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Abstract

The space of labels characterizing the elements of Schwinger's basis
for unitary quantum operators is endowed with a structure of
symplectic type. This structure is embodied in a certain algebraic
cocycle, whose main features are inherited by the symplectic form of
classical phase space. In consequence, the label space may be taken as
the Quantum Phase Space: it plays, in the quantum case, the same
role played by phase space in classical mechanics, some differences
coming inevitably from its non-linear character.



On the Structure of Quantum Phase Space

. Introduction

The recent extension of Weyl-wigner transformations (o discrete
quantum spectra has drawn attention [1] to a certain discrete space
which plays the role {2] of a “quantum phase spac:" (QPS). Tne
extension makes use of Schwinger's complete basis |31 of unitery
operators for weyl's realization of the Heisenperg group. Lniike usual
classical phase spaces, GPS 15 not a linear space: i1S points, Desiae2s
being isolated, display themseives on the surface of a torus. Trs
continuum quantum case may be obtained by a standard procedure
which corresponds to stretching the torus fanii to Infinite wnile
bringing the spacing between neighbouring points to zero in a suitable
way. This C-number representation of QPS closely paerallels the
classical picture, its quantum character being Signaicd by e
presence 91 Planck's constant B 1n the expressions nwvolved it is ¢f
basic interest to examine the main properties of GPS and their
reiations to the well known characteristics of the claczical phase
space. We would 0f course expect (0 obtain the Classical case as a
=0 hmit of the quanturm case.

The basic geometrical feaiure of a classical phase srazce 15 LS
syrplectic structure, empodied in a gifferential 2-form Q wnICh 13



Closed i3 codycled amd fvasdegenieraie The  fTuidabiental roic ol fhas
Symplectic  form 15 Spedlaily visible n the Hamnitohlanh  Tormulation
of mechanics So strongly dies the Syipleclic Struclufe siiir: (0 e
very notion of phase space that QPSS will only geserve IS rame 11 i1
icluces 3 structure Of Siiniiar nature  AHDOUIN weé Miay 1ol expell
the presence of 2 complete analogue ¢ Q on QPS, our obijellive hefe
15 1o show thal a cerlain struclure ealslS INdeed which pia,s oh el
a role a5 statlar 1o a symipicclic structure 33 Could Le expelled Sulh
a “pre-symiplectic” struclure 1 aluaiiZed I 3 Ceflam —~Cuchain
{al50 a cocytler acting on e unitary Operaters, a purely  algedrai
object which acguives, i the Conliwous it a2 geomeli il nalue
angd tenas. In the Classical bt to the Symplectic Torin The  Z-
Cocham  marks W fealll, U proedtive Ravadler 7 Yoo s

realization of tic Aelsefbeld Jroup.

we Start in Chapler 2 with  a  sShelchy  pleseniastidn  of
Hanyitonman mechanics {4), special emphasls bewnd given to the role of
the symplectic structure [S] we then address ourselves 10 guantun,
kInematics ang Qgive a resufieé oh  Schwinger's complete Las)s ol
unitary operators n chapter 3 A cruQ1al point will bé thal the Datis
provides n realit; not a hinzar but a projective representatiof of (5~
Helsenbery group Preparing o estabhish that, chapler 4 15 3 Shurt
INtroduction 10 the subject of projective representations [6) Trom tne
CONOMUIOAICSl putnl ot view [7) which, Leing Cluser Lo e Toimshie,
Of Oifferenliol fuin, 15 cpeciatly Convenlent 1o Ouf purpiies [} [n-

Meaning Gf fuy representationg Lecomes spetially  Clear 1 Uhis

language  Tne rewnbty yre ren appiied N chapter Y Ly ife

[ 2]



Sehwingsr Dasts for the Weyl fepresentalicn, =iphatic Delg o= b
the emergence of the menticned CacyCle aNd Lo sufue S IS
properties Tre conlinuum  limit 15 examified and Coraparison 15 fmade
with another C-number representaticn OF Guantufn Dehighlcs, The weyl-
vilgner-toyal [9) approach. The mieaning  of  the  “pre-sifiplec U
fundamental cocycle 15 clarified in lerins of well rhewh Tralures of

[.h.-'jl appréach

2. Classical Phase Space

I the classical descriplion of a System with 1 dejec: ol
freedom, physical  states constitute  a  Qiferentiaple €, mpiectic
manifold M of  gmmension  2n. The  fundamental  yeohielrical
character1SIC Of iz phase sSpace 1S e Spmlelso 70 S
terms of the generalized coordinates q=(q',q3,. q") and momnenta p
= (PP, - Pn). S2 1S wrilten

Q = a3 Adp, i

I 1S clearly a closed form (thal 15, 3Q = 0), NG CIN De hoven [0 De
also nongegenerate A Closed form 15 alse Cailed a coow/e. @ as
Jbove 1S al30 an exacl form (3 coooundssy, oF @ Uivial <odyile) 33 il

15, Up to 3 sign, the aifferential of the Cumca’ torm

o = p' .‘Jq‘ (:.' '..')



