as 
surface waves, have a continuously varying kjL and do not experience a waveguide 
cutoff. We are not concerned with the surface waves in this paper. 

In a first attempt, we derive the density splitting Ap/p using equation (3) 
and the definition of k|| for the case of a homogeneous plasma. We neglect the effect 
of Jxb on the plasma by dropping Dk||, the only J-dependent term in equation (3). 
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For a given to, m, 1 and kj_ there are two different resonant densities for each of +k 

and -k.. The variation in A between +k and -k is AAp/p so that, 

Ap_ 2kmD(1 + f2) ,4« 
P " k2 

Equation (4) demonstrates the proportionality to mD noted by Ballico et. al.1^. rn the 
cylindrical approximation of a tokamak k = n/R and D = 2/qR, where q is the safety 
factor, so that equation (4) can be rewritten as, 

Ap m 4nm(1 + f2) , 5 ) 

P qkiR2 

Apart from numerical factors, equation (S) has the same dependences as 
equation (1). We note however that the effect of Jxb on the plasma has been 
neglected. 

To find the frequency splitting for m = 0 we are forced to include the effect of 
Jxb on the plasma by retaining Dk|| in equation (3). We use the same derivation as 
before except that, since we are interested in a current profile diagnostic, we keep the 
mass density constant and solve for Af with k|| = k. The following formula is obtained; 

Af 2HonJf2 = 4nf2 

RB^ki qR2kJ 

where f SI and kj_ » k have been assumed. If Af is sufficiently small with respect to 

unity then, 

|A(1/f)| « ^ . ^ ( 6 ) 

RB0kl qR2k2 

Equation (6) shows that there is a frequency splitting for the case of m = 0. 
We note the following important properties. 

(i) A(l/f) is linearly proportional to J. This linearity is intuitively expected 
to remain valid in the case of an inhomogeneous plasma provided the current profile 
remains constant. Similarly, division of A(l/f) by the plasma current Rogowski signal 
provides a measure of the current profile form. The dependence of A(l/f) on the 
current profile will be derived in the next section. 
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(ii) Since the radial wavenumber, kj[, is a constant for a given vessel 
geometry, A(l/f) is not dependent on plasma mass density. On the other hand, a 
dependence of A(l/f) on the mass density profile is not excluded in the above 
derivation. This will also be discussed in the next section. 

For the m = 0 magnetoacoustic wave in a homogeneous cylindrical plasma 
bounded by a conducting wall, b r~ Ji(kj_r) where J\ is the Bessel function of order 
unity. The condition br(a) thus yields kĵ a = 3.83, 7.02, 10.2, 13.3 etc. where a is the 
minor radius. Substituting the TCA1^ values a = 0.18 m, R = 0.61 m into equation (6) 
and taking q - 2 we obtain A(l/f) = 0.012n and 0.0035n respectively for 1 = 1 and 2. 
The condition k^2 » k2 is satisfied for |n| < 4 and |n| < 7 in each case. The splitting 
is therefore a tiny effect (0.3 - 5%) and requires a sensitive frequency measurement. 

No previous attempt has been made to compare equation (6) with 
experimental results. In addition, to the best of the authors' knowledge, no 
experimental result on the splitting of the m = 0, n * 0 magnetoacoustic resonance in 
a tokamak has ever been published. 
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III. NUMERICAL CALCULATIONS OF A(I/f) FOR THE CASE OF AN 
INHOMOGENEOUS PLASMA 

A. Introduction 

A numerical study was performed using the code ISMENE^ in order to 
investigate the dependence of the splitting on the plasma current and mass density 
profiles and hence to generalise equation (6). ISMENE is a cylindrical kinetic code 
that includes Landau damping and transit time magnetic pumping (11 MP). Under 
conditions where damping due to a varying toroidal field can be ignored, the code 
should therefore provide a reasonable estimate of the resonance Q and the 
measurability of A(l/f). 

Unless otherwise stated, the TCA parameters13 of Table I were used in 
the study. 

