(Research Agreement No. 5061/RO/CF)

S.M. Qaim Institut für Chemie 1 (Nuklearchemie), Kernforschungsanlage Jülich GmbH, 5170 Jülich, Fed. Rep. Germany

Aims

The aims of the research agreement were defined as:

- Measurement of ${}^{63}Cu(n,p){}^{63}Ni$, ${}^{151}Eu(n,2n){}^{150}Eu$ and ${}^{159}Tb(n,2n){}^{158}Tb$ reac-
- tion cross sections in the neutron energy range from threshold to 10.6 MeV
- Hauser-Feshbach calculations

Status Report

Experimental investigations on the three processes mentioned have been under way for over a year. Irradiations have been done with quasi-monoenergetic neutrons produced via the ${}^{2}H(d,n){}^{3}He$ reaction in a D₂ gas target at our variable energy compact cyclotron CV28. The neutron flux densities have been determined via the ${}^{27}Al(n,\alpha){}^{24}Na$ monitor reaction.

In the case of the ${}^{63}Cu(n,p){}^{63}Ni$ reaction a 60 g compact piece of Cu was irradiated with 7.5 MeV neutrons for 25 h. A chemical separation of the weak β^- emitting ${}^{63}Ni$ (T₁ = 100 y; β^- = 100 %; E_{β^-} = 66 keV) is envisaged and the radioactivity will be measured either using anticoincidence low-level β^- counting or via scintillation counting. If the techniques are successful, measurements will be done also with 8.5 and 10.5 MeV neutrons.

For studying the ${}^{151}Eu(n,2n){}^{150}Eu$ reaction irradiations have been done at $E_n = 9.6$, 10.1 and 10.6 MeV, each for 8 h. The product ${}^{150}Eu(T_{\frac{1}{2}} = 35.8 \text{ y};$ EC = 100 %; $E_{\gamma} = 334 \text{ keV};$ $I_{\gamma} = 94 \%$) has been identified and quantitative γ -ray spectroscopic analysis is in progress.

For investigations on the 159 Tb(n,2n) 158 Tb reaction, three irradiations with neutrons of energies 9.6, 10.1 and 10.6 MeV have been done. The product 159 Tb($T_{\frac{1}{2}} = 180$ y; EC = 82 %; $\beta^- = 18$ %; $E_{\gamma} = 944$ keV; $I_{\gamma} = 43$ %) has been definitely identified. A quantitative γ -ray spectroscopic analysis will be soon initiated.

Hauser-Feshbach calculations on the excitation functions of the three reactions will be performed in due course of time.