LAMP/89/3

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

LAMP SERIES REPORT

(Laser, Atomic and Molecular Physics)

ROTATION EFFECT IN THE VIBRATION-ROTATION WAVE FUNCTION OF A DIATOMIC MOLECULE

Mahmoud Korek

1989 MIRAMARE - TRIESTE

INTERNATIONAL ATOMIC ENERGY AGENCY

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

LAMP/89/3

International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

.

Preface

LAMP SERIES REPORT

(Laser, Atomic and Molecular Physics)

The ICTP-LAMP internal reports consist of manuscripts relevant to seminars and discussions held at ICTP in the field of Laser. Atomic and Molecular Physics (LAMP).

These reports aim at informing LAMP researchers on the activity carried out at ICTP in their field of interest, with the specific purpose of stimulating scientific contacts and collaboration of physicists from Third World Countries.

OF A DIATOMIC MOLECULE

ROTATION EFFECT IN THE VIBRATION-ROTATION WAVE FUNCTION

Mahmoud Korek * International Centre for Theoretical Physics, Trieste, Italy.

MIRAMARE – TRIESTE

October 1989

* Permanent address: Department of Physics, American University of Beirut, Beirut, Lebanon.

I-THE ROTATION HARMONICS

1-Introduction

In the Born-Oppenheimer /l/ approximation, the vibration-rotation motion of a diatomic molecule is described by the wave function Ψ_{vJ} and the energy E_{vJ} which are respectively the eigenfunction and the eigenvalue of the radial Schrödinger equation /2/

$$d^{2}\psi_{v,j}(r)/dr^{2} + [k(E_{v,j}-U(r)) - J(J+i)/r^{2}]\psi_{v,j}(r) = 0$$
(1)

where v and J are the vibrational and rotational quantum numbers, r is the internuclear distance, and $k=2\nu/\hbar^2.$

The wave function $\Psi_{y,J}$ for a given potential U(r) is usually calculated by numerical methods where the rotational effect appears implicitly. If we have to study some transitions and if the rotational effect is considered, it is necessary to repeat the calculation for every value of J, where J is variable.

The aim of this work is to dissociate, in the wave function $\Psi_{v,j}$, the effect of the rotation from the pure vibration wave function Ψ_v and to give the analytic expression of this rotational effect.

where $\theta_{\rm R}$ represents de rotational effect. This separation is possible by using the vibration-rotation canonical functions $\alpha_{\rm vJ}$ and $\beta_{\rm vJ}$ /3/, that we present in section 2.

2-Vibration-rotation canonical functions

The Schrödinger equation (1) can be simply represented by

$$\psi_{\lambda}^{\prime\prime}(\mathbf{x}) = f_{\lambda}(\mathbf{x})\psi_{\lambda}(\mathbf{x}), \qquad (2)$$

where $\lambda = J(J+1)$, $x=r-r_e(r_e)$ being the value of r at the equilibrium) and

$$f_{\lambda}(x) = -k[E_{\lambda} - U(x)] + \lambda/(x + r_e)^2$$
(3)

The equation (2) is equivalent to the integral equation /4/

$$\psi_{\lambda}(\mathbf{x}) = \psi_{\lambda}(0) + \mathbf{x}' \psi_{\lambda}'(0) + \int_{0}^{\mathbf{x}} (\mathbf{x} - t) f_{\lambda}(t) \psi_{\lambda}(t) dt$$
(4)

in the sense that any solution of equation (4) is solution of equation (2) and vice versa.

•

Kobeissi et al /5/ associated to a given energy factor $f_{\chi}\left(x\right)$ two functions $\alpha(x)$ and $\beta(x)$ defined by

$$\alpha(\mathbf{x}) = \sum_{i=0}^{\infty} A_i(\mathbf{x})$$

$$A_i = \int_0^{\infty} (\mathbf{x}-\mathbf{t}) f_\lambda(\mathbf{t}) A_{i-1}(\mathbf{t}) d\mathbf{t}$$

$$A_0(\mathbf{x}) = 1$$
(5)

and

$$\beta(\mathbf{x}) = \sum_{i=0}^{\infty} \mathbf{B}_{i}(\mathbf{x})$$

$$\mathbf{B}_{i}(\mathbf{x}) = \int_{0}^{\infty} (\mathbf{x}-t) f_{\lambda}(t) \mathbf{B}_{i-1}(t) dt \qquad (6)$$

$$\mathbf{B}_{0}(\mathbf{x}) = \mathbf{x}$$

by using the properties of the Volterra integral equation (4), we obtain:

i) The wave function $\psi_\lambda(x)$ is related to the functions $\alpha(x)$ and $\beta(x)$ by the relation

$$\psi_{\lambda}(x) = \psi_{\lambda}(0)\alpha(x) + \psi_{\lambda}'(0)\beta(x)$$
(7)

ii) $\alpha(x)$ and $\beta(x)$ are two particular solutions of equation (2) with the well determined initial values

$$\alpha(0)=1, \quad \alpha'(0)=0,$$

 $\beta(0)=0, \quad \beta'(0)=1$
(8)

iii) The initial values $\psi_1(0)$ and $\psi'_1(0)$ for the unnormalized wave function $\psi_1(x)$ can be deduced from $\alpha(x)$ and $\beta(x)$ by using eq.(7) on one hand, and on the other hand, the boundary conditions

1

.

we find

$$\psi_{\lambda}^{\prime}(0)/\psi_{\lambda}(0)=\lim_{X\to\infty}\alpha(x)/\beta(x)$$

$$\psi_{\lambda}^{\prime}(0)/\psi_{\lambda}(0)=\lim_{X\to\infty}-\alpha(x)/\beta(x)$$
(10)

The canonical functions $\alpha(x)$ and $\beta(x)$ are well defined by the analytic expressions (5) and (6), or numerically as particular solutions of eq. (2) with the initial values (8) /6/.

3-The rotational Schrödinger equations

The vibration-rotation energy E_{vJ} being related to the rotational constants by

$$E_{\lambda} = E_{\nu} + \lambda B_{\nu} - \lambda^2 D_{\nu} + \lambda^3 H_{\nu} + \dots$$
 (11)

or

where

e_"È, e_"B, e₂"∽D, ···

Therefore, we can expand the energy factor $f_{\lambda}(x)$ in the same manner

$$f_{\lambda}(x) = \sum_{n=0}^{\infty} \epsilon_{i}(x)\lambda^{i}$$
(13)

(12)

where

$$c_{0}^{--k}(c_{0}^{-}U(x))$$
(14-0)

$$c_{1}^{--k}(c_{1}^{+}x)^{2}$$
(14-1)

$$c_{n}^{--k}(c_{0}^{-}x)^{2}$$
(14-1)

$$c_{n}^{--k}(c_{0}^{-}x)^{2}$$
(14-n)

by replacing $f_{\lambda}(x)$ in relations (5) and (6) by its expression (14) we find /7/

$$\alpha_{\lambda}(\mathbf{x}) = \sum_{n=0}^{\infty} C_{n}(\mathbf{x})\lambda^{n}$$
(15)

$$\beta_{\lambda}(\mathbf{x}) = \sum_{n=0}^{\infty} G_{n}(\mathbf{x})\lambda^{n}$$
(16)

$$\psi'(0)/\psi(0) = \sum_{n=0}^{\infty} 1_{n}\lambda^{n}$$
(16)

where 1 are constants determind by the values of $C_n(x)$ and $G_n(x)$ at the bondaries($\dot{x} = + m \text{ or } x = -r_p$).

By replacing $\alpha_{\lambda}(x)$, $\beta_{\lambda}(x)$ and $\psi'_{\lambda}(x)$ by their expressions (15), (16) and (17) in eq.(7), we find

$$\psi_{\lambda}(\mathbf{x}) = \psi_{\mathbf{y}}(\mathbf{x}) + \sum_{n=1}^{\infty} \varphi_{n}(\mathbf{x}) \lambda^{n}$$
(18)

where the rotation harmonics $\varphi_n(x)$ depend on $C_n(x)$, $G_n(x)$ and l_n , i.e., unequely on $C_n(x)$ and $G_n(x)$.

Thus the rotation effect in the vibration-rotation wave function $\psi_{\lambda}(x)$ is separated from the pure vibration wave function $\psi_{-}(x)$.

