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1. Introduction

The recent period has seen an intense
activity in the construction of conformal
invariant theories and their classification
/1/. Modular invariance on the torus hes
proved to be an effective constraint for this
purpose.

On the other hand, according to ideas
/2/ prior to modern developments in conformsl
invariance, wmost simple two dimensional
critical mnodels are expected to derive from
free bosonic theories. Steps have besn taken
to establish links between these two
approaches /3-5/. In ref./5/ it was shown
that all minimal partition functions
classified in /6/ are linear combinations of
gaussian ones /7/. A direct derivation of
these expressions from ADE restricted golid
on solid /8a/ lattice models was proposed in
/5.8b/.

The fact that aminimal models can be
described by a "decorated" free bosonic field
1is related to the underlying 6-vertex model.
The latter presents & gaussian linea (as in
the low temperature phase of the XY model)
and the other critical wodels /8/ are then
obtained by a restriction procedure at
special points of this line.

We explain in this paper how a
similar schese applies in the super minimal
case /9/. The underlying theory 1is now the
19-vertex model /10/, the cratical line of
which 1is described by a free superfield, and
related to the fully frustrated XY model.

Partition functions on the torus /11/ are
then recovered by decorating the super
gaussian ones. They describe the "fused”
lattice models of ref./12/.

These results are generalizable /13/
to the general hierarchy of models obtained
by SU(2) coset construction /12,14/.

2. The supersymmetric 19-vertex model

The 19-vertex model /10/ is a natural
generalization of the much studied 6-vertex
model /15/, obtained by associating three
possible states (represented on fig.l1 by
in-out arrows or a dot) to each bond of the
square lattice, with the constraint that the
current is conserved at each node. In the
rather large apace of paraseters, an
integrable set of Boltzmann weights was
obtained by Zamoclodchikov Fateev as
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In (2.1} u plays the role of a spectral
parameter, and transfer matrices with the
sage value of X commute, In the very
. anisotropic limit, the model is equivalent to
a one-dimensional spin 1 antiferromagnetic
chain with haniltonian
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In fact, the 19-vertex model (2.1)
can be obtained starting fros the 6-vertex
model (fig.2) with weights
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B8 = sinlu {2.3)

@ = sinA{u+l)
{Y = gink

by a "fusion procedure”, which is some kind
/16/ of block-spin renormalization. One
starts for this with a systea of four sites
in the 6-vertex model, with inhomogeneocus
values of the spectral paraseter u, u-1, u,
u+l. External arrows on the four sides are
combined and projected on symsetric space {as
in the addition of two spin 172
representations and projection onto spin 1)

which defines new bond states

1

—=(3) ;—=(F) ;0= G

(2.4)
One gets in this way the 19-vertices of
fig.1. Now weights are calculated by summing
over all internal arrows, as well as the
external ones on the south and west sides.
One can check that the result does not depend
on the configuration at the North or east
sides, which is in fact a consequence of Yang
Baxter equations and the special set of
spectral parameter chosen. To illustrate this
construction, we calculate explicitly some of
the Boltzmann weights. The simplest case is a
in (2.1) which can result from only one
6-vertex configuration

['] -l
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fig.3
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for which

glu)=r2[20{us1)8 (u) 462 (u) +¥2]

(2.8)
+ o (u)B(u-1)B(u+l)

After simple calculation g is rewritten

g(u)ssinisin2xsiniusini(u+l)+sin?Ausin?A(u+l)

(2.9)
We notice also that the configuration of
spectral parameters in (2.5) is non invariant
under the symmetry with respect to the NW-SE
diagonal, while weights {2.1) are. In fact
the above procedure gives for instance

weight of + =we2ginrsin?Ausini{u+l)
(2.10)
weight of =m2sincos Asiniiu
sini(u+l)

Each of these two weights can be replaced by
(w0)1/2  ysing a “ga transformation”,
w(ljkl)— Sﬁ“—)w(igk:ﬁ which does not
change thg(kl):agation function an a torus.
Dividing finally &all weights by the
irrelevant factor siniu sinA{u+l), one gets
indeed (2.1).

Consider now a configuration of the
19-vertex model. Each vertex can be thought
of as the superposition of various
configurations for the four sites block in
the 6-vertex model, with any possible choice
of the arrows at the North and East sides.
Because of this property one can now identify
the arrows at West (resp. South) sides of a
given block with the arrows at East (resp.
North) of the West (resp. South) neighbouring
blocks without changing Boltzmann weights
/17/. The 19-vertex model is thus equivalent
to an inhomogeneous 6-vertex model. This
however does not work on a torus because of
the non contractible cycles in the
correspondence.

For & given configuration of the
19-vertex model, the O-current bond define
loops on the square lattice with possible
crossings, exactly as in the say low
tepperature graph expansion of the Ising
model (fig.5). On the other hand, one can
introduce height variables ¢ on the faces of
the lattice such that neighbouring ¢ éiffer
by 0, %2r depending on the bond which
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fig.5

separates them. These two aspects give rise
respectively to a Z, and U(1l) symmetry, and
one can expect the 19-vertex model to have in
the generic case either an Ising type or a
Kosterlitz Thouless type phase transition.
For the special (integrable) set of weights
{2.1), these two kind of behaviours merge,
and it turns out /13/ that the model has a
critical 1line described by a superfree field
with action

Fe= K+ A= %I [oeBe-udy-4o]dzddz  (2.11)

To Justify this result, we notice
first that in the 1limit A — Q where the
weights (2.1) become rational functions, the
model acquires an additional SU(2) symmetry.
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This is most easily seen on the chain (2.2)

which becomes simply in this case
He §,.5,.,) - 5.5..) ay
n rx i 1) r‘ 1 1)

