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Abstract

The space of labels characterizing the elements of Schwmger's basis
for unitary quantum operators is endowed with a structure of
symplectic type. This structure is embodied in a certain algebraic
cocycle, whose main features are inherited by the symplectic form of
classical phase space. In consequence, the label space may be taken as
the Quantum Phase Space: it plays, in the quantum case, the same
role played by phase space in classical mechanics, some differences
coming inevitably from its non-linear character.



On th« Structure of Quantum Pbast Spact

t. Introduction

Tne recent extension of weyl-wigner transformations to discrete

quantum spectra has drawn attention [ I ] to a certain dücrete space

which plays the role (2] of a "quantum phase spac** (OPS) Tne

extension makes use of Schwingers complete basis I3J of unitary

operators for Weyls realization of the Heisenoerg group, unlike usual

classical phase spaces. GPS is not a linear space: i ts points, besiaes

being isolated, display themselves on the surface of a torus. Tr,e

continuum quantum case may be obtained by a standara procedure

which corresponds to stretching the torus raoii to infinite while

bringing the spacing between neighbouring points to zero in a suitable

way. This C-number representation of QPS closely parallels the

classical picture, its quantum character being signaled by tr.t-

presence of Planck's constant ft in the expressions involves, it is of

basic interest to examine the main properties of OPS and their

relations to the well Known characteristics of the classical phase

space. We would of course expect to obtain the classical case as a

f W O limit of tne quantum case.

The basic geometrical feature of a classical phase scace is us

syrnptectic structure, embooieJ in a differential 2-rorm fl wnicn is



ià COCvCle» Jiid noi-JcqeiiefJÍC The fundamental i ir uf u-.iz

Sympiectic form is speci fy visible in trie Hannitói»i«in Fi.f!iiuljth.i«

of mechanics So siruinjiy aces the SyiViplettic structure si iCri to tiw

very notion of phjse space tr.jt OPS « i l l only deserve us r.ar.ie 11 it

includes a structure of similar nature Although we may i.òt r*f-e:t

the presence or a complete jnaloiiue te* O on QPS. our ckicaive r.rre

is to snow mat J certain iiructure exists indeed wmen p i j .s r̂» O S

a role as siinilar to J syriipicctic structure JS could t>e e^pected Suin

a "pre-syrriplecti'-" structure i_> jctujlizc-d in j ceit j in _-IOCÍUÍ;>

(also a cocyclc} aciincj or» trie ui'iitary operators, a purei.

oDject wiiich JCQJIICS. in u.c ccuiinuous lnviit. a 9eomettaj|

and tends, in tr.e classical ii.Tiit, to tne symplectic IOIÍI . The 1-

cocnain n"»arks in r c j h i , i;,c pr^jcctive j r . j . jc t r i .' v»r,>-.

realization of trie

we start in cnaptei 2 witr» a sketchy present at ion <J

Hanultonian rnecriaiiics {-4J. special empr.asis Deing given to t ie role >.r

the symplectic structure Í5] we tl"icn oddress ouritrl^es to qúr.iuíi.

kinematics ana give a resume on Scnwinger s complete Lasis of

unitary operators in cnapter 3 A crucial point wi l l D6 tf.at me r . j i i i

provides in reality not a linear but a projective representaii^r, or tr.~

HeisertDcrcj group Prepanny to eitaDlisn that, chapter 4 \i J sriort

imrouuctiofi to tftçr subject of projective representitioi s 161 rrom ir»-r

cohomolu^KMi pu(r,: tJ\ v l e w \-j\ W|,kr.. Lcirnj cluirr t i . !.(>-.- IM,\-Í\\JU

Of dlíferel.tl j i iu;,,;,, \; Lpc^ijlly COftver.lent tü Oüí purport-: [dI fhr

meaning of r j , repre-^riijii^nâ Pecon.es specially clear in tin-.

language In* r r / i i i ^ J f e l r,cr, àppned in chapter l, UJ ir,r



er basis íor me Wey! representation, vrripna^. &rii»»j , .ri i r...

tr»e emergence oi the mentioried cockle ana 10 ^cn»- -A its

properties The continuum limit is examined and comparison Ü made

with another C-nurnL-rr representation of Gjantuni Mc-mdiiKs,. i.r.r * yy l -

v/igner-Moyal 19) approach The rueaiiing of tr.c "pie-SyfrUiciuc

iuridarnental cocycle is clarified in tènns of well rno*n icar^res of

that approach

2. Classical Phase Space

in the classical description of a System Aim n aej icr i or

freedom, physical states constitute a differs.! ijDle s^fipiectic

nianifold M of dimension 2n. The funaarncfital gc-.íúeti icai

characteristic of tr>is phase s^ace is tr.e :M:IP'C::;J _'-/../.• &. n.

terms of the generalized coordinates qMq' .q 2 , . q"> ai.d moincnia p

- tPi.Pi*. Pn). & »s written

ft » dq' A dp,. (I11)

i l is clearly a closed form ur*j[ is, d ft1 u>, and can oc ÍOO.MI to Dc

also nondegenerate A closed form is aiso cailed a twiste. Ct a-:

above is also an exact form '.a copoundjrv,or a trivial cocycle; as it

is, up to a sign, the differential of the cjnjn/cj! form

OF * p, aq' C'j.»
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The structure oefined Oy a closed nondegenerate 2-form is called a

symplectic structure and a manifold endowed with such a structure

is a symp/ectic manifold, in reality, phase spaces are very particular

cases of sympiectic manifolds. On general, topologically non-trivial

symplectic manifolds there are no global coordinates such as the vq\

Pi) supposed above and the basic closed nondegenerate 2-form is not

necessarily exact Notice that every coboundary is a cocycle but not

vice-versa A theorem by Darboux ensures the existence of a chart (of

"canonical', or 'symplectic" coordinates) around any point on a (2n)-

dimensional manifold M in which a closed nondegenerate 2-form can

be written as in (2.1), so that the equations here written in

components hold locally Notice however that Q is gloDally defined

and the equations written in the invariant language of forms are

valid globally.