By replacing the wave function $\psi_{1}(x)$ by its expression (18) in equation (2), we obtain the rotational Schrödinger equations

$$\varphi_{0}^{"}(x) - \varepsilon_{0}(x)\varphi_{0}(x) = 0$$
 (19-0)

$$\varphi_{I}^{n}(\mathbf{x}) - \varepsilon_{o}(\mathbf{x})\varphi_{I}(\mathbf{x}) = \varepsilon_{I}(\mathbf{x})\varphi_{o}(\mathbf{x})$$
(19-1)

$$\varphi_{2}^{"}(\mathbf{x}) - \varepsilon_{0}(\mathbf{x})\varphi_{2}(\mathbf{x}) = \varepsilon_{1}(\mathbf{x})\varphi_{1}(\mathbf{x}) + \varepsilon_{2}(\mathbf{x})\varphi_{0}(\mathbf{x})$$
(19-2)

$$\varphi_{n}^{"}(\mathbf{x}) - \varepsilon_{o}(\mathbf{x})\varphi_{n}(\mathbf{x}) = \sum_{m \neq 1}^{n} \varepsilon_{m}(\mathbf{x})\varphi_{n-m}(\mathbf{x}) \qquad (19-n)$$

The first of these equations is the radial Schrödinger equation of pure vibration. All the others are nonhomogeneous differential equations having the same homogeneous equation and differing only by the second member.

4. Analytic expressions of the rotation harmonics

4.1 Pure vibration $\psi_{v}(x)$

For one electronic state and for a given potentiel, the solution of the vibrational Schrödinger equation (19-0) is

$$\psi_{\mathbf{v}}(\mathbf{x}) = \psi_{\mathbf{v}}(\mathbf{0})_{\alpha_{\mathbf{v}}}(\mathbf{x}) + \psi_{\mathbf{v}}^{\dagger}(\mathbf{0})_{\beta_{\mathbf{v}}}(\mathbf{x})$$
(20)

where $\alpha_{i}(x)$ and $\beta_{i}(x)$ are the pure vibration canonical functions defined by relations(5) and(6) in which we replace $f_{i}(x)$ by $f_{i}(x)$ (i.e., we make J=0).

4.2 Calculation of the rotation harmonics
$$\varphi_n(x)$$

We found that, a rotational Schrödinger equation(19) is given by

$$\varphi_{n}^{\prime\prime}(\mathbf{x}) - \epsilon_{0}(\mathbf{x}) \varphi_{n}(\mathbf{x}) = \sum_{m=1}^{n} \epsilon_{m}(\mathbf{x}) \varphi_{n-m}(\mathbf{x}),$$

we multiply this equation by x-t and we integrate it between n zero and x, we obtain

$$\varphi_{n}(\mathbf{x}) = \varphi_{n}(0) + \varphi_{n}'(0)\mathbf{x} + \sum_{m=1}^{n} \int_{0}^{\mathbf{x}} (\mathbf{x} - t) \varepsilon_{m}(t) \varphi_{n-m}(t) dt$$
 (21)

by replacing
$$\epsilon_m(t)$$
 by its expression (14) in eq (21), we obtain

where
$$\sigma_{n}(\mathbf{x}) = \varphi_{n}(\mathbf{0})\alpha_{v}(\mathbf{x}) + \varphi'(\mathbf{0})\beta_{v}(\mathbf{x}) + \sigma_{n}(\mathbf{x}) \qquad (22)$$

$$(23-0)$$

.

$$K_{o}^{n}(\mathbf{x}) = \int_{0}^{\mathbf{x}} (\mathbf{x}-t)\varepsilon_{n}(t)\varphi_{0}(t)dt \qquad (23-1)$$

$$K_{1}^{n}(\mathbf{x}) = \int_{0}^{\mathbf{x}} (\mathbf{x}-t) \int_{0}^{t} (t-t_{1})\varepsilon_{n}(t)\varphi_{0}(t)dt, dt \qquad (23-2)$$

$$K_{m}^{n}(\mathbf{x}) = \int_{0}^{\mathbf{x}} (\mathbf{x}-t)\varepsilon_{n}(t)K_{m-1}(t)dt \qquad (23-3)$$
for $\mathbf{x}=0$

$$K_{o}^{n}(0) = K_{1}^{n}(0) = \dots = K_{m}^{n}(0) = \dots = 0$$

$$K_{o}^{n}(0) = K_{0}^{n}(0) = \dots = K_{m}^{n}(0) = \dots = 0$$

therefore $\sigma_n(0) = \sigma_n'(0) = 0$

and

for the derivation of order i we proved that

$$d^{i}k_{m}^{n}(0)/dx^{i} \quad 0 \text{ for } i \ge 2.$$
$$d^{i}\sigma_{n}(0)/dx^{i} \neq 0.$$

For the unnormalized wave function, we chose $\psi_v(0) = \varphi_0(0) = 1$; by using eq.(18) we obtain

by replacing $\varphi_n(0)$ by its value in eq.(22) we find

$$\varphi_{n}(\mathbf{x}) = \varphi_{n}'(\mathbf{0})\beta_{\mathbf{v}}(\mathbf{x}) + \sigma_{n}(\mathbf{x}).$$
 (24)

On the other hand, the rotation harmonics must be vanished at the boundaries.

$$\varphi_{n}(\mathbf{x}) \longrightarrow 0 \qquad i$$

$$\mathbf{x}^{+} \propto \mathbf{x}^{+-r} \mathbf{r}_{e} \qquad (25)$$

by using eq.(25) the eq.(24) becomes

$$\varphi_{n}^{\dagger}(0) = \lim_{\substack{x \to \infty \\ x \to -r \\ e}} \varphi_{n}^{\dagger}(x) / \beta_{v}(x) = 1$$
(26)

Thus the rotation harmonic $\varphi_n(x)$ is given by

$$\varphi_{\mathbf{n}}(\mathbf{x}) = \sigma_{\mathbf{n}}(\mathbf{x}) + \mathbf{1}_{\mathbf{n}} \beta_{\mathbf{v}}(\mathbf{x}),$$

this expression is valid without any restriction on the form of the given potential function.

5-Representation of a potential function

To simplify the numerical application, we have found a unified form of the potential function which is similar to the potential of Dunhum for a diatomic molecule

$$U(x) = \sum_{n=0}^{\infty} \gamma_n x^n$$
 (27)

where x=r-r and Y=Y=0

5.1 Morse Potential

The Morse potential function is given by /8/

$$U(r)=D[1-exp(-a(r-r_e))]^2$$
 (28)

this function can be written as

$$U(r) = D[1-2y_{1}(r)+y_{2}(r)]$$

where $y_{1}(r) = exp(-a(r-r_{e}))$
 $y_{2}(r) = exp(-2a(r-r_{e}))$

we divide the r-axis into intervals $I_i = [r_i, r_{i+1}]$, for this interval we take

on one interval the function y can be written as

$$y_{l}(r) = A_{l} exp(-ax) = A_{l} \sum_{n=0}^{\infty} (-ax)^{n} / n! = \sum_{n=0}^{\infty} c_{n} x^{n}$$

with $A_i = exp(-a(r_i - r_p))$.

.

The coefficents are given by the recurrence relation

$$C_{n+1}/C_n = a/n+1$$
; $C_o = A_1$

by using the same method, the function y₂ is given by

$$y_2(r) = A_2 exp(-2ax) = \lambda_2 \int_{n=0}^{\infty} (-2ax)^n / n! = \int_{n=0}^{\infty} d_n x^n$$

with $A_2 = exp(-2a(r_1 - r_2))$

$$d_{n+1}/d_n = 2a/n+1$$
, $d_o = A_2$

we deduce for U(x) the expansion

where $\gamma_0 = D[1-2C_0+d_0]$ and $\gamma_n = D - 2C_n+d_n$ for n > 0.

5.2 Lennard-Jones potential

The Lennard-Jones potential function is given by /9/

$$U(r) = \mathbb{E} \left[1 - (r_e/r)^{-6} \right]^2$$
(29)

This function can be written as

 $U(r)=D[1-2y_{1}(r)+y_{2}(r)]$

where

$$y_{1}(r) = (r_{e}/r)^{q}$$

 $y_{2}(r) = (r_{e}/r)^{2q}$

whith q=-6.

In the interval
$$[r_i, r_{i+1}]$$
 the function $y_1(r)$ is given by

$$y_1(r) = A_1(1 + x/r_i)^q = \sum_{n=0}^{\infty} [(q(q-1)...(q-n+1)(x/r_i)^n)/n!] = \sum_{n=0}^{\infty} C_n x^n \qquad (30)$$
where $x = r - r_{i_1}$, $0 \le x \le X = r_{i+1} - r_i$ and $A_1 = (r_e/r_i)^q$.

