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1. Introduction

The recent period has seen an intense

activity in the construction of conformai

invariant theories and their classification

/1/. Modular invariance on the torus has

proved to be an effective constraint for this

purpose.

On the other hand, according to ideas

/2/ prior to modern developments in conformai

invariance, >ost simple two dimensional

critical Bodels are expected to derive from

free bosonlc theories. Steps have bean taken

to establish links between these two

approaches /3-5/- In ref./S/ it was shown

that all minimal partition functions

classified in /6/ are linear combinations of

gaussian ones /7/. A direct derivation of

these expressions from ADE restricted solid

on solid /8a/ lattice models was proposed in

/5,8b/.

The fact that minimal models can be

described by a "decorated1* free bosonic field

is related to the underlying 6-vertex model.

The latter presents a gaussian line (as in

the low temperature phase of the XY model)

and the other critical models /8/ are then

obtained by a restriction procedure mt

special points of this line.

We explain in this paper how a

similar scheme applies in the super minimal

case /9/. The underlying theory is now the

19-vertex model /10/. the critical line of

which is described by a free superfield, and

related to the fully frustrated XY model.

Partition functions on the torus /11/ are

then recovered by decorating the super

gaussian ones. They describe the "fused"

lattice models of ref ./12/.

These results are generalizable /13/

to the general hierarchy of models obtained

by SU(2) coset construction /12,11I/.

2. The muparsymmetrlc 19-vertex model

The 19-vertex model /10/ is a natural

generalization of the much studied 6-vertax

modal /15/, obtained by associating three

possible states (represented on flg.l by

in-out arrows or a dot) to each bond of the

square lattice, with the constraint that the

current Is conserved at each node. In the

rather large space of parameters, an

integrable set of Boltzmann weights was

obtained by Zamolodchikov Fateev as
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= sinX(u*l) sinX(u*2)
= SinXu sinX(u+l)
~ sinX sin2X
* sinXu sinX(u+l)
= sin2X sinA(u*l)

f - sin2X sinXu
SinX sin2X»sinXu sinX(u*l)

(2.1)

In (2.1) u plays the role of a spectral

parameter, and transfer matrices with the

same value of X commute. In the very

anisotropic Unit, the model is equivalent to

a one-dimensional spin 1 antiferromagnetic

chain with haailtonian

H - Z §,.§,.,-(§,.Sl4l)
2-2(cosX-l)

[(SïSï.i) (sfSJ.^SfSf.j) (2>2)

In fact, the 19-vertex aodel (2.1)

can be obtained starting from the 6-vertex

model (fig.2) with weights

§ sinX(u*l)
JB • sinXu
hr • sinX

(2.3)

by a "fusion procedure", which is soae kind

/16/ of block-spin «normalization. One

starts for this with a systea of four sites

in the 6-vertex aodel. with inhoaogeneous

values of the spectral parameter u. u-1, u,

u*l. External arrows on the four sides are

coabined and projected on syaaetric space (as

in the addition of two spin 1/2

representations and projection onto «pin 1)

which defines new bond states

— "<=*) :<-•<»=>: 0 x L. (^) • L. (^
vl2 \U

(2.1)

One gets in this way the 19-vertices of

fig.l. Now weights are calculated by summing

over all internal arrows, as well as the

external ones on the south and west sides.

One can check that the result does not depend

on the configuration at the North or east

sides, which is in fact a consequence of Yang

Baxter equations and the special set of

spectral parameter chosen. To illustrate this

construction, we calculate explicitly some of

the Boltzaann weights. The simplest case is a

in (2.1) which can result froa only one

6-vertex configuration

U '

—>—

U -

U

(2.5)

fig.3

a(u) . 0(U-I)O2(u)cc(u»l) (2,6)

• sinXu sin2Mu«l)sinX(u+2)
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for which

• a2(u)p(u-l)p(utl)

After simple calculation g is rewritten

(2.8)

(2.9)

We notice also that the configuration of

spectral parameters in (2.5) is non invariant

under the symmetry with respect to the NW-SE

diagonal, while weights (2.1) are. In fart

the above procedure gives for instance

weight of

weight of -JL-

•o«2sinAsin2AusinMu+l)
(2.10)

«ô-2sin\cosJ*sin2.\u

Each of these two weights can be replaced by

((dû)"2 using a "gauge transformation",

w(ijkl) w(ijkl). which does noty - ! ! w(

change the partition function an a torus*

Dividing finally all weights by the

irrelevant factor sinAu sin\(u«l), one gets

indeed (2.1).

Consider now a configuration of the

19-vertex model. Each vertex can be thought

of as the superposition of various

configurations for the four sites block in

the 6-vertex model, with any possible choice

of the arrows at the North and East sides.

Because of this property one can now identify

the arrows at West (resp. South) sides of a

given block with the arrows at East (resp.

North) of the West (resp. South) neighbouring

blocks without changing fioltzmann weights

/17/. The 19-vertex Eodel is thus equivalent

to an inhomogeneous 6-vertex nodel. This

however does not work on a torus because of

the non contractible cycles in the

correspondence.

For a given configuration of the

19-vertex model, the 0-current bond define

loops on the square lattice with possible

crossings. exactly as in the say low

temperature graph expansion of the Ising

model (fig.5). On the other hand, one can

introduce height variables <p on the faces of

the lattice such that neighbouring <p differ

by 0. ± 2 " depending on the bond which

•

*

M . 3 . M1. 0 « -W"
fig.5

separates the*. These two aspects give"rise

respectively to a Zj and U(I) symmetry, and

one can expect the 19-vertex model to have in

the generic case either an Ising type or a

Kosterlitz Thouless type phase transition.