The fundamental point about the symplectic structure is that Q

establishes a one-to-one relationship between I-forms and vector

fields on the manifold M. Consider the example of the phase space

velocity field.

£ » ,2.3)
dt dq' dt dpi

The time evolution of the state point (q,p) will take place along me

integral curves of X». Hamilton's equations put tnis evolution field into

we form

dp, dq1 dq1 <3p



The differential operator XH generates a one-parameter group of

transformattons. the Hamiltoman flow . On tne other nano. tne

Hamiltonian function H(q,p) will have as differential trie 1-form

«•*<ft^dqf. (2.5)

The two equations aoove snow clearly an intimate relation

between dH and XH for which Q is responsible The relationship

involves the interior product of a field by a form The interior

product of a field X by a I-form 0, denoted i x a , is simply 01X). The

interior product of a field X by a 2-form fl, denoted i xQ, is defined

as that l-form satisfying i x Q(Y)« Q(X,Y) for any field Y This is

directly generalized to higner-oroer forms, we fino easily tr.ai

dH . (2.6)

Besides being a particular case of the general one-to-one relationship

between fields (vectors) and I -forms (covectors) on n, this is also an

example of relationship between a transformation generator and tne

corresponding generating function The Hamiltoman presides over the

time evolution of the physical system under consideration H(q,p) is

the generating function of the velocity field XM Applying xh to any

given differentiate function F(q,p) on fi, we find mat



òF 4 H I üF ÒH
* q ' 3p, dp, ÒQ1

the Poisson bracket of F <*ia M, SO tnat its equation of motion is

(28>

the Liouvilie equation xH is frequently called uouvillw

Functions IIKC Fiq,p> are trie classical obsrrvàDles. or

functions To eacn such 0 turiciion will correspond a tiela

—. -—, — (29)
dq1 (Jql dp,

through the relation

i^O * <iF 12.10)

Given another function 6(q,p) 3na its corresponumg field \,,, it is

immediate to verify that

ftíXf,Xó> * r-i r r " T- r-r •

(2 IU



Each field oo M is trie local generator oi *

of transformations The response of Ò tensor lo thr io*:ai

transformations generated t>y a field ts measu'ea Ly UK Lit-

derivative of the tensor with respect tu the fieia Of cour^. F i

which is a zero order tensor) is an integral of motion if us Lie

derivative L ^ F ' X H F vanishes, or (F.H) * 0 The Lie derivative or Q

with respect to XH vanishes.

L^Q * 0 , (2 12)

Decause L* * d 0 ix • ix o d This means that tr* 2-form Q n

preserved Dy tne Hamiltonian flow, or by tr.e time evolution Tr.ii aria

trie \.

of Lie derivatives establish the mvanance of the wnoie Series or

Poinc3re invariants ft A ft... A Í ) , including that with tne nujnter n

of O s , which is proportional to tne volume form cf n

The preservation of Qn by the Hamiitonian flow i i of

Liouvilles theorem.

For any field Xf related to a dynamical function F
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This happens because Lxj Q * a o i^ í> • i ^ o a Q * a - F - ô So

transformations leaving Q invariant are ine Canonical trj

Xf is said to De a rumi!tor,ijn fie/J ana F its generating

in a more usual language. F is the generating function of trie

corresponding canonical transformation. The simplest examples of

generating functions are given Dy F(q,p) « of . corresponaing to ine

field Xf * - d/dp,. and 6(q.p> * p,. whose field is JC6 * d/ò<( Both lead

to ( t f .p j ) * Cj Next in simplicity are tne dynamical functions vf trie

type

f * «àQ* Dp, 12.1-1*

with a.D real corotants. The corresponding fields are J ^ • - a d/df> * i

d/dq. The cofTimuutor of t * o such fields is IJ*,J£«JJ * O *>a

consequently tut correspondirig generating function F g ^ . t f j • Fo is a

constant. On the ciner hand. tr.e Poisson brackets are arierrMir>.-yiis

Ifab.ti.ii * ft (J*,Ji(l) • ad - DC t2 IS)

we nave been using aoove the holonomic basis \Õ/ÚQ', j/òu, J for

the vector fields on phase space in principle, any set of lu Hrtearly

indeperident flelas rnjy Dr l ^ t n as a Dasis. Such a general basis (e , )

will have the dual oasis (u>i| with w x e , ) » ^ , ,anu its members will

have commutators ie,.ej| - 1 \ ck, where the structure cociitutr.ts c»^



measure the basts annolonomicity A general field wi l l be written X*

x'e, = w'lX)e, ,a general 1-form a « a, a i ^ a i e , ) ^ 1 , the differential

of a function F will be dF » e, (F) cu • , etc In tnis basis, the

symplectic 2-form will be

ft « j f t i j W ' A W J • ^ft(ei,ej) w'AWJ (2.16)

it is interesting to consider ft - (ft ,p as a (antisymmetric) matrix

and introduce its inverse ft"1 * (ft1)), whose existence is ensured by

the nondegeneracy condition:

- ftM ftj, • 5S (2.17)

The Poisson bracket is then

(F.G1- ft (Xf A ) s X'f ft,, XJ
6 - ek l6) f tM cj(F> C I 6 )

The holonomtc vector basis related to the coordinates UR] *

(q'.pj) will be formed by the fields ê  s d/d$ for k s 1.2 , n and

en, • d/dfo for k - (n • I), (n • 2), . . , (2n) The matrices ft ana ft"1

will have the forms

L - I n OJ

where ln is the n-dimensional unit matrix.

Let us summarize to a contravanant field X
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*• dp, Ql do?

Q wi l l make to correspond the covanant field

ix f t» Xa, dp, -XP)dq» . (220)

in reality, although tms relationsnip always r.olds, most fieias ao r.ot

correspond to a generating function. ixQ is not always exact. When it

is, X is more frequently called a strictly (or glooally > namlltonian

field. In general, a generating function exists only locally Tne I-form

corresponding to any field preserving Q wi l l be closed, o(i>Q) - L>a

• O . A S a closed f^rm is always locally exact, around any point of 11

there is a neighDcorhood where some F(q,p) satisfies iA Q = d F

Suppose another field is given, Y - YP| d/dp, • YM, d/dq». The

action of tne 2-iorm ft on X and Y wi l l give

O (X,Y) - Xqi YM, - Xp, Yqi. (21I )

This is twice uA area of the triangle defined on M Dy x ar.a Y, 3í u

is st i l l easier to see from (2 1

An n-dimcr.í.ona! suDspace of the 2n-dimchsional pr.'jse space i-i

is a Lágrwge n.jniíolü if £1(X(Y) = O for any two vector-: /.,i tanyct

to it. Examples src the configurar.ion space and the momentum space

Canonical transformations preserve such suospaces of 11, mat is, tr.ey

take a Larrange rriunifold into another Lagrange maniiola
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Let us finish with a comment on the cioseoness of the

symplectic form. Why have we so much insisted that ft De a

cocycle? The reason is that ft being a cocycie is equivalent to the

Jacobi identity for the Poisson brackets it is not difficult to find

that

X(ft(Y,Z))= - ÍFX,{FV,F2}}

and that

ft(X,(Y,Z))=[Y,Z]Fx=-{Fx.{FY,Fz}}.

Combined with the general expression for tne differential of a 2-

form,

3! (dft(X,Y,Z)) = x(ft(Y,Z))»Z(ft(X,Y))*Y(ft(ZJX))*ftlX(ÍY,Z])*ft(Z,ÍX(YJ)*ftíY,(Z,X]),

this gives

3 Oft(X,Y,Z) - - lFx,{FV(Fz))- IFz.lFx/y])- (FY,IF2(FXJ) -- C (2 22»

we see in this way the meaning of tne closeaness or ft it is just me

Jacobi identity for the Poisson bracket.

The Poisson bracket is antisymmetric and satisfies the jacobi

identity, it is an operation defined on the space C~ (M,R) of real

differentiate functions on M. Consequently, C" (N.R) is an ir.finite-

dimensional Lie algebra with the operation defined by the Poisson

bracket. Actually, F —> x* is a Lie alqebra nomomorpr.ism (a
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representation) of C" (N.R) into the algebra of strictly namiltoman

fields on M

There wouta be of course much more to be said about phase

space how linear canonical transformations constitute an important

group, how a complex structure may be introduced, etc. The brief

outline above, however, fixes notation and stresses hopefully enough

the basic role of the cocycle n. We snail see in paragraph 5 that

on quantum phase space also a cocycle is defined which, even in the

discrete case, has a comparably fundamental role.

3. Quantum Kinematics

Tne quantum description of a physical system requires a

complete set of ooservables Still better, it requires a complete set of

operators in terms of which all dynamical operators can be built up.

Kinematics is governed by Heisenbergs group[10], whose elements may

be represented by real triples (a, b, r) obeying the group product rule

[H]

(a, b, n * (c, d, s) - ( a *c ,b *d , r • s*u/2)lad-Dc]).

The corresponding algebra is formed by triples (a,b, r) satisfying

(a, b, r> © (c, d, s)« (0 0, ad - oc)



Weyl introduced a realization in terms of powers of two unitary

operators U(a) and V(b) satisfying

U(a) U(a) • U(a• a) .

V(b) V(b') - V(b • ft')

and

lKa)V(ft)« V(ft) U(a)e'uaD

A particular example Is given by V • e"* . U • e1" . which lead to the

usual formulation of Heisenberg's algebra using the basic operators p

and q. Sen winger [3] has recognized the fact that the above u and V

generate a complete basis for all unitary operators and provided a

classificaton of all the possible physical degrees of freedom we shall

here be interested only in some aspects of Schwingers work. What

follows is a short presentation of them.