The coefficients
$$C_n$$
 can be obtained from the recurrence relation

and y₂ has the form

$$y_{2}(r) = A_{2}(1 + x/r_{i})^{2q} = \sum_{n=0}^{\infty} [(2q(2q-1)...(2q-n+1)(x/r_{i})^{n})/n!] = \sum_{n=0}^{\infty} d_{n}x^{n}$$
(3))

with

Therefore the Lennard-Jones potential is given by /10/

$$U(x) = \sum_{n=0}^{\infty} \gamma_n x^n$$

 $A_{2} = (r_{e}/r_{i})^{2q}$

with

5.3 Numerical potential.

A numerical potential is defined by the coordinates of its turning points with polynomial interpolations and extrapolations. For this potential, we divide the r-axis into intervals $I_i = [r_i, r_{i+1}]$ where τ_i and r_{i+1} are the abssissas of two consecutive turning points. On one interval the polynomial form of the potential function, is given by

$$\mathbf{U}(\mathbf{x}) = \sum_{n=0}^{N} \gamma_n \mathbf{x}^n$$
(32)

6-Numerical method

6.1 calculation of the vibrational wave function
$$\varphi_0(r)$$

For one electronic state and for a given potential the vibrational wave function is given by (20)

$$φ_{o}(x) = φ_{o}(0) α_{v}(x) + φ'_{o}(0) β_{v}(x).$$
(33)

where x=r-r;

The determination of $\varphi_0(x)$, requires the calculation of $\alpha_v(x)$, $\beta_v(x)$ and $\phi_0'(x)$.

6.1.1 Calculation of $\alpha_v(x)$ and $\beta_v(x)$

We found that, on one interval $l_i = [r_i, r_{i+1}]$, a given potential has the polynomial form

N u(r)=∑_{n∈o}n(i)(r-r_i)ⁿ

The canonical functions g(x) and $\beta(x)$ are particular solutions of eq. (19-0); because U(x) is polynomial; g(x) and $\beta(x)$ are polynomials

$$\alpha(\mathbf{r}) = \int_{n=0}^{\infty} a_n (\mathbf{r} - \mathbf{r}_i)^n \qquad (34-1)$$

$$\beta(\mathbf{r}) = \int_{n=0}^{\infty} b_n (\mathbf{r} - \mathbf{r}_i)^n \qquad (34-2)$$

We represent $\alpha(r)$ and $\beta(r)$ by the same function y(r). For a given potential U(r) and energy E, the function y(r) is given by

$$y(r) = \int_{n=0}^{\infty} C_n(i) (i - r_i)^n$$
(35)

by using eq.(19-0), we obtain the following relation

$$(n+2)(n+1)C_{n+2}(i)=-kEC_n(i)+k\sum_{m=0}^{n}C_m(i)\alpha_{n-m}(i)$$

with

The initial values $y(r_i)$ and $y'(r_i)$ are given by

 $C_{0}(i)=y(r_{i})$, $C_{1}(i)=y'(r_{i})$

$$y(r_{i}) = \sum_{n=0}^{\infty} C_{n}(i-1)(r_{i}-r_{i-1})^{n}$$
(36)
$$y' = (r_{i}) = \sum_{n=1}^{\infty} nC_{n}(i-1)(r_{i}-r_{i-1})^{n-1}$$
(37)

where, for a

y(0)=1 , y'(0)=0

and for β

y(0)=0 , y'(0)=i

Therefore the canonical function $\alpha(r)$ and $\beta(r)$ are determined at any point r.

6.1.2 Calculation of
$$\varphi_0^{(0)}$$
.

We found (7) that, the wave function $\varphi_0(x)$ is given by

$$\varphi_{0}(\mathbf{r}) = \varphi_{0}(0) + \alpha(\mathbf{r}) + \varphi_{0}'(0)\beta(\mathbf{r})$$
 (38)

and (9)

$$\varphi_0(\mathbf{r}) \longrightarrow 0$$

$$\mathbf{r} + \infty$$

$$\mathbf{r} + 0$$

it is the same for the first derivative of $\varphi_{n}(x)$

$$\varphi'(\mathbf{r}) \xrightarrow{\mathbf{r}} 0$$

$$\mathbf{r} + \infty$$

$$\mathbf{r} + 0$$

Therefore

and

$$\varphi_{o}^{\prime}(0)/\varphi_{o}(0) = \lim_{\substack{r \to \infty \\ r \to \infty}} \alpha(r)/\beta(r) = \lim_{\substack{r \to \infty \\ r \to \infty}} \alpha'(r)/\beta'(r)$$

For the unnormalized wave function $\varphi_0(0)=1$, the vibration wavefunction $\varphi_0(r)$ is determined at any point r.

6.2 calculation of the rotational harmonic function $\varphi_n(r)$

A rotational Schrödinger equation (19) can be written as

$$y''(r) - \varepsilon_{0}(r)y(r) = s(r)$$
 (39)

where y(r) is a rotational harmonic function

$$s(r) = \sum_{m=1}^{n} \epsilon_m(r) \varphi_{n-m}(r)$$

The solution of the equation (39) is (24)

$$y(r) = y(0)\alpha_0(r) + y'(0)\beta_0(r) + \sigma(r)$$

6.2. calculation of the canonical function $\varphi_{(r)}$

The first rotational Schrödinger equation (19-2) is given by

$$\varphi'_{l}(r) - \varepsilon_{0}(r) \varphi_{l}(r) = \varepsilon_{l}(r) \varphi_{0}(r)$$

where $x = r - r_{i}$ and $\varepsilon_{l}(r) = -kB_{v} + l/r^{2}$.

by repmacing eq.(26-36-45) in eq.(46) we obtain

$$\varphi_{|}(\mathbf{x}) = \sum_{n=0}^{\infty} C_{n}(i) \mathbf{x}^{n}$$
(40)

where, the coefficients $C_n(i)$ are determined from those of $\sigma_1(r)$ and $\beta_0(r)$.

Having the rotation harmonics ϕ_1 we find ϕ_2 , by the same method by using eq. (19-2) and so on for the other harmonics.

6.2.2. Calculation of ^{(Pn.}

The nth rotational Schrödinger equation (19-n) is given by

$$\varphi_{\eta}^{"}(\mathbf{x}) - \varepsilon_{\mathbf{o}}(\mathbf{x})\varphi_{\eta}(\mathbf{x}) = \sum_{m=1}^{n} \varepsilon_{m}(\mathbf{x})\varphi_{n-m}(\mathbf{x}).$$
(41)

The second member can be written as

$$s_{n}(\mathbf{x}) = \sum_{m=1}^{n} \varepsilon_{m}(\mathbf{x}) \varphi_{n-m}(\mathbf{x}) = \sum_{n=0}^{\infty} \delta_{n}^{n}(\mathbf{i}) \mathbf{x}^{n}$$
(42)

The rotation harmonics is given by (23).

$$\varphi_{n} = \sum_{p=0}^{\infty} c_{p}^{n}(i) x^{p}$$
(43)

By replacing eq. (43-42) in eq.(41) we obtain the recurrence relation

$$C_{n+2}^{n}(i) = (\sum_{m=0}^{n} [C_{m}^{n}(i)\gamma_{n-m}(i)+\delta_{m}^{n}(C)]-kE_{v}C_{n}^{n}(i))/((n+1)(n+2))$$

with the initial values

Cⁿ=₀'(0)=0

Thus, we can calculate the rotation harmonic ϕ_n at any point r.

On the interval
$$[r_i, r_{i+1}]$$
, $\epsilon_1(x)$ is given by
 $\epsilon_1(x) = \sum_{n=0}^{N} \gamma_n^1(i) x^n$

where $\gamma_1^{l}(i)$, $\gamma_2^{l}(i)$, are the coefficients of expansion of $1/r^2$.

...