The hamiltonian (2.12) was partly studied in
/18/ using Bethe ansatz technigue. Its spec-
trum is massless and corresponds to a central
charge ¢ = 3/2 {the latter being deduced from
"finite temperature" properties). This agrees
with non abelian bosonization arguments /19/
suggesting that (2.12) is criticel and
described by the SU(2) level 2 Wess Zumino
Witten theory. The corresponding partition
function on a torus has been obtained /6/,
and can be rewritten

1
2 2

r.s=0,

Zsecarrevarz=Zsc (B . 3, (r,8)

(2.12)
) Zux (s--;-)

M =r mod2
M'=S mod2

In this expression 3,(r,s} is the partition
function of the Ising wodel with twisted

boundary conditions (-)F, (-})" on the spin

variable, while Z,..(g=} is the partirion
function of the free bosonic field with
shifted boundary conditions @{z+1)=p(z)+2mM,
@(z+T)=@(2)+2™" is

\g/Tar IH-M*r]2
Zun- (8) = ,i,z“ exp-Tg ———— (2.13)

where T is the modular parameter, q=e?!™,
-]

“I(q)*q”un(l-q“). Using the expressions of
1

3,. (2.12) reads also

Z.lg)s & & e, dres]
S r5=0,1 MM "™ |W(ze1) 2! Tuz)
WzeT)ze! Ty (2)
;fg same for Ev
. c
J‘p(zd):‘p(z)ozm [de] e (2.14)
Plzer)=p(z)+2TH"

where € is equal /13/ to *1.

The form of (2.12) is easily explained using
the above arguments ; the Ising like degrees
of freedom contribute to 3, and the SOS ones
to Z,,.. the phifts M,M' for the field ¢
originating in 1its local definition which
cannot be consistently achieved on the torus
/5/. The only coupling between 2, and U(1)
degrees of freedom in (2.12) 1s¢ due to
boundary conditions. On & even x even lattice
to which (2.12) indeed corresponds /13/, the
algebraic ber of d along the
periods M,M', and the number of O-current
bonds crossed, which determine r,s, are of
the same parity.

Away from A = 0, the SU(2) symmetry
is broken into Z,xU(1), and it is natural to
expect that the corresponding partition
function is still given by (2.12) with a
varying coupling g. By analogy with the
6-vertex model case, the precise dependence

g=1- M (2.15)

was pmgosed and numerically checked /13/.
For A > 3 the model is antiferroelectricslly
ordered.

To exhibit the operator content of
(2.12), it is useful to perform a Poisson

transformation which gives
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1
Zoo (@) { (1%, 120 1x6g1?) 2
s¢ 12 ( ° ) E.M even

. (xax,;w.c) PN 1%, ,,612 pX
E,M odd E-M odd
q(EN2gem{2g)2/8 2 (EN2g-m{2g)2/8
(2.16)
where the Xx's are characters of the Ising
model. One can check that (2.15) decomposes
properly an C = 3/2 SUSY characters /13/.

In the same way than the 6-vertex
model gaussian critical 1line corresponds -
after a duality transformation - to the low
teaperature phase of the XY wmodel, one
expects that the 19-vertex model super gaus-
sian 1line describes the fully frustrated XY
model /20/.

Of course various other SUSY critical
lines can be constructed /21/. The simplest
one involving completely decoupled feraionic
and bosonic degrees of freedom, is

ZoclB) » 3, Z.(e) (2.17)

where Z.(g) = Ea Zuno (8).

3. Superconformal minimal wodels

The construction of the 19-vertex
starting from an inhomogenecus G-vertex wodel
can be reproduced as well for the restricted
solid on solid models, variables of which are

associated to the nodes of A, Dynkin diagram
(fig.6). After summing over internal states

in each four faces block, one obtains the
Boltzmann weights given in /12/, while
neighbouring heights differ now by 0.,%2. In
the assoclated vertex model, the parameter A
must be adjusted to A = W/H, where H = N+l is
the Coxeter number of Ay, thus g = (H-2)/2H.
To calculate the partition function
on the torus, one must complement (2.12) by
some topological teras. They depend on the

number of N steps randow walks on the Dynkin
diagram with inciderce matrix G /8/

N e N 2 Z [Zcos :——“)N 3.1)

n€exp

where n belongs to the exponents of the
algebra. In the fused uwodels, neigbouring
heights differing by ©0,*2 one can consider
two decoupled models depending on the parity
of the heights over the lattice /12/.
However, using the explicit form of the
eigenvectors of G one checks that

hi:d(hm“lh) -hz {nichin) = %Tr M 3.2

even

i.e. the two wmodels in fact have the same
partition function. One finds then

-2
2= 2 3, (r.8) z f —]
r,8e0,1 a{res M ar lodzz“ 2H

M'ug mod2

z ] (3.3)
neexpcbl[zzn

where A denotes the greatest comumon divisor.
The agsociated central charge is given by the
lowest exponent

3_6am? 3 12 4
€=3 ] 3 amay B
Formula (3.3) generalizes to a tricritical
branch with the other deteraination:
g=(H+2)/2H, and to D,, Eg, E,, E; models.
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After gome work one checks that one gets in
this case all the unitary modular invariant
partition function of ref./11/ that are
classifiecd by a pair of Lie algebras one of
which 1is of A type. The exceptional
invariants (Dg,Eg) and (Dg,Eg) however are
not obtained, and their lattice realisation
is still unknown to us.
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