Consider a space of quantum states of which a basis is given by

ortnonormalized kets l v k > with k • 1 ,2 , . . . ,N. A unitary operator u

can be defined which shifts these kets through cyclic permutations as

UI vfc> - | v k * i > . with lvk*N> • I vfc > (3.1)

Through the repeated action of u, a set of linearly independent unitary

operators U m can be obtained whose action is given by

U m I vh> • |vk ,m> (3.2)
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As U N »1. the eigenvalues of U are i* = e l ( 2 n / N ) k , corresponding to

another set of kcts fixed Ly

Ulu»> = uju»> (33)

Another operator V exists such that

V I U > • 11*1-1 > Í3-Í)

and

Vn luk>= iuk.ft>, with k - N > " K > (3.5)

Here also vN» I and the v eigenvalues are vk * e I ( 2 n / N ) k The miracle

of Scnwinger's oasis is that the eigenxets lvk> such that

v |vk> «e M 2 n / N ) k | v k > (36)

are just those from which we have started. Of course,

v f t K > * e M : ' n / N > k n l v k > . (3 7)

A direct calculation in any Dasts shows that

y ft \j fit * g • í2n/N) (Tinjjmyft (38)



Now, Sen winger's final point: tr»e set of operators

S™ • e
l ( n / N ) m n u m V f t (3.9)

constitute a complete orthogonal basis in terms of wr.icr» any

dynamical quantity 0 can be constructed as

(3 10)

the Omn's being coefficients given by

(Ill)

U and V are each one a generator of the cyclic group ZN The

operators 5™ give a peculiar combination of the two ZN's, providing

a discrete version of Weyl's representation of the Heisenberg group

The following results are easily obtained

(i) the action of the basic operators on the kets

, (3.12)
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(i i) the group product

e 5 ( ) tn*s) , (3 13)

(i i i) the group identity.

Soo « I . 13 14)

(iv) the inverse to a given element:

S"1™ sS-m.-n , i3 15)

(v) behaviour under a similarity transformation

^ r , . (3.16)

(vi) associativity;

M, (Sr5 Skl) . (3 17)

With the periodicity conditions in ( 3 D and (3.5), tr,r numbers

m, n, etc take values on a torus lattice. It is this lattice who plays

the role of 3 quantum phase space The points of OPS are so labels

of elements of a discrete group The operators Sm, keying the
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product rule (3.13), give a projective representation of the group or

transformations on this space, which will be examined in next chapter

Notice that they are themselves only semipenooical 5 ^ * (-)P Sop, Spu

* (-)p Spo The quantum continuum limit, which has only been studied

in detail in some cases [1.3], is in such cases attained by taking both

the torus radii to infinite while making the spacing between

neighbouring points go to ze<"o. in such a way that W2n/N ml — >

some real constant a, [V2TI /N nl —* another real constant b, etc in

this limit, a particular realization of the above operators is

; ( 3 1 8 )

V* — • e i b p , l f —• e i a i (3 19)

where the operators p and q have eigenvalues v2n/N k. in this case,

S™ —• Sa0 « e 1 * ^ * 6 " (3.20)

The expresrion (3.13) takes the form

ScdSat • e ( i / 2 W - t t l S , | t C ) i N ) . (3.21)



The exponent in $4 is trie quantum version of the dynamical functions

(2.14) and the pr,ase in the group product ts just (half) the Poisson

bracket (2 15)

To a given aegree or freedom corresponds a pair of operators U.

V satisfying (3õ) which will provide a basis for a realization of the

Heisewerg group A curious and important example is given by the

non-local order and disorder operators determining the confined and

unconfirmed phases in quaruonic matter [12]. The algebra (3 3) appears

then because of me crucial role attributed to the centre of the group

SUN), which is precisely ZN

The above considerations on the continuum limit suggest that

each pair of operators u,v satisfying (38) is related to a pair of

(exponentiated) canonically conjugate variables and, so, to a degree of

freedom. This is true only when N is a prime number [3]. Otherwise,

the representation involved is reducible. When N is prime, (3.8) is

the only possible combination of powers of U and V leading to such

a kind of expression When N is not prime, however, things are

different. N can be written in terms of its prime factors, N * Nj ty.

. Nj and particular powers of U and V combine to give expressions

like (3.8) with N replaced by each one of the factors N,. The basis

can then be reaefined to become a direct product [3J in the

continuous limit, N goes to infinity through prime values
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4. Projectlve Representations

Projective representations (6) are treated, even in the best of

older texts, in a rather involved way The modern, hcmological

approach [7] of which a brief account is given in the following has

many advantages, not the least being its assignment of the subjet's

correct place tn the wider chapter of group extensions [8] In our case

the main advantage is that the evident analogy with the formalism

of differential forms allows a clearer view of the connections

between Schwingers basis and classical phase space

Let us consider, to fix the ideas, a group G of elements g. h, etc,

acting through their representative operators U(g). U(h), etc on kets

l f « > . tfy>. etc. The índices x, y include not only configuration or

momentum space coordinates but also spin and/or isospm motces and

any other necessary state labels we snail cad them parameters

We might alternatively talk of the corresponding wavefunctions f ( r )

• <r I f >, etc, but will use kets to keep in p3ce witn previous

notation. The space ( l f»>) of kets wil l be the carrier space of the

representation.