By using eq.(36) the vibrational Schrödinger equation is given by

$$\varphi_{O}(\mathbf{x}) = \int_{n=0}^{N} C^{O}(\mathbf{i}) \mathbf{x}^{n}$$
with
$$C^{O}_{n+2}(\mathbf{i}) = (k \prod_{m=0}^{N} C^{O}_{m-m}(\mathbf{i}) - k E_{v} C^{O}_{v}(\mathbf{i})) / ((n+1)(n+2)). \quad (42)$$

The second member
$$\mathbf{s}_{l}(\mathbf{i})$$
 of the eq.(41) is given by

$$\mathbf{s}_{l}(\mathbf{x}) = \mathbf{c}_{l}(\mathbf{x}) \varphi_{o}(\mathbf{x}) = (\sum_{n=o}^{V} \gamma_{n}^{l}(\mathbf{i}) \mathbf{x}^{n}) (\sum_{n=o}^{O} (\mathbf{i}) \mathbf{x}^{n}) = \sum_{n=o}^{N} \delta_{n}^{l}(\mathbf{i}) \mathbf{x}^{n} \quad (43)$$

with

with

.

$$\delta_{n}^{\dagger}(i) - \sum_{m=0}^{n} \gamma_{m}^{\dagger}(i) C_{n-m}^{0}(i)$$
(44)

We found that, eq.(23) the canonical function $\sigma_1(x)$ can be written as

$$\sigma_{l}(\mathbf{x}) = \int_{n=0}^{\infty} c_{n}^{l}(\mathbf{i}) \mathbf{x}^{n}$$
(45)

By replacing eq. (44-45) in eq.(24) we obtain the relation of recurrence

$$C_{n+2}^{l}(i) = (\sum_{m=0}^{n} [kC_{m}^{l}(i)Y_{n-m}^{o}(i) + \delta_{n}^{l}(i)] - kE_{v}C_{n}^{l}(i))/((n+1)(n+2))$$

$$C_{v}^{l}(0) = 0 \quad \text{and} \quad C_{l}^{l}(i) = 0.$$

Thus, the canonical function $\sigma_1(r)$ is determined at any point r.

The rotational harmonics φ_1 is given by (24)

$$\varphi_{1}(\mathbf{x}) = \sigma_{1}(\mathbf{x}) + \varphi_{1}^{\prime}(\mathbf{0})\beta(\mathbf{x})$$
(46)

Il. Numerical Application

In order to present examples of numerical application, we chose i) The Morse potential, used by Cashion /II/, with the constants

$$2\mu/\hbar^2 = 1$$
; D=605.559 cm⁻¹, a=0.988 879Å, r =2.408 73Å

and the eigenvalue of energy

$$\mathbf{E}_{\mathbf{v}} \stackrel{\text{\tiny eff}}{=} \left(\mathbf{v} + \frac{1}{2}\right) \stackrel{-\omega}{=} \frac{\mathbf{x}_{c}}{c} \left(\mathbf{v} + \frac{1}{2}\right)^{2}$$

where

^{*} ω_ε=48.668 883 and ω_εχ_ε=0.977 881 676 641 cm⁻¹

ii) The Lennard-Jones potential, caracterized by

$$2^{\mu}/h^2 = 10\ 000$$
, D=1cm⁻¹ and re=1Å.

iii) A numerical potential of the ground state $X_1 \Sigma^+$ of I_2 /12/, the constants of this potential are

$$2^{\mu}/h^2$$
=3.764 004 7 and r =2.666 399 954Å

In tables (1-3) we give α / β and α'/β' for the three potentials. We notice that

 $\lim_{\substack{r \to \infty \\ r \neq 0}} \frac{1}{r} \frac{1}{r}$

In tables (4-6) we give the pure vibrational wave function φ_0 for the three potentials (Morse, Lennard-Jones, and numerical). In tables (7-9) we give the rotational harmonics φ_1 , φ_2 , φ_3 and φ_4 for the vi-

brational level v=5 of Morse potential. We notice that, the convergence of all these functions at infinity.

In figures (1-5) we show the continuity of the functions φ_0 , φ_1 , φ_2 , φ_3 and φ_4 for the Morse potential for the vibrational level v=5.

n table 10 we give
$$\sigma(r)/\beta(r)$$
 and $\sigma'(r)/\beta'(r)$, we find

$$\lim_{\substack{r \to \infty \\ r \neq 0}} (r)/\beta(r) = \lim_{\substack{r \to \infty \\ r \neq 0}} (r)/\beta'(r) = \varphi'(0)$$

Int table 11 we give the function φ_0 , φ_1 and φ_2 of the Morse potential at several points (x=0.1, 0.2, 0.3, 0.4, 0.5A) and for several vibrational levels (v=0, 10, 20). The last level is at few cm from the dissociation.

At each x the vibration-rotation wavefunction is deduced from its expression $\varphi_0^{+}\lambda\varphi_1^{+}\lambda^2\varphi_2$ (with J=1, λ =2) and compared to its value ψ_1 computed directly from the Schrödinger equation (1) by using the method described in /3/ and /13/.

We notice that the agreement between the directly calculated vibrationrotation wave function ψ_{a} and $\int_{e_{\mu}}^{2} \lambda^{n}$ is satisfactory to the 7th (or the 8th) significant figure. n=0

In table 12, we compare the new results to those obtained by using the Runge-Kutta difference equation with a mesh size h=0.005Å/14/. The agreement between ψ_{1} and $\sum_{\mu=0}^{\infty} \lambda^{n} \phi_{\mu}$ is much more satisfactory with the expressions of the rotation harmonics derived in this work, than with the Rung-Kutta numerical treatment.

In table 13 we finally give (for v=10) the values of $\int_{n=0}^{\infty} \lambda^n \phi_n$ and Ψ_{λ} at several points and for several values of λ . We notice that the difference

$$\Delta = \left| \psi_{\lambda} - \sum_{n=0}^{2} \lambda^{n} \theta_{n} \right|$$

increases, at point x with λ . The mean value Δ for the five points considered here increases like λ^3 . This means that when J increases, we need higher harmonics ($\varphi_3, \varphi_4, \ldots$) to obtain a desired accuracy. This results confirms the validity of the present method.

III. Conclusion

We proved that the vibration rotation wave function $\psi_{v,j}$ of any electronic diatomic potential can be written $\psi_{v,j} = \psi_{v,j} \phi$ where $\psi_{v,j}$ is the pure vibration wave function of the level v.

We defined a set of "rotation harmonics" $\varphi_{(r)}$, and proved that the rotation effect \emptyset_{p} is $\emptyset_{p} = \lambda \varphi_{p}$, with $\lambda = J(J+1)$. The harmonics $\varphi_{1}, \varphi_{2}, \ldots$ are the eigenfunctions of some simple differential equations having as eigenvalues the rotational constants B_{p} , D_{p} , \ldots respectively. The analytic expression of each harmonic φ_{n} is given in terms of the potential U(r).

The harmonics φ_n are calculated by using these new expressions for many examples and compared to the values found by direct numerical integration of the rotation Schrödinger equations. The vibration-rotation wavefunction deduced from the harmonics is better approached by using the expressions found in the present work (up to eight significant figures) than by using numerical integration.

The use of the rotation harmonics approach for the calculation of the rotational and distortion constants, and the Franck-Condon factors will be in a forthcoming second report.

References

- /1/ M.Born and R.Oppenheimer, Ann. Phys, 84, 457 (1927).
- /2/ G.Herzberg, Spectra of Diatomic Melecules (Van Nostrand, Toronto, 1950).
- /3/ H.Kobeissi and M.Dagher, Int.J.Quantum Chem.Symp. 13, 169 (1979).
- /4/ H.Kobeissi and Y.S.Tergiman, J.Physique (Paris) 35, 635 (1974).
- /5/ H.Kobeissi and M.Alameddine, J.Physique (Paris) 39, 43 (1978).
- /6/ H.Kobeissi, M.Korek, M.Dagher and A.Chaalan, J.Comput.Chem, 4, 218 (1983).
- /7/ H.Kobeissi and M.Korek, Int.J.Quant.Chem, 22, 23 (1982).
- /8/ G.Herzberg, Spectra of Diatomic Molecules (Van Nostrand, Toronto) 1950).
- /9/ J.E. Lennard-Jones, Proc.R.Soc.London Ser A, 106, 463 (1924).107, 636 (1925).
- /10/ M.Korek , Thèse, Lyon (1978).

t

- /11/ J.K.Cachion, J.Chem. Phys., 39, 1872 (1963).
- /12/ F.Martin, R.Bacis, S.Churassy, and K.Verges, J.Mol.Spectrosc., 116, 71 (1986).
- /13/ H.Kobeissi and M.Dagher, Mol. Phys, 44, 1419 (1981).
- /14/ H.Kobeissi, J. Physique Lett., <u>42</u>, L215 (1981).

Values of $\alpha(r)/\beta(r)$ and $\alpha'(r)/\beta'(r)$ for the vibrational level v=5 of Morse potential.