Table I 

Plasma Current, Ip 130 kA 

Toroidal Field, B 1.51 T 
Major Radius, R 0.61 m 
Minor Radius, a 0.18 m 
Wall Radius, n 0.24 m 
Tj (0), Tc (0) 500,800 eV 

Electron density, ne(0) 7.5 x 10 19m"3 

Electron density profile, ne(r) (i .Q.853 ( r/a )2)a
n 

Density profile exponent (an) 1.2 (typical) 

with Deuterium filling gas. 
Current density profile, (1 - (r/a)2)2 

In Figure 1, the spectrum of calculated resonances for m = 0 , |n| = 1, 2,4, 8 
and 16, 1 = 1 , 2 and 3 are plotted for the above conditions as a function of frequency 
between 10 and 30 MHz. The fundamental cyclotron frequency at 11.6 MHz and its 
first harmonic are shown as vertical broken lines. The frequency splitting for the 
different signs of n and the increase in the magnitude of the splitting with n is clearly 
evident in the figure; the n < 0 resonance having the lower frequency in each case. 
The broken curves connect the resonances associated with a given radial mode. The 
Q's of the resonances (« 10 )̂ are generally quite large. ISMENE was also run with 
an anomalous collision frequency of 100 times the Spitzer value to account for 
possible turbulence enhanced collisions'^, however no effect on wave damping was 
observed. The calculated Q values are nonetheless unrealistic and experimental 
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values lower than 100 would make A(l/f) difficult to measure since the +n and -n 
resonances would not be resolvable 

B. Effect of Plasma Current 

The dependence of A(l/f) on plasma current for fixed profiles and conditions 
otherwise as in Table I, is shown in Figure 2 for |n| = 1,2 and 4 and 1 = 2. It was a 
general result of the simulations that regardless of the current profile, as long as it is 
held fixed, A(l/f) is a very linear function of plasma current. Current profile changes 
are therefore immediately evident by comparison with the plasma current Rogowski 
signal. 

C. Effect of Mass Density 

The dependence of A(l/f) on equilibrium mass density is demonstrated in 
Figure 3. Curves are shown for n = 1, 2, 4 and 1 = 2 as a function of central density 
from 2.5 to 15x10^ m"3 and with the standard density profile of Table I. 

Despite the obvious large variations in the individual frequencies f of each 
resonance, required to satisfy the resonance condition with a changing density, A(l/f) 
varies negligibly for n = 1, 2 and slightly for n = 4. In the latter case kAi =0.17 and 
the k « k_L approximation is brought into question. 

For the case of |n| = 1, the effect of a mass density profile change has also 
been examined. In Figure 3 the effect of varying the exponent, ccn, of the density 
profile from 0.40 to 1.60 away from its standard value of 1.2 has been examined for the 
case of a fixed central density of 7.5 x 10*9 m-3 and a fixed average density of 
5.11 x 10*9 m"3. For n = 1 there is clearly no discernible variation in A(l/f). This 
surprising result is attributable to the fact that kj_ is not sensitive to the nature of the 
density profile. Indeed, the magnetoacoustic wave fields within the plasma are not 
very different for the standard profile with a 6 cm vacuum gap than they are for the 
case of a homogeneous plasma without a vacuum gap. Hence one can imagine a close 
fitting Bessel function which defines a fairly precise kj_. This observation ties in with 
the well known property that the magnetoacoustic wave propagates at an average 
Alfvln speed and therefore, to a first approximation, "sees" the plasma as a 
homogeneous medium. On the other hand, the magnetoacoustic wave with n > 0 is 
affected differently by plasma current to that with n < 0, since the wavefields, b and 
hence the forces Jxb are differently phased with respect to the wavefields j and their 
forces jxB. 

The insensitivity of A(l/f) to the mass density and its profile is an 
important asset for a current profile diagnostic. 
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D. The Effect of Plasma Current Profile 

Several examples of extreme profile variations are shown in Figure 4 for |n| 
= 1,1=2. Curve a) shows A(l/f) at constant current profile as in Figure 2. Curve b) 
shows the variation in A(l/f) for q(0) varying from 0.50 to 3.85 with Ip = 100 kA. In 
this case the exponent in the parabolic profile of Table I was varied to keep Ip fixed. 
Curve c) shows the variation in A(l/f) versus Ip for q(0) = 1. As expected, the 
variation is less than linear and therefore weaker than that of curve a). This is 
emphasized in curve d) where curve c) is divided by Ip. The flattening of the current 
profile at high plasma current is revealed by a decrease in A(l/f)/Ip. This sort of 
behaviour would be expected for example in TCA where q(0) approaches unity at high 
plasma current̂ . 

E Generalising the Expression for AH in 

Having established that A(l/f)/Ip contains information about the current 
profile we now attempt to derive the profile transformation on which A(l/f) depends 
linearly. It must be emphasized however that, because A(l/f)/Ip is closely constant 
for a fixed current profile, current profile changes are already detectable. In situations 
where the current profile can be measured, A(l/f)/Ip can also be calibrated. Hence, for 
practical purposes knowledge of the transformation is of secondary interest. 