Suppose to begin with that we nave

(41)
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where "xg* is the set ôf labels as transformed by the action of g

Suppose further that, by compositon.

lKh)Ug)lfK> * u<gn)lf*>, (42)

meaning in particular that the composition by itself is independent

of the point x in parameter space. This is what is usually called a

representation, but wil l in the present context be called a linear

representation. The mapping U: g -» IKg) is in this case a

homomorpnism

we may next suppose that, instead of (41). me action of a

transformation is given by

UigMf^- e*** * !¥„>. (43)

The wavefunction acquires a phase OC,(x, g) which depends Doth on the

transformation and the point in parameter space. The transformation

wil l operate differently at different x. in Quantum Mechanics, of

course, the above phase wilt not change the state, which is the same

for wavef unctions differing only by phases. A state is, in reality, fixed

by a ray (that is, a function with any phase factor) For this reason,

a representation acting according to (4 3) has been called a rjy

representation its more mathematical name Ü projective

representation, but these notions will become more precise in the

following.



Suppott condition (4.2) hoMs,

LKh)Ug)lY»> - iKgh)

A direct calculation snows that this implies

(X,(xg,h) - CC,(x,gh) • a,(x;g) - 0, (44)

another form of the homomorphic condition if a function OU)(x)

exists Such that CC,(x, g) can be written tn the form

CC,(x, g) * OCQ(X g) - OCQ(X), (4.5)

then (4.4) holds automatically, (4 3) becomes

U g ) e i o u u ) , W ( | > . e l * h * > l f 1 | >

and phases can be eliminated by redefining

\y/n>,

which brings the group action back to the form (41)

In the cohomological theory of group representations, phases

such as the above OCod) and Olj (x,g) are considered as results of
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the action of cochains on the group 6 Cocnatns aft antisymmetric

mappings on the group, purely defined by their action. They nave much

in common with differential form., (which are in reality special

cochains) but it should be kept in mind that here tney are not

necessarily acting on elements of a linear space. Here mey take one,

two or more group elements to give numbers. The group elements

have the role vectors have in the case of differential forms Cochains

may be defined on any group, even discrete ones - which is just the

case of our interest Ot, is a 0-cochain, a function on parameter space

whose value at point x is the phase OC^x), 01, is a l-cocnain

because it operates on one element g of 6 at point x of the

parameter space to give (X,(x.g), a cocnain taking two group elements

as arguments will be a 2-cochain, etc An operation analogous to trie

exterior differentiation of differential forms is defined Id) on

cochains: it is the derivative operation S taking a p-cochain (X,

into a (p • I ) - cocnain |^+, according to (13)

5 : OCy - > some p^is60Cp

fa»(x.9i<92'-< , & , i ) • OCptxg!^,.. ,g^j)-0tp(x fgig2. ,g^ i > •

v . • í - r l C t p U , g , . g 2 , . . . , g , ) . (46)



An important property is the Poincare lemma 6 : - 0, which can be

verified directly from this expression. The first examples are

6tto(x; g) « 0Co(x g) - Oty x ); (47)

60C,(x, g, h) « OC,(x g, h) - Ct,(x; g h) • a , (x ; g), . (48)

x; g, h, f) • Otyx g; h, f) - Otyx; g h, f) • Otyx; g, h f) - Otyx; g, h). (49)

A cochain OCp satisfying 60Cp • 0 is a closed p-cocnain, or a p-

cocycle, and a cochain OCp for which a cochain OCp.} exists such

that OCp • 6oCp-i IS exact, or a coòounaary (or trivial cocycle). An

exact cochain is automatically closed. We see that condition (4 4)

means that C^ is closed,

6oct(x;g,h) - 0 , (410)

still another form of the homomorpnic condition. As to (4 5), it says

simply that OCj is exact:

OCj(x.g) • 6oCo(x;g). 1411)

Summing up the composition rule (4 2) implies the closedness

of OCj; If in addition Ot, is a derivative, a redefinition of the
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functions exists such that it simply disappears when 0^ is closed

but not exact, it cannot be eliminated but the representation is still

equivalent to a linear representation A oure projective representation

appears when, instead of (4 2), we only require

U(h)U(g) i y K > « ei(*2(x>0>h) Ugh) l f x > , (412)

allowing the composition to depend on the "position" x through a

phase factor. The mapping U: g -fr U(g) is no more a homomorphism

Applying (4 3) successively, we have

u(gn> l y ^ •

U(h)U(g)

( 4 1 3 )

Consequently,

&X,(x;g,h) •C^ixig.h). (414)

in this case OC, is not closed and the representation is no more

equivalent to a linear one. The cochain OĈ  is an obstruction to



homomorphism. On the other hand, ray representations like (43)

require CCj to be exact.

Let us see what comes out from the imposition of

associativity: equaling

U(f)lU(h)U(g)J |y ) l>«e l 0 l f l i K : 9 'h ) U(f) U(gh) |^i ] t>«

y ^ (4|5)

and

(U(f) U(h)]{U(g) |y , ,> ]»e i a a ( K i ; h > f ) U(hf) U(g) iy»> •

» eÍO2(Kgí).f) el0C2tx;g f̂) u ( g h f ) t ^ s > (4.16)

brings fortn, from (49), just the closedness of tt^,

6 0 4 » 0. (417)

This "associativity condition" is of course coherent with (414).