Table |

Positive Branch (r>r_e)		Negative Branc	h (r <r<sub>e)</r<sub>
$i - \alpha(r)/\beta(r)$	$-\alpha'(r)/\beta'(r)$	$-\alpha(r)/\beta(r)$	$-\alpha'(r)/\beta'(r)$
1 -5.40960675546	43.3837748426	5.41083336559	-43.286386937
2 18.7139283585	-13.0770404689	-18.5883293431	13.3315040416
3 -28.729855314	8.012664609 9 9	30.5071786938	~7.189 7736 0035
4 997223041033	-364.403297404	404770929655	-165.542786433
5 34.6831616856	-7.42924648979	- 19.8514 122781	16.2650736984
6 -22.4043276515	9.86404059676	259.081910301	5.59152563375
7 224 10 1796083	245.365772336	28.9069385527	10.639113445
8 17.8494535186	~15.2766994226	20.568344066	18.158725832
9 -228.092337865	-364917383574	19.5677865145	19.4316661978
10 -16.5811801997	10.9001612577	19.5066816296	19.5031948863
11 -3.89198490952	30.5240074553	19.5050445282	19.5050044640
12 3.25162638255	80.833998739 8	19.5050253026	19.5050251024
13 9.14585430269	76.9821070214	19.5050252054	19.505025205
14 14.0635287397	34 - 354 3794 383	19.5050252052	19.5050252052
15 17.3199715537	23.1546520549		
16 18.8382338666	20.3758949585	•	
17 19.3430484524	19.6941575132		
18 19.4720994434	19.5415107097		
19 19.49922973	19.5112720057		
20 19.5041223568	19.505982074		
21 10.5048987994	19.5051576496		
22 19.5050091099	19.5050419302		
23 19.505023323	19.5050271488		
24 19.5050250014	19.5050254146		
25 19.5050251846	19.5050252263		
26 19.5050252032	19.5050252072		
27 19.505025205	19.5050252054		
28 19.5050252052	19.5050252052		
29 19.5050252052	19.5050252052		
30 19.5050252052	19.5050252052		

Values of $\alpha(r)/\beta(r)$ and $\alpha'(r)/\beta'(r)$ for the vibrational level v=5 of Lennard-Jones potential.

Positive Branch (r>r_)		Negative Branch (r <r)<="" th=""></r>		
i	-α(r)/β(r)	$-\alpha'(r)/\beta'(r)$	-α(r)/β(r)	-α'(r)/β'(r)
1	-8.53309527876	582.583730972	8.55793146318	-571, 136197061
2	268.160957097	-20.9760909598	-253.872642468	23.6096900222
3	-37.0489910474	137.082303662	46.5469314447	-95.6166486998
4	79.3862740149	-70.7839656618	-37.1390335454	381.307540681
5	- 143 . 5 14799368	34.1838277369	-139.775191416	5335.67341832
6	1.74401868489	3812.27847623	-227.991550406	-252.155289307
7	126.902268258	-47.6083501307	-237.799247853	-238.101922973
8	-174.102172388	24.3995687793	-237.94067235	-237.941464873
9	-28.0186537156	142.595446433	-237.941053102	-237.94053455
10	24.252442052	-461.074189181	-237.941053273	-237.941053273
H.	88.187659301	-105.457221124		
12	265.548902569	-70.614113349		
13	-3882.0274846	-88.27065969		
14	-392.64 1470934	-145.4688626		
15	-274.465371074	-201.683469141		
16	-246.927081742	-227.97622409		
17	-239.94 1246896	-235.72861161		
18	-238.335478945	-234.513925032		
19	-238.010565664	-237.867131058		
20	-237.952156149	-237.929399715		
21	-237.94268 147	-237.939360635		
22	-237.94 1274 701	-237.940824625		
23	-237.94 108 1464	-237.94 1024 316		
24	-237.94 1056657	-237.941049811		
25	-237.941053659	-237.94 105288		
26	-237.941053315	-237.941053231		
27	-237.94 1053278	-237.942053269		
28	-237.94 1053274	-237.941053273		
29	-237.94 1053273	-237.941053273		

Table 3

Values of $\alpha(r)/\beta(r)$ and $\alpha'(r)/\beta'(r)$ for the vibrational level v=5 of the electronique state $X_{|}$ of the molecule I_2 .

Posi	itive Branch (r)r_)		Negative Branch	(r(r _e)
i	$-\alpha(r)/\beta(r)$	-α'(r)/β'(r)	-α(r)/β(r)	-α'(r)/β'(r)
1	24.6411534498	-13.0944868232	-22.9380055239	13.9062323546
2	14.7051288081	-15.3726007682	-12.7843419837	16.6125861779
3	7.11398344363	-10.5608527087	- 4.91376615078	10.7687452224
4	3.86838615473	- 4.76070517287	- 1.64768008197	4.67106799351
5	2.27284104229	- 1.70757479909	209196082303	2.09661219741
6	1.4794478188	343501519824	384 1872 18 196	1.1886453355
7	1.09061089185	.25252056711	-610769102809	- 88 192 1 1222
8	.903003301478	.516102895015	.691895357669	. 780546750219
9	.813472413974	.633818768792	.719533319326	.747731191108
10	.771002675241	.687124505501	.728587161413	.737335159464
11	.750900986071	.7115 19 269812	.73145957588	.734112040273
12	.74138201921	.7227 858 65187	.732346250688	.73313355824
13	.736864260516	.728032044901	.732613389938	73284245271
14	.734712790594	.730493362138	.732692115173	.732757508032
15	.733683939832	.731656352133	.73271484408	.732733177579
16	. 733189649265	.73220961601	.732721281275	.73272633227
17	.73295100184	.732 4 74547 9 62	.732723071027	.73272443938
18	.73283518921	.732602221087	.732723559981	. 73272392466
19	.732778692256	. 732664 120533	.732723691312	.732723786963
20	.732750985472	.732694 333 106	.73272372601	. 7 32 7 2 3 7 5 0 7 1
21	.73273732567	.732709154973	.732723735032	.732723741313
22	.732730555593	.73271 6471044	.73272373734 I	.732723738914
23	.732727182567	.73272010283	.732723737923	.732723738311
24	.732725493284	.732721915748	.732723738067	.732723738162
25	.732724642892	.732722825674	.732723738103	.732723738125
26	.732724212621	.732723284828	.732723738111	.732723738117
27	.732723993821	.732723517739	.732723738113	.732723738114
28	.732723882006	.732723636498	.732723738114	. 732723738114
29	. 732723824584	.732723697359	.732723738114	. 732723738114
30	.732723794952	.732723728705		
31	.732723779589	.732723744928		
32	.732723771585	.732723753366		
33	.732723767396	.732723757775		
34	.732723765194	.7327236009		
35	.732723764031	.73272361311		
36	. 732723763414	.732723761958		
37	.732723763085	.732723762302		
38	.732723762909	.732723762486		
39	. 732723762814	.732723762585		
40	.732723762763	.732723762638		
41	.732723762735	.732723762667		
42	.73272376272	.732723762683		
43	.132723762712	,732723762691		
44	.732723762708	.732723762696		
45	.732723762705	.732723762699		
46	.732723762704	.7327237627		
47	.732723762703	.732723762701		
48	.732723762703	.732723762701		

Values of the functions $\varphi(\mathbf{r})$ and $\varphi'(\mathbf{r})$ of pure vibration for the vibrational level v=5 of Morse potential.

Positive Branch (r>re)				
i	φ ₀ (r)	φ ₀ '(r)		
<u> </u>	1.5261152169	-7.98946719441		
2	.0330536947943	-24.5292625815		
3	-1.5236110661	-9.90210198121		
4	-1-2573677786	15.4638044313		
5	- 4 3 2 5 1 3 9 2 1 8 2 6	22.4446334921		
6	1.72150483251	7.27356113694		
7	1-48465319309	-12.2211804232		
8	-0856932779427	-20.2852957784		
9	-1.40619320835	-15.3632219407		
- 10	-2.24010773249	-5.06665639796		
11	-2.27315667097	3.29533067773		
12	- 1 - 82979461339	7.02173584957		
13	-1.24985232285	7.02261980933		
14	751598814365	5.29833699026		
15	407091981031	3.35738341448		
16	201769533343	1.87165983409		
17	0926005392457	.942242865515		
18	0397 194 3 1 54 32	.435735752679		
19	0160439282221	- 187381801915		
2 0	00614161992026	.0756375403017		
21	00224006022255	.02087302988		
22	000782104053378	.0104871437014		
23	000262463122739	.00364313021699		
24	-8.49653786107E-5	.00 12 1578833507		
25	-2.66234840576E-5	.000391189093283		
26	~8.11618156972E-6	.000121497115259		
27	-2.47436300858E-6	3.56086494216E-5		
28	-9.64879825045E-7	6.59382996099E-6		
29	-1.15025729297E-6	-1.19385618349E-5		

Negative Branch (r <r)<="" th=""></r>				
i	φ ₀ (r)	φ ₀ '(τ)		
1	863444597076	21.0475611782		
2	-1.60375898079	-4.49390958135		
3	337121318153	-23.1106358779		
4	1.36254014611	-15.6315819184		
5	1.89472605084	1.86240111617		
6	1.34051793144	9.80959685265		
7	.606908242633	7.51847513619		
8	- 1864 3 169 1262	3.18667065118		
9	.039434816618	.857714328413		
10	00572649806442	. 15184 1079231		
11	.000563677430922	.0177468245691		
12	3.68957626316E-5	.00135515591133		
13	1.51175780184E-6	6.86081720271E-5		
14	-1.795265058988-6	8.7649720294 IE-5		

Values of the functions φ (r) and φ '(r) of pure vibration for the vibrational level v=5 of Lennard-Jones potential.