One possibility for the transformation of the current profile is suggested by 
calculating the speed of the low frequency axisymmetric magnetoacoustic wave in a 
zero current plasma with a non-uniform mass density. If one considers the ideal MHD 
equations, 

-itopv = j x B E + v x B = 0 (7) 

and Maxwell's equations then the equation for a propagating magnetoacoustic wave 
is given by, 

V2b + ̂ b = n0Vxjz+»{VpxE) (8) 

For the axisymmetric wave, the radial component of equation (8) is 

r-^tf"'-0 <9 ' 



9 

i dr 2nrbr Taking I dr 2nrbr on both sides one obtains: 

H^-m^i)-0 <10> 
4"dr where (X)= I dr2rcrX. As noted previously the m = 0 magnetoacoustic wave 

within the plasma has approximately a Bessel function character even when the 
density profile is not uniform. Hence equation (10) and equation (2) with rn^ = m = 
0 can be combined to yield; 

-Of=k2
 + k

2 (11) 

where 

1/tf. M (12) 

Note that br (approximately a Jj- Bessel function) is involved in the 

moment integral for the definition of V^* and hence a plasma mass density moment 

p . This is natural because the force responsible for the wave is the jxB force of 
equation (7) and the only component of j for the axisymmetric magnetoacoustic wave 
(JQ in this limit) is prepositional to br. Only the plasma in the region of non-zero jg 
provides the inertia restored byjxB. Equation (11) defines precisely the average 
density "seen" by the magnetoacoustic wave. 

One could use the same procedure to calculate analytically the moment of 
the plasma current profile described by A(1/0, however the algebra is not so 
tractable. A moment of the plasma current can be derived heuristically by rewriting 
the dispersion relation of equation (3) in the kĵ  » k limit; 

& i + 2fkD = k|+k2(1+f2) (12). 

Since the term in D is linear like the term in p, we conclude by analogy with equation 
(11) that the moment D of D must be defined in the same way as (he moment p of 
p. On (he basis of equation (6) we therefore define the moment of the current profile 
as follows; 
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which for a uniform J gives J* = Ip/na2. We can now rewrite equation (4) as 

By taking br to be simply a Jj - Bessel function the data of Figure 4. have 

been replotted as A(l/f) versus J in Figure 5. 

In Figure 5 calculations have also been made for a class of flat top 
Gaussian current profiles of the form, 

w = r1 / 2 21 0<r<ro 

n ' Lexp{-(r-r0)
2/A2} r0<r<a 

where A is the Gaussian width. These profiles are typical of 'hose observed in T C A 3 . 

Points are shown for A values from 0.05 to 0.50 m at Ip = 130 kA with associated 
changes in q(0) from .98 to 3.00. 

From Figure 5 there is a clear clustering of points around the line described 
by equation (13). This indicates that there is some truth in the notion that the inverse 
splitting is uniquely dependent on a moment of the current profile as a result of the 
average current profile seen by the magnetoacoustic wave. The scatter in the points 
from one profile to another however, is sufficient to render the determination of the 
current profile moment from A(l/f) inconclusive, especially in cases where small 
profile changes are to be measured. 

IV. DISCUSSION 

In this section we superficially consider the practical aspects and problems 
in the use of the inverse frequency splitting A(l/f) as a current profile diagnostic. A 
detailed discussion is not possible until physical properties such as resonance Q arc 
known. Notwithstanding, it is clear that the relative independence of the parameter 
A(l/f) on the mass density and its profile is both interesting from the physical point of 
view and advantageous for application to current profile measurement. It has also 
been shown that A(l/f) can be crudely interpreted in terms of a known moment of the 
current profile. 

In Figure 6 we show the A(l/f) expected for the variation in q(0) and the 

variation of the density profile that might be obtained during ICRF heating in JET^S. 

The typical plasma conditions, Ip = 5 MA, B^ = 3.15 T, ne(0) = 2-4 xlO19 m'3, R = 

2,96 m, an equivalent cylindrical minor radius, a = V(2.10xl.25 m^) = 1,62 m and 
Deuterium filling gas were used in the calculation. The magnetoacoustic wave tins 



11 

n = 10 (k = 3.38 m"1) and 1 = 10 (kj_ = 19.9 m'1). The variation in A(l/0 is shown for 
line averaged ne constant with q(0) varying and for both ne and q(0) varying as in a 
typical JET heating scenario. It is clear from the figure that A(l/f) depends more 
strongly on the current profile change than on the density variation as previously 

stated, even though k/ki = 0.17. The resonance Q factors are again in the range 10^ 
for the equivalent JET cylindrical plasma with Tc= 8 KeV, Tj= 5 KeV and electron-ion 
collisions 100 times anomolously high. 