Condition (4 14) has an interesting consequence. Suppose it holds

and let us proceed to a redefinition of the operators U: define new

operators U* by

u'(g) • e" i0t1(x;5) U(g). (418)
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They oeperm. through the phase, on the point x at which they

operate and are. in this sense, "gaugefied" versions of the previous

UXg). in terms of such operators, (4 13) becomes

u"(n)u"(g> iy«>« u"(gh) \yK>. (419)

which is just of the form (4 2)

Concerning only the group operator representatives (and not the

particular carrier space), it is expression (4 12) which characterizes a

projective representation. Associativity implies that OC2 is a cocycle.

if it is also exact, there exists a OCi satisfying (4.14) which will

appear as a ket phase and OC2 can be absorbed by the procedure just

described into the "gaugefied" operators, in terms of which the

representation reduces (but only locally in parameter space) to a

linear one. We will say in this case that the representation is locally

linear but globaly projective. The unitary quantum operators to be

studied in next chapter will be of this type, if Ot? is closed but not

exact, there exists no <X| as in (414) and 01? cannot be eliminated

The projective representation is not even locally equivalent to a

linear representation and is not of the form (43) Consequently, it is

better to reserve the name "ray representations" to locally linear

representations.
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if an exact cocnain 6 p , is added to tt»( the exact part can be

eliminated but the non-exact "core" cannot. Adding an exact cochain is

an equivalence relation, the corresponding classes being the elements

of the quotient space of the closed by the exact cochains. This

quotient space is the addttive cohomology group H2 (6) There is a one-

to-one relation between the inequtvalent projective representations

and the elements of H2(G), which thereby "classifies" them [7,81

To obtain condition (4 17), we have taken associativity for

granted in its usual way If we are enough of a free thinker to

accept that it holds only up to a phase factor,

I u(f) u(h) ] u(g) I ys>« elol3(x>fl'h» f )u(f) l u(h) u(g) ] | yE> (420)

then ,

6 (421)

instead of (4 17). Ctj is a 3-cocnain, as it takes tnree elements of 6

to give the number CC,(x,g, h, f). When it is nonvamshing 0^ is no

more a cocycle and there is no associativity CC3 is an obstruction

to associativity in principle, we can proceed witn such successive

steps of requirements and a corresponding merarcny of closed ana

exact cocnams Nevertneless, associativity is part of tne definition of

a group and so desirable a property for a representation that it is



usual to stop at tms point, we say then simply tnat OC, is an

obstruction to tne construction of projective representations

it is also possible to introduce a notion akin to tne interior

product given the p-cocnam Oty, its "interior product" with n « 6 is

that (p-1 hcocham 1*0» satisfying

Hfcttfl <x; 91-92» . % - \ ) ' OC, (x; h, gi, jfe, ... f 9 H ) (422)

for all gi, 92. .. , <fe-p A natural further step is to introduce a formal

l i e derivative" with respect to a h e G by

(423)

Some of its formal properties, again analogous to those of differential

forms, are:

So A * * So In o 6 - A * o 6 ; (424a)

(Ah oco) (x) • ccoüm) - oco(z) • 6 otofcb); (4.240)

(AfcCttmg). CtiCxRh)- CXiOcbg)* Cd(xh;g); (424c)

(An OC2) (JÇ g, j ) - CCiCuh, g, j ) • OCafe; bg, j) • <X2(ag; b, j) (424d)

The limited character of such analogies should however be

stressed. Unlike differential forms, tne above cochams are not acting

on a linear space and consequently share with then, or.'./ some of

their properties. They lack a tensorlal character and, as a consequence,
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all the qualities coming with It. For example, there are no oasis in

terms of which any p-cochain can be written.

5. Tb« Fundamental Gocycte

As said in paragraph 3, it is the toroidal laticce formed by the

labels (m,n) of Sen wingers operators Smn that constitute quantum

phase space. Our objective, to which we finally arrive, is to show that

indeed a certain cocycle (OĈ  below) exists which endows the space

of a structure similar to the symplectic structure of classical phase

space and tends to the symplecttc form in the classical limit

Consider the unitary operators of chapter 3. it comes directly from

(3.12) and (43) that

(5-1)

of which two particular cases are

OtjtkiW-^Lk (5.2)

and

OC,(k; U) • 0 . (5-3)



We need the two expressions

. Sr$) * 04(k»m, Srs) • J (2tkTn)»r] s (5-4)

and

OCj(k. SmnSrs) " jJl(2k*mT) (n*S)) (55)

to verify, using (48), that

&Xj(k; Smn, Srs) *<X,(k Smn. Srs) - a , (k , S^Sr,) • (X,(k,

•Jlms-nr]. (56)

This is nonvanisnmg in general, hinting, after the discussion of the

previous chapter, to a globally projective character indeed, from

(3.13) we oDtain

(5-7)

so that 0C2 is exact:

5 n, Sr5) (5ô)
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for any pair Sn». Sr* This means that the representation oniy reduces

to a linear one if we want to pay the price of "gaugefying" it as

In ( 4 18): It ts a ray representation, locally linear althougn globally

projective

Notice that Ofe<k, Sn». S») is independent of the state label k

A particular value of interest ts

a 2 ( k ; U , V ) « « 2 ( k ; S , o , S o i ) « J . (5-9)

That the cochain 0 ^ is a cocycle ts a consequence of the

associativity condition (3.17).