Positive Branch (r>r _e)				
i	φ _o (r)	φ'(τ)		
1	-3.13962075802	-101.42608662		
2	-1.86202653869	203.956738468		
3	2.56633553125	168.58239264		
4	3.17140234921	-111.377394027		
5	654967008303	-220.778874907		
6	-3.82354326992	-66.6296676653		
7	-3.0530310793	130.33670383		
8	.439476589583	191.977681701		
9	3.74888277176	124 - 893064205		
10	5.21265423891	23.1255963384		
11	4.90867522096	-45.4549934818		
12	3.71101209545	-67.532742457		
13	2.40668993004	-59.7358350781		
14	1.38768702759	-41.7071739587		
15	.727793535103	-25.0004396061		
16	.352794827283	-13.3932683435		
17	.15996600748	-6.56690432643		
18	.0684827339058	-2.9943757915		
19	.0278890457674	-1.28454581564		
20	.0108708280681	523030721294		
21	.00407665463815	20355221391		
22	.00147723731968	076148900588		
23	.000519179042376	0275131411045		
24	.000177526829655	00963971503442		
25	5.91779475849E-5	0032888229932		
26	1.91341281403 E-5	00110380287111		
27	5.563403975453-6	00039070066974		
28	-8.85582554629E-9	000225758623334		

Negative Branch (r <r<sub>e)</r<sub>				
i	φ ₀ (r)	φ'(r)		
1	1, 3756283036	41.9720591946		
2	0624704046312	240, 383914149		
3	~3.64539685385	78.1286172484		
4	- 3. 19707609503	-92.9480142721		
ŝ	-1.24408715771	-80.3205908826		
6	243401663913	-24.0368012007		
ž	023611230964	-3.19206493108		
Å	00106024183462	186593069381		
ğ	-1.99028081696E-5	00442596299465		
ío	-2.25492576952E-6	.000526717130805		

Continuing of table 6

Negative Branch (r<r_) φ<mark>'(</mark>τ) · i φ_(τ) -10.6754733904 1 .792786740751 -11.8835079538 2 .614444341527 - 9.99286213227 3 .361605169335 4 .20893953208 - 7.10088788664 5 -4.68094260476 .119024476452 -2.94890892323 6 .0669843979369 7 .0372891767298 -1.79958232818 8 -1.07169795049 .0205513860433 9 -.625640235234 .0112208194416 -.359106908141 10 .00607216340443 11 .00325808829335 -.203083387493 12 .00173386524247 -.113327684315 13 .00091539640482 -.0624748922767 14 .000479550561419 -.0340539533269 ~.0183665000711 15 .000249325198045 -.00980680141083 16 .000128667382626 17 6.59167691168E-5 -.00518646114779 18 3.352706801258-5 -.00271783993048 -.00141164147863 19 1.693200550798-5 -.000726923171896 20 8.491246489948-6 -.000371200279914 21 4.228856596468-6 -.000187991041457 22 2.091808937622-6 23 1.0280814422E-6 -9.44094499573E-5 -4.69626393169E-5 24 5.02719558426E-7 25 2.45931005338E-7 -2.30160076171E-5 -1.08480453491E-5 26 1.23109202832E-7 -4.3362379074 IE-6 27 6.85977283864E-8 28 5.28525561094E-8 -8.75443220139E-8 4.21702861786E-6 29 6.7288056016E-8

Table 6

Values of the functions $\varphi(r)$ and $\varphi'(r)$ of pure vibration for the vibrational level v=5 of the electronic state $X_1 \Sigma^2$ of the molecule I_2 .

	Positive	Branch (r>r)
i	φ ₀ (r)	φ'(τ)
L	.765943348047	11.4376628555
2	. 5996 18659 15 1	12.4772954289
3	. 374 2870207 14	10.893758705
4	. 237273757188	8.41313943767
5	. 152 1 247 1 25 17	6.20681128366
6	.0984347760566	4.47857834452
7	.0641994956137	3.19296457863
8	.0421654704651	2.2610316368
9	.0278698001447	1.59508418761
10	.0185283597037	1.12313365418
11	.0123847073432	.790269184369
12	.00832016414896	. 556 12 18 164 29
13	.00561630735131	- 391619143028
14	.00380834596402	. 276079218929
15	00259355875194	. 294897881246
16	.00177357195313	. 137809007678
17	.00121764937602	.0976143669794
18	.000839172614119	.0692732751013
19	.000580466293391	.0492572470533
20	.000402944675404	.0350956376776
21	.000280677119978	.0250572256282
22	.000196962552525	.01/92/5891242
23	.000137540428117	.0128536767802
24	9.674102518898-5	.00923535306264
25	6.82528085534E-5	.0066396910822
26	4.829/65903488~5	.004/9811404/84
27	3.42/646349516-5	.00346943433213
28	2.439500872148-5	.00231398340697
29	1.741060714275-3	.00182348314478
30	1.2439/38/3016-3	000042558211752
27	6.94033613203E-0 6.43316363398-6	000707600201213
22	6.4321030720E-0 4 430440484878-6	000518161134096
34	3 354853106438-6	000380162964575
25	2 431078373358-6	000279685917617
36	1 767283947638-6	.000205888674827
37	1.28736628-6	000151980028022
38	9.399454938838-7	.000112415174954
19	6.87867213855E-7	8. 132 123979938-5
40	5.04503077536E-7	6. 188673432928-5
41	3.70786437998E-7	4.60667070001E-5
42	2.73019395536E-7	3.43713909388E-5
43	2.2033848011E-7	2.56126421319E-5
44	1.48607796291E-7	1.9297003746E-5
45	1.0967050911E-7	1.45421363413E-5
46	8.07704054751E-8	1.10222026706E-5
9 f	2.0/6808/3185E~8	8-42753797776-6
48	4.28481143899E-8	6.52857124805E-6
49	3.03116394207E-8	5. 16697764397E-6
50	2.04308889806E-8	4.22634184361E-6
51	1.23400241137E-8	3.61725687981E-6
52	5.29689714313E-9	3.28943133354E-6

~ •

.

Values of the rotation harmonics for some values of x in the case of the Morse potential. The sum of the harmonics is compaired at every point and for every v, to the vibration-rotation wavefunction $\psi_v(r)$ computed directly from the Shrödinger equation.

	J=1 , λ=2				
	x=0. IA		x=0.3Å		
	R.K	F.C *	R.K	F.C. ⁿ	
۴. ۴	0.933 966 4	0.933 966 4	0.424 124 4	0.429 124 5	
v≂0 φ	0.000 273 6	0.000 273 6	0.000 372 3	0.000 373 3	
^{"°} 2	0.0	0.0	0.000 000 3	0.0 00 0 0 0 2	
[.] φ ₀ +λφ ₁ +λ ² φ ₂	0. 934 513 6	0.934 513 6	0.429 870 2	0.429 871 9	
Ψ _λ	0.934 514 2	0.934 513 7	0.429 872 3	0.429 871 7	
φο	1.297 935 9	1.297 935 5	-1.513 973 6	-1.513 972 7	
v=5 φ ₁	0.005 359 9	0.005 350 9	-0.005 410 2	-0.005 401 2	
φ ₂	0.000 013 3	0.000 013 4	-0.000 013 2	-0.000 013 5	
^φ ₀ +λφ ₁ +λ ² φ ₂	1.308 708 9	1.308 691 1	-1.524 846 8	-1.524 829 1	
Ψ _λ	1.308 711 0	1.308 691 0	-1.524 848 0	-1.524 828 9	
φ _o	-0.143 356 1	-0.143 357 9	0.847 575 7	0.847 579 1	
v≖10 φ ₁	0.003 050 4	0.003 006 7	-0.001 373 4	-0.001 357 8	
φ ₂	0.000 002 4	0.000 002 7	-0.000 001 9	-0.000 001 9	
φ ₀ +λφ ₁ +λ ² φ ₂	-0.137 244 5	-0.137 333 7	0.844 821 3	0.844 855 9	
Ψ _λ	-0.137 253 2	-0.137 333 9	0.844 824 6	0.844 855 8	

* Canonical formulation

Table 8

Values of the rotation harmonics for some values of x in the case of the Morse potential. The results of the present work (canonical formulation) are compared to those obtained by the Runge-Kutta (R.K) difference equations. The wavefunction $\Psi_{(x)}$ is also compared to the sum of harmonics (λ_{2}) for both methods.