The diagnostic is not without problems. We now state briefly certain 
problems likely to arise in practice. 

The first is that A (1/0 does not provide a simply interpretable 
measurement of q(0). Only in the case where many magnetoacoustic resonances 

could be resolved would the different moments J provide detailed information about 
the profile structure. In addition, the variation in A(l/f) at fixed q(0) and q(a) is too 
small to carry information about the detailed structure of the current profile such as 
the internal current distribution or the edge value of current density when the value of 
q(0) is assumed to be known. 

A second problem is the resolution of the two resonances at low values of 
quality factor Q. Experimental results for m = 1 magnetoacoustic resonances show a 
significant discrepancy between the theoretical Q ~ 10^ and tne experimentally 
observed values Q ~ 10 .̂ The mechanism for the discrepancy is poorly understood, 
however we have already shown that anomolous collisions due to MHD turbulence 
are not responsible. An additional proposed mechanism is damping at the ion plasma 
frequency near the edge 16. This effect is compounded by the possibility of cyclotron 
damping in the ion cyclotron range of frequencies. Experimental results? indicate that 
fundamental (f = 1) harmonic damping, which occurs when the ion cyclotron layer is in 
the plasma, completely damps the magnetoacoustic wave and eliminates the 
resonance. In addition, the resonance peaks are not recovered when the whole 
plasma is below the ion cyclotron frequency. This excludes the possibility of using the 
first radial mode in TCA (Figure 1) except at low densities. Normally no problem is 
expected at the harmonic, f = 2, in a pure deuterium plasma. A small amount of 
hydrogen impurity however, causes significant damping of the resonance when the 
hydrogen cyclotron layer is present in the plasma^6 Once again, one is limited to 
the choice of resonances above the hydrogen cyclotron frequency. From a practical 
point of view, it is to be noted that the desirable properties of the A(l/f) diagnostic 
stem from the proximity of the two resonant frequencies. These frequencies may be 
so close (Af/f = .003 in JET) that a very careful measurement with a slow scan over 
the peaks is necessitated; especially if the resonance quality factor Q is lower than 

10 .̂ Under these conditions mode tracking by a servocontrolled generator can be used 
for increased frequency resolution. 
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A third disadvantage is that at low values of k/kj_ all values of k for a given kj_ 
occur at almost the same frequency. In practice therefore, a large number of probes or 
antennas are needed to distinguish the different resonance peaks for each value of k. 

V. CONCLUSION 

All methods of measuring parameters derived from the current profile 
present difficulties, either in the complexity of the diagnostic, the reliability, the 
resolution or the interpretation of the measurement. A method has been proposed 
using the inverse frequency splitting A(l/f) of the axisymmetric magnetoacoustic 
wave resonance which is simple to implement and interpret. The diagnostic has 
several elegant properties such as relative independence of its output on the mass 
density and its profile and an approximate physical interpretation in terms of a 
moment of the plasma current profile. It also appears that the diagnostic has several 
disadvantages such as resolution and a tenuous link with the standard current profile 
parameters, q(0) and the inversion radius. In addition, the diagnostic would be 
completely unusable in the presence of ICRF damping. 

An important question not adressed in this paper is the nature of the 

frequency splitting when toroidal effects are included. In particular, what is the two 

dimensional analogue of the current profile moment J . One may for example 

speculate that the integral over b̂  should be taken in the plasma cross section. 

A simple experiment to explore the spectrum of axisymmetric 
magnetoacoustic waves would soon reveal which modes provide a suitably resolvable 
frequency splitting for application to a current diagnostic. 
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Figure Captions 

1. Spectrum of axisymmetric magnetoacoustic waves in TCA. 

2. Dependence of A(l/f) on plasma current at fixed profile. 

3. Dependence of A(l/f) on plasma mass density and its profile. The plasma mass 
density profile was varied by changing the exponent an whilst keeping either ne(0) or 
line averaged ne constant. 

4. Dependence of A(l/f) for various plasma currents and current profiles. 

5. Dependence of A(l/f) on J calculated for the profiles of Figure S. using a Jj-Bessel 
function as an approximation to the wavefield b, the weighting function in the moment 
integral. 

6. A(l/f) versus q(0) at constant line averaged ne = 3.00 x lO1^ m*̂  and versus both 

ne and q(0) in JET. 
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