For the special (integrable) set of weights

(2.1), these two kind of behaviours merge,

and it turns out /13/ that the model has a

critical line described by a superfree field

with action

V V §J J [apâ*-*â*-*9*]dzddï (2.11)

To justify this result, we notice
f irs t that in the limit X —• 0 where the
weights (2.1) become rational functions, the
model acquires an additional SU(2) symmetry.
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This is most easily seen on the chain (2.2)

which becomes simply in this case
Zsc(g)

(S1-S1.,) - (S1.S..l)
2

The hamiltonian (2.12) was partly studied in

/Id/ using Bethe ansatz technique. Its spec-

trum is massless and corresponds to a central

charge c • 3/2 (the latter being deduced from

"finite temperature" properties). This agrees

with non abelian bosonization arguments /19/

suggesting that (2.12) is critical and

described by the SU(2) level 2 Wess Zumino

Mitten theory. The corresponding partition

function on a torus has been obtained /6/,

and can be rewritten

H T mod2
M'*S mod2

1 r.s«O,l
(2.12)

In this expression 32(r.s) is the partition

function of the Ising model with twisted

boundary conditions (-)r, (-)' on the spin

variable, while Z11N, (g*j) is the partition

function of the free bosonic field with

shifted boundary conditions <p(z+l)"q>(z)*2uM,

<P(Z*T)*(P(Z)*2ITM' is

where T is the modular parameter, q«eJ11tT.
OO

ilqt'q"24' 1(1-9°)- Using the expressions of
1

32, (2.12) reads also

r,S=O1I H 1 M
1 S

[dv] e (2.It)

J<P(Z*T)«P(ZJ+2ITM'

where £ is equal /13/ to ±1.

The form of (2.12) is easily explained using

the above arguments ; the Ising like degrees

of freedom contribute to 32 and the SOS ones

to Z11N,. the shifts H1H' for the field ?

originating in its local definition which

cannot be consistently achieved on the torus

/5/. The only coupling between Z2 and U(I)

decrees of freedo» in (2.12) Ig due to

boundary conditions. On a even x «ven lattice

to which (2.12) indeed corresponds /13/. the

algebraic number of arrows crossed along the

periods M1M', tnd the nuaber of 0-current

bonds crossed, which determine r,s, are of

the sane parity.

Away froa A < 0. the SU(2) syaietry

is broken into Z2XU(I), and it is natural to

expect that the corresponding partition

function is still given by (2.12) with a

varying coupling g. By analogy with the

6-vertex aodel case, the precise dependence

g . i - A/TT (2.15)

was proposed and numerically checked /13/.
For A > -, the «del is antiferroelectricslly
ordered.

To exhibit the operator content of

(2.12), it is useful to perfora a Poisson

transformation which gives

ZSC(

q(E/
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Z5C (S)

Z .
E,H odd

xl/lt>
E-H odd

q q

(2.16)

where the x's are characters of the Ising

model. One can check that (2.15) decomposes

properly an C = 3/2 SUSÏ characters /13/.

In the same way than the 6-vertex

model gaussian critical line corresponds -

after a duality transformation - to the low

temperature phase of the XY aodel, one

expects that the 19-vertex iodel super gaus-

sian line describes the fully frustrated XY

model /20/.

Of course various other SUSY critical

lines can be constructed /21/. The simplest

one involving completely decoupled feraionic

and bosonic degrees of freedoa, 1«

(2.17)

where Zc(g) Z ;
MM1SZ

3. Superconformal aininal aodels

The construction of the 19-vertex

starting froa an inhonogeneous 6-vertex aodel

can be reproduced as well for the restricted

solid on solid nodels. variables of which are

associated to the nodes of A11 Dynkin diagraa

(fig.6). After summing over internal states

in each four faces block, one obtains the

Boltznann weights given in /12/, while

neighbouring heights differ now by 0,±2. In

the associated vertex aodel, the parameter X

must be adjusted to X • it/H, where H « NtI is

the Coxeter number of A11, thus g • (H-2J/2H.

To calculate the partition function

on the torus, one Bust complement (2.12) by

some topological teras. They depend on the

number of N steps randou walks on the Dynkin

diagram with incidence matrix Q /8/

>= Tr 1 ^ r c o s 5"
nSexp V H )

(3.1)

where n belongs to the exponents of the

algebra. In the fused models, neigbouring

heights differing by 0,±2 one can consider

two decoupled nodels depending on the parity

of the heights over the lattice /12/.

However, using the explicit fora of the

eigenvectors of G one checks that

(hlC^lh) (3-2)

i.e. the two «odels in fact have the sa

partition function. One finds then

Z. Z 32(r,s)
r.i-0,1 M -T wxtt

H'>s B0d2

Z ZHH.IIP]

2. cos
nEexp

(3-3)

where A denotes the greatest couon divisor.

The associated central charge is given by the

lowest exponent

12 „ I,,. 3 6(1/H)' 3
2 g 2 H(H-2)

Formula (3.3) generalizes to a tricritical

branch with the other determination:

g«(H»2)/2H. and to DK. E 6, E7, E8 «odels.
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After some work one checks that one get* In

this case all the unitary aodular invariant

partition function of ref./ll/ that are

classified by a pair of Lie algebras on» of

which is of A typo. The exceptional

invariants (D61E6) and (Dg1E6) however are

not obtained, and their lattice réalisation

is still unknown to us.
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