	J-1 ; λ-2				
	v=0	v=10	v=20		
φ	0.933 966 4	-0.143 357 9	-1.081.806-8		
x=0.1Λ φ	0.000 273 6	0.003 010 6	0.003 706 2		
φ2	0.000 000 0	0.000 000 7	-0.000 006 9		
$\varphi_0^{+\lambda\varphi_1^{+\lambda^2}\varphi_2}$	0.934 513 6	-0.13/ 333 9	-1.074 422 2		
Ψλ	0.934 513 7	-0.137 333 9	-1.074 422 2		
φ	0.429 124 5	0.847 579 1	0.240 006 2		
x=0.3Λ φ	0.000 373 3	-0.001 357 8	0.005 064 4		
φ2	0.000 000 2	-0.000 001 9	-0.000 011 7		
$\varphi_{\sigma}^{+\lambda\varphi_{1}+\lambda^{2}\varphi_{2}}$	0.429 871 9	0.844 855 9	0.250 088 2		
Ψ _λ	0.429 871 7	0.844 855 8	0.250 088 3		
φ	0.095 410 2	-1.107 570 4	1.092 463 0		
x=0.5Λ φ	0.000 137 2	-0.000 499 0	-0.004 590 9		
φ ₂	0.000 000 0	0.000 000 7	0.000 004 8		
$\varphi_0^{+\lambda\varphi_1^{+\lambda^2}\varphi_2^{-\lambda^2}}$	0.095 684 6	-1.103 565 6	1.083 300 4		
Ψ _λ	0.095 684 9	-1.108 565 5	1.083 300 5		

<u>Table 9</u>

Values of the sum of harmonics $\psi_1 + \lambda \phi_1 + \lambda^2 \phi_2$ (lst line) for some values of x of Morse potential (v=10) and for some values of λ , compared to the wave-function $\psi_1(x)$ (2nd line). The mean value λ of the difference in absolute value for the five considerd points is given in the last line.

	V=10					
X(Å)	2	6	12	20	30	
	-0.137 333 9	-0.125 222 1	-0.106 894 6	-0.082 159 8	-0.050 /62 1	
0.1	-0.137 333 9	-0.125 222 0	-0.106 894 0	-0.082 157 0	-0.050 752 7	
0.2	-0.910 136 0	-0.920 168 7	-0.935 312 7	-0.955 681 5	-0.98 1 426 9	
0.2	-0.910 136 0	-0.920 168 7	-0.935 311 9	-0.955 678 1	-0.981 415 3	
	0.844 855 8	0.839 363 4	0.831 010 1	0.819 657 9	0.805 123 4	
0.3	0.844 855 8	0.839 363 4	0.831 008 3	0.819 650 0	0.805 096 4	
	0.388 680 1	0.403 239 9	0.425 246 4	0.454 899 8	0.492 466 9	
0.4	0.388 680 I	0.403 239 9	0.425 246 3	0.454 899 0	0.492 464 1	
0.5	-1.108 565 5	-1.110 538 2	-1.113 453 5	-1.117 258 7	-1.121 883 9	
	-1.108 565 5	-1.110 537 9	-1.113 451 0	-1.117 247 3	-1.121 845 0	
Δ	0	I	9	51	180	

Table 10

Values of $\alpha_j(r)/\beta(r)$ and $\alpha'_j(r)/\beta'(r)$ for the vibrational level v=5 of Morse potential.

Positive Branch (r>r_)			Negative Branch (r <re)< th=""></re)<>	
i	-α ₁ (r)/β(r)	-a¦(r)/β'(r)	- α ₁ (r)/β(r)	-α'(r)/β'(r)
1	00154359667757	00605259550985	.000488936972069	0007193178146
2	00490772666213	3.74326024066E-5	00411341728646	.00665028914915
3	.00229731132734	00335336291984	.0195071721751	.00529673578339
4	00199805829652	·0398409009613	.00637880364086	10141357493
2	00503862172098	00134762437582	0163381377891	.0375176664835
7	.00136156270583	000498787655742	. 5083686764	.042317760753
	.00191040021614	.04 5986 1 14 244 3	.0924403119269	.0647748087264
0	.00/12464 5931/6	00393231042233	.0811907728676	.0786894138897
3	0034018853981	.00379328978873	.0802912896981	.0802089776927
10	0120002936345	.0179298788029	.0802608413421	.0802601122871
11	0132847941346	.0578202846496	•0802606397047	.0802606464801
12	.0237143735615	- 198938739004	• 0802606443473	-0802606444557
10	0570107570(/7	.248704650496	•080260644406 I	.0802606444064
15	07059/ 730/ 107	. 132465594703	.0802606444063	.0802606444063
16	07710200(174	.0947082953814		
10	070/ (20122020	.0840348267687		
18	0800863153341	.0811439761154 ,		
10	08000883133761	.0804424454747		
20	0802283930977	.0802936203781		
20	08025087(502	.0802659677734		
22	0802605/22612	.0802614178021		
22	0802606310075	.0802607465942		
26	080260664 2026 2	-0802606568111		
25	08026064 30262	.080260645813		
25	0802606442771	-0802606445686		
27	080260644409	.0802606444376		
28	080260644422	.0802606444247		
29	0802606444232	.0802606444235		
30	0902606444234	. U8U26U6444234		
11	0802606444234	.0802606444234		
		.0802606444234		

ŧ

Table ||

vibrational level v=) of Morse potential	Values of the first harmonic rotation $\varphi_i(\mathbf{r})$ and vibrational level v=5 of Morse potential	φ¦(r) for the
--	--	---------------

		Positive Branch (r>r_)
i	φ ₁ (r)	φ' (r)
1	.0050108184351	.0288791000062
2	.00355851417604	0603956866106
3	00246265349384	0720438956644
4	00558886826473	.00 1628 104864 12
5	00243068083308	.0680050941637
6	.00324092693341	.0609282858957
7	.0058960003764	.00185457288561
8	.00378555848491	0491027690407
9	000827609911226	0591237209198
10	00479516478683	0367011697466
11	00650709642424	00671120511304
12	00614077523225	0135878065961
13	0046949508914	.0205806936653
14	00308704580523	.0186270335234
15	00180269425384	.0132907570269
16	00095425644033	00811141445038
17	000464573675649	.00440069173551
18	000210298874917	.00217119700082
19	-8.92831100045E-5	000989161387976
20	-3.580359421118-5	.00042079444198
21	-1.36423100298 E -5	.00016859741402
22	-4 · 964 28 34 0995E-6	6.40646689158E-5
23	-1.73277972497E-6	2.321990287398-5
24	-5.82422879383E-7	8.06607705674E-6
25	-1.89231969507E-7	2.69561442346F-6
26	-5.98569330401E-8	8.662225451288-7
27	-1.92947220369E-8	2.56387117455F-7
28	-9.062445939328-9	2.75700630866F-8
29	-1.40124218373E-8	-1.682 (933355)F-7

Negative	8ranch	(r <re)< th=""></re)<>
----------	--------	------------------------

i	φ ₁ (r)	φ [†] (r)
1	00488700952643	. 027 144 328 356 5
2	0035522116862	0547757604391
3	.00186157106998	0657646549401
4	.0052704520403	0153466037619
5	·00465298283098	.0245696794003
6	.00239541679114	.0267510682927
7	.000786216628273	.0111323064879
8	.000163079419125	.00371907933209
9	1.92553577861E-5	.000604087788066
10	6.80835754258E-7	4.41439729793E-5
11	-1.37150276317E-7	-1.77446420678E-6
12	-2.2316990314E-8	-6.52530746617E-7
13	~1.39582144104E-9	-6.20674568024E-8
14	3.38480870218E-9	-1.53903603536E-7

Values of the second harmonics	rotation	φ_(r)	and	$\varphi'_{2}(\mathbf{r})$	for	the	vibrational
level v=5 of Morse potential.		.7		12			