& t y k ; Smn. SrS, Sk,)« Otyk; S™, 5rS, Sk,) - 0 (5-10)

Of course, this was already implied by the triviality (5.8) of 0^ and

actually contained in the product rules (3.13) we should call atention

to an obvious but important aspect. The cochains act on group

elements to produce phases, exponentiated numbers. Unitary operators

are net observables, only their hermitian exponents are. The parameters

m,n appear always exponentiated also, as in (39) and in the continuum

limit (as in (3.19)] they do seem to tend to observables with

classical counterparts It is as if the parameters belonged not to the

group but to Us algebra. We must consequently be prepared to the

fact that the relation between 0 4 and Q ts exponential and, for

facility, compare the results of their respective actions There is no



obvious correlation between associativity and trte property related to

the closedness of Q, the JacoDi identity (2 22) for the Poisson

bracket. Associativity is a much more general condition, a property of

every group while Jacobi identity, typically an integrality condition,

appears (exponentiated, as a property of the generators) only for Lie

groups. Presumably this general property gets somehow weakened in

the limiting process. An analogy may however help to shed some light

on this point. There is a strong similarity of the formalism above

with the basic structure of gauge theories: <X| recalls the gauge

potential A, S the covanant derivative D, ttg tne field strength F«

DA. Or, it happens that in gauge theories the closedness of F, DF • 0

(the Bianchi identity) is precisely equivalent to the JacoDi identity

for the gauge group generators 114). We might conjecture that the

closedness of Olg is somehow related to that of 0 .

It is instructive to consider on the parameter space of the

numbers m, n, r, etc column vectors X™ -

with them as components. The row vectors X 1 ™, xT
rs will behave as

dual vectors by simple scalar product. Then, with the usual product of

rows, matrices and columns,

; Smn, Srs) • £ ims-nrj - X1™ G X r s , (5.11)
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where Q is the sympiectic matrix of chapter 2. On the toroidal grid

formed by the parameters Ctyk, Sm» S^) is proportional to the

"area" defined by the vectors (m,n) and (r,s), as was the case for Q

in (2. 21). We may also check that \ s m n ttj is dosed and takes a

column vector Xm into

t \Smn o y aL;5rs) • I Hun) ( [) (5.12)

This duality corresponds to relation (2.10) established by & between

vectors and forms. Furthermore, putting together the considerations on

the continuum limit at the end of paragraph 3 and equations (2.14-

15), we see that ttg plays on the lattice torus a role quite

analogous to that of the sympiectic form, from (3.21), we see that in

the continuum limit Ofe gives (minus) half the value (2 15) of ft

applied to the corresponding vectors:

Using (423) we find that

for all Sm, Sn and SM, stating the invanance of CCa under all

transformations of the Weyl group. In this sense, all of them are

"canonical transformations". Another analogy, trivial to obtain but

interesting, comes from the very definition of CC* it vanishes when

applied to two commuting elements, just as ft vanishes when applied



to two fields corresponding to dynamical functions whose Poisson

bracket vanishes Such two fields are tangent to the same Lagrange

manifold On QPS. this corresponds to subsets of intercommuting

operators Finally, from (58), we see that the role of the canonical

form ff is played by the cochain OCi.

Points in QPS can be attained from each other by successive

applications of the operators U and V. Operators Smn will meanwhile

acquire phases. This is better seen if we start with some state I vk >

and look such successive transformations as forming pâtns on OPS

Each time U is applied the state is shifted and each time V is

applied the ket gains a phase. This phase depends on the state

arrived at. in Fig. I (a), operator V acts at V I " , but its inverse v 1

acts at "k". As a consequence of tnts point dependence, closed loops

give a net result phase. Going around the loop in Fig. I (a), for example,

will give to lvh> a phase C 2 * (2n/N). This C2 is the unit phase: it

comes each time a unit cell in QPS is surrounded

U2

IV
IT1

(o) (b) (0

FIQ.I Thi simplest loops on QPS: (*) on elementary loop; (b) t
double loop vtth Mojitiv* seme; (c) • triple looo. ioch
enclosed elementary cell contributes • phese tS. to



The sum of phases is algebraic going around the unit loop in the

inverse sense changes its sign, in our convention, positive sign is

given by counterclockwise motion So, the path of Fig. Kb)

contributes a phase (-2C2), that of Figl(c) a phase (-3C2). etc

Closed loops may give vanishing phases. This fs trivial for the two

r*?2 ft loop jiving « vanishing con-
to tte ptmst ai i W i

closed pa:hs generated by if* and v", which simply close around the

torus, but there are non-trivia! cases: In Fig 2, the contributions from

the two unit loops cancel each other As Ot2 measures just (half) the

areas in units of t, there is at work here a version of Gauss

theorem: the total (algebraic) area circunvented by a loop is obtained

by just following the loop step by step, at each step summing the

corresponding K*, as given by (5.2,3). As exhibited in Fig 3, the product

Sm» Srs is equivalent to taking S™ then Sr5 only when Ct^k, S™,

Sr5) - 0. The closed paths of Figs. I and 2 are projections of paths in

the space of the operators S™, where the paths are, as a rule, open. A

kind of non-integrability appears: starting from a given point, the

phase at another point will depend on the path, unless the "flux" of

&2 through the surface defined by any two paths is zero in this
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sense 0Ct is a non-integraDle phase like those of gauge theories

and Ob would act as the corresponding 'curvature', AS already

mentioned, there are many aspects in common with gauge theories in

the present formalism, Dut we shall not discuss them here. Neither

shall we consider the possible relation of OCj to a generalized (16)