	Positive b	ranch (p>r) e
i	φ ₂ (r)	φ'(r)
I	1.25682198578E-5	7.27335105077E-5
2	9.06084784913E-6	000148037199808
3	-5.93904221203 E-6	000181568321195
4	-1.40112603842 E-5	2 . 24 34 208003 3E-7
5	-6.25194295101E-6	-000171488371967
6	8.29823929028E-6	.000158993010532
7	1.53438618518 E-5	6.23039809326E-6
8	9.70908204269E-6	- 000133632930182
9	-3.09089580872E-6	.00016707871118
10	-1.45330521517 E-5	000108800316725
11	-1.98100304556E-5	-2.39700998396E-5
12	-1.90350422133 E-5	3.72103508893E-5
13	-1.487104449E-5	6.092804 1764 IE-5
14	-1.00165405581E-5	5.74 102859779E-5
15	-5.99433982994 E -6	4.23390261813E-5
16	-3.25317132968E-6	2.66345784152E-5
17	-1.62403896658 E -6	1.48735243238E-5
18	-7.5386566725E-7	7.54648940772E-6
19	-3.28182427407E-7	3.5332758736E-6
20	-1.34929466954 E -7	1.54386607432E-6
21	-5.27019860051E-8	6.35058494448E-7
22	- 1.96546123557E-8	2.47637305779E-7
23	-7.02942505968E-9	9.20692842925E-8
24	-2.42035533288E-9	3.27944146837E-8
25	~8.05408324186E-10	1.12327431125E-8
26	-2.60968201149E-10	3.69674783902E-9
27	-8.62800086126E-11	1.11878747585E-9
28	-4.114064684E-11	1.29621579764E-10
29	-6.12913090012E-11	-6.97338540886E-10

Negative branch (r <r_)< th=""></r_)<>			
i	φ ₂ (r)	φ ₂ '(r)	
1	-1.25914005187E-5	7.50792637403E-5	
2	-9.7078913794 IE-6	000135920607328	
3	4.489646265 E -6	000182347824062	
4	1.48590606861E-5	-6.24420614969E-5	
5	1.46667464717 E -5	5.43589994318E-5	
6	8.76107106241E-6	7.86241929945E-5	
7	3.55543227355 E-6	4.80240903953E-5	
8	I.01488480544E-6	1.80868925043E-5	
9	2.0533839233E-7	4.5456741667E-6	
10	2.92865498531E-8	7.78433928102E-7	
11	2.904 16655078E-9	9.07162036954E-8	
12	1.96263764788E-10	7.10000263128E-9	
13	8.97247922872E-12	3.58336513264E-10	
14	6.94601643592E-12	-3.16924008053E-10	

Values of the forth harmonic rotation $\varphi_4(\mathbf{r})$ and $\varphi_4'5(\mathbf{r})$ for the vibrational level v=5 of Morse potential.

	Positi	ve Branch (r>r_)
i	φ ₄ (r)	φ'(r)
	1.15923650733E-10	6.63689656706E-10
2	8.2884 963347E-11	-1.37903336751E-9
3	-5.51619818073E-11	-1.66235259776E-9
4	-1.28560745891E-10	1.08522061891E-11
5	-5.71823658161E-11	1.56822080984E-9
6	7.56097238718E-11	1.45036004814E-9
7	1.40247582042E-10	6.78534425393E-11
8	9.02421403482E-11	-1.19698782733E-9
9	-2.48469239607E-11	-1.5073106137E-9
10	-1.28552055E-10	-9.9337658851E-10
11	-1.77433842975E-10	-2.34913618829E-10
12	-1.71913084455E-10	3.18949196962E-10
13	-1.35458198911E-10	5.40483262036E-10
14	-9.20159024042E-11	5.16602844305E-10
15	-5.56161461629E-11	3.85524733847E-10
16	-3.05198215729E-11	2-454 1907824 1E-10
17	-1.54240593781E-11	1.387809527E-10
18	-7.25653228288E-12	7.13705595529E-11
19	-3.20534264231E-12	3.39038366084E-11
20	-1.3386323775E-12	1.504604474E-11
21	-5.31649979882E-13	6.29221149523E-12
22	-2.01805257614E-13	2.49690311239E-12
23	-7.35287956092E-14	9.45572856333E-13
24	-2.58145473771E-14	3.43358836793E-13
25	-8.7663646469E-15	1.19987654203E-13
26	-2.90152652382E-15	4.03 102865493E-14
27	-9.804 38086465E-16	1.24637971206E-14
28	-4.71019835443E-16	1.5727169895E-15
29	-6.7954 1975394E-16	-7.43957279278E-15

Negative Branch (r<r)

i	φ ₄ (r)	φ <mark>'</mark> (r)
	-1.1646829327E-10	6.8929005216E-10
2	-8.87484902587E-11	-1.27519502866E-9
3	4 . 340 14 34 3989E-11	-1.68285043765E-9
4	1.37513701763E-10	-5.39668885104E-10
5	1.3262754608 IE-10	5.34409218573E-10
6	7.68538553976E-11	7.237833081128-10
7	2.99216941716E-11	4.22063127663E-10
8	8.08492210088E-12	1.50366227283E-10
9	1.52564831401E-12	3.52489170392E-11
10	1.99898064026E-13	5.54347342888E-12
11	1.79599543542E-14	5.8451022307E-13
12	1.08819856094E-15	4.08973116276E-14
13	4.55681009433E-17	1.78570023968E-15
14	7.58382816381E-17	-1. 562673652128-15

Table 13

Values of the third harmonic rotation $\varphi_3(\mathbf{r})$ and $\varphi'_3(\mathbf{r})$ for the vibrational level v=5 of Morse potential.

	Positiv	re Branch (r>r_)
i	φ ₃ (r)	¢'3(r)
	3.87998118074E-8	2,220720851523-7
2	2.774 187 14 138E-8	-4.61438707527E-7
3	-1.84508492047E-8	-5.56368228253E-7
4	-4.304518974776-8	2.88764183374E-9
5	-1.92270648376E-8	5.24064656499 E -7
6	2.52011308384E-8	4.86016954427E-7
7	4.69544757167E-8	2.50110198883E-8
8	3.043507213262-8	-3.9774551686E-7
9	-7.87699913267E-	-5.02346627195E-7
10	-4 . 24662434581E-8	-3.31633775749 E -7
11	-5.8807403984E-8	-7.89239007317E-8
12	-5.70151323758E-8	1.05738092333E-7
13	-4.4909344773E-8	.79582885252E-7
14	-3.04761526635E-8	1.7159087723E-7
15	-1.83918085549E-8	1.27906776903E-7
16	-1.00717888007E-8	8.12830101406E-8
17	-5.07695405067E-9	4.58606417819E-8
18	-2.381184496298-9	2.35192165298E-8
19	-1.04804048082E-9	1.11358136723E-8
20	-4.35898309552E-10	4.92313453876E-9
21	-1.72326725059E-10	2.0499696268E-9
22	-6.50800811071E-11	8.09565231983E-10
23	-2.35804264557E-11	3.04955617204E-10
24	-0.22869877197E-12	1. 10096455091E-10
25	-2.77618292737E-12	3.82343527315E-11
26	-9.12404952641E-13	1.27620017714E-11
27	-3.05552241057E-13	3.92522847588E-12
28	-1.44839914303E-13	5.09775635444E-13
29	-2.07176682642E-13	-2.26268996116E-12

Negative Branch (r<re)

i	φ ₁ (r)	φ'(r)
	-3.89756900814E-8	2.30317570419E-7
2	-2.96384807353E-8	-4.27683985394E-7
3	1.46041411747E-8	-5.6220625012E-7
4	4.58960205804E-8	-1.76740201771E-7
5	4.39459069368E-8	1.82077851529E-7
6	2.51646593083E-8	2.4 75348277 IE-7
7	9.60785719374E-9	1.38482139391E-7
8	2.51577395618E-8	4.80238533775E-8
9	4.51690059607E-10	1.07856320398E-8
۰ ٥	5.37159958816E-11	1.5842839739E-9
11	4.33842308407E-12	1.497316811146-10
12	2.14040300404E-13	9.75303157767E-12
13	6.73149695235E-15	2.5959548647E-13
14	2.80264303075E-14	-1.33069792038E-12

-31-

- 32-

- Variation of the potential function U(r) in terms of r for the level v=5 of Morse potential. - Variation of the third harmonic rotation $\varphi_3(r)$ in terms of r for the level v=5 of Morse potential.

Т

t

1

-34-

-33-

.