Berry's phase (171, a subject which deserves further study-

As an example, the commutator V ' U ' W U of Fig Ma) produces

in operator space (see Fig 4) an arc which fails to close precisely by

the phase C2 Such trajectories in operator space only close when the

unit cell is surrounded a multiple of N times, m wri.cn case it

becomes a closed spiral The role of CC2, simitar to a curvature on

Of>5, is different here: as 11 measures such defects in trie operator

space, it is reminiscent of mat of torsion in differential geometry.



m <m,n>

m*1

Fig. 4 An elementary loop In parameter apace correepomb to an
open trajectory in operator apace.

In the continuum limit we must consider "large" regions of

sizes mC and nC tending to limits a and b and the operators (now

putting A back into our expressions) Um -»e i a p / n and V" -» elaq/fi. The

phase tt^k; Um, Vn) • jf mn - y mn tends to 5 aD» J u s t ^hal f > t h e

value of ft (aXq, bXp). Actually, to examine the continuum limit, as

well as to get some more insight on the role of the cocycle OC2 it

Is convenient to apply the formula giving the Weyl-Wigner transform

W(AB)-(AB)W of the product of two operators A and B tn terms

of their transforms W(A)»Aw(q,p) and W(B)-Bw(q,p) , which is

W<A B) - e l ( R / 2 ) k*q A w(q,p) Bw<q,p) (5 14)



The upper indices in dA
q. db

p are reminders: d*q is the derivative with

respect to q but which applies only on Aw(q,p); d*p derives with

respect to p but only acts on Bw(q,p), etc. The Poisson bracket

always comes up at first order in h

W(AB)« Aw(q,p)Bw(q.p) -(n/2i){Aw(q,p),Bw(q,p)) + . . . (5.15)

but the Weyl-Wigner transformed functions Aw(q,p) and Bw(q.p) may

still exhibit additional powers of n, depending on their explicit form

in terms of q and p. in fact, only in the strict classical (fi -» 0)

limit will such functions reduce to their classical counterparts.

Getting the Poisson bracket from a quantum commutator is only

achieved when we pass from a non-commutative algebra to a

commutative one at the price of ignoring the cell structure of

quantum phase space. Only then (i/fi)[A, B] -» ( A ^ , Bc)as) [18]. To

clarify this point, let us consider the operators A - Sao • e ^ ) 9 Q

and B • SOD " eO'MbP. From the previous formalism, their product

wil l be

A B • e I«2<A.B)Sat, " e i<x2 (A i8) e i ' /Maf l * *>P > (5.16)

The Weyl-Wigner transform of the right-hand side is

W(A B) • e l0t2(A-*> e (MXa q • b p) t (5.17)



where now q and p behave like classical variables. On the other hand,

(5.14) will say that

W(A B) * e 1 ( f i / 2 ) k \ j *6p " ^p A 1 I e< W (»q*t>p) ] (5.

We see that in some way OC2 sums up all the intricate action of

the exponentiated operator. The present example is specially simple

but reflects much of the fundamental structure of the continuum

. quantum phase space, as in this case Sab ts a typical base element.

The Potsson bracket is constant and tt is possible to write down the

exact result,

W(AB)« e ' í t / 2 l í ) a b e ^ H a Q ' b P ) , (5J9)

so that

C ^ Í A . B ) - - < l / 2 t o ( A , B ) . (5.20)

An analogous result would come if we took operators of type (3.21).

In such cases related to the harmonic oscillator, whose semtclasstcal

aproximation is exact, CKQ gives tne classical result up to a factor

f r ' . This is indeed the hallmark of the quantum structure of phase

space embodied in 8 3 . which is not at all a classical object. It is

expressed above in terms of the Poisson bracket, but of Weyl-Wtgner

representatives of quantum objects In this continuum case, OC2

heralds the non-commutattvtty of the baste pair q - p. in the general

case, tt highlights the fundamental cellular structure of QPS
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6. Summing up

Every feature of Classical Mechanics stems from some quantum

mechanical feature. Let us try to review the analogies and differences

Detween the cocycle tt? and the symplecttc form. To begin with, ft

is globally defined on the classical state space and OtjOc; 5™, SrS) is

independent of the state label k. The first is invariant under canonical

transformations, the second under all unitary transformations. Both

measure areas defined by vectors in the corresponding spaces. The

closedness of Q guarantees the Jacobt identity for the Poisson

brackets, that of 0^ the projective character of the Weyl

representation. Classical Lagrange manifolds are on QPS replaced by

subsets of intercommuting unitary operators. The symplectic form is a

linear operator, which we could not expect of Otg. Finally, 0^ tends

to the symplectic form Q when, in the continuum limit, the non-

commutattvity of dynamical variables is relaxed. The cocycle 0^ is

that feature of quantum mechanics on which the symplectic structure

of classical mechanics casts its roots.
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