e

The structure defined Dy a closed nondegenerate 2-form 1S called a
symplectic structure and a manifold endowed with such a3 structure
is a symplectic manifold. In reality, phase spaces are very particular
cases of symplectic manifolds. On general, topologically non-trivial
symplectic manifolds there are no giobal coordinates such as the (J',
Pi) supposed above and the basic closed nondegenerate 2-form is ot
necessarily exact. Notice that every coboundary is a cocycle but not
vice-versa. A theorem by Darboux ensures the existence of a chart iof
“canonical”, or “symplectic® coordinates) around any point on a (2n)-
dimensional manifold M in which a closed nondegenerate 2-form can
be written as In (2.1), SO tnat the equations here written in
components hoid locally. Not:ce however that € 15 globally defined
and the equations written in the invariant language of forms are
valid globally.

The fundamentai point about the symplectic structure 1s that Q
establishes a one-to-one relationship between I-forms and vector
fields on the manifold M. Consider the example of the phase space
velocity field,

) d 0 .
Xes S 2. - (23)

a 3¢ g

The Uime evolution of the state point (q,p) will tare piace along the
integral curves of Xy Hamilton's equations put this evolution field into
the form



The differential operator Xy generales a  one-parameter group of
transformations, the AMamw/taman rllow . On  the other hana, tne

Hamiltonian function H(q,p) will have as differential the 1-form

aH H _
B o ? — R (2.5)
* 2

The two equations above show cClearly an intimate relation
between dH and Xy for which Q IS responsible. The relationship
involves the mterior prodxt of a field by a form. The interior
product of a field X by a I-form o, denoted Ix6, 1S simply 6X). The
intertor product of a field X by a 2-form £, denoted 12, 1S defined
as that 1-form satisfying iy Q(Y) = Q(X.Y) for any field Y Ths 1s

airectly generalizea to higner-oraer forms. we fing éeasily tnat

Q= GH . (26)

Besides being a particular case of the general one-to-one relationship
between fields (vectors) and I-rorms (covectors) on M, this 1s also an
example of relationship between a transformation generator and the
corresponding generating function. The Hamiltonian presides over (ne
time evolution of the physical system under consideration. H(q,p) 1S
the generating runction of the velocity field Xn. Applying Xy (0 any
given dirferentiable function F(g,p) on M, we fingd that



- {1, 2D

— "y,

the Liouvitle equation Xy 15 Trequently cCalled Lwwwi/hian operator
Fuwtions like Fugp) are Ine Classical  observables, of  aynaniCal

functions To eain such a tunclioh will correspond a fela

Xp = — ""’ e T 29
ap, oq' ag' ap,

through the relation

W= of 210)
Given another function G(Gp) ang 1ts corresponding feld  X;, it 15
immediate o verify that

i) = X056
oy 3, oM 9

= {r.0) )



Each MNeld on 11 15 the local gencrator ol a ohe-Jdii-niSional
Yyoup uf transformations The response of a tensur 1o Ue 10ca)
transformations generated by a field i3 measuied by e Lic
defivative of the tensor with respect o the field Of couwrse F ¢
which 1S 2 2er0 Orasr tensor) 15 an Integral of fmotion 11 s Lie
derivative Ly, F = Xuf vanishes, or (FH) =G The Lie derwaliee of Q
wilh respect to Xy vanishes,

L Q=0, {212)
DecCause Lx = Golx + 1x0d This means that e 2-Torm  Q 12
preserved by the Hamiltonian flew, or by trhe Ume eévoiullon Thii and
e § ‘perty

Li(QaQ)=(Lg0)ad + Qa(lyzQ)
of Lie derivatives establish the invariance of the whole Sefies of
Foincare mvariants QAQ ... AQ, Including that with the fuinber n
of Q°s, which 1S proportional to tne volume form of ™M

Q"= (- d3'Ada A AGP ADDIATP2A A Pn

The preservation of Q" by (he Hamitoman flow 15 of {ourse

Liouviile's theorem.

For any field X related to a dynamical function F



This nappens Decause Ly, @ = 3o Q + 1500Q = oF = 0 Swh
ransiormations leaving Q Ivariant are (e CaAXVII/ IrNs!matins .
X 15 SaKd L0 D@ 3 namillonian [1e/d & b WS generaling 1uxton
In 3 more usual lanQuage, F 1S the genefating futivh of tne
corresponding canvnical transformation The simplest  examples  of
generating funclions are given by F(gp) = ¢ . corresponaing (o the
field X = - 3/3p, and GLq,p) = p, whose field is Xg= 3/3¢". Both lead
to (. p)) = & Neal In sunpiicity are tne adynamical functions of tne
lype

fa = 33°* Dp, (21

with aD real constants. The corresponding fields are Jp* -2 d/9p* b
/9q The commutator of two SWh fields 15 [pJed = 0 ang
consequently the corresponding generating function Fiy s 0= Fo 15 3

constant. On the Ciher hang, the Poisson brackets are determinants

Ha.fca) = QI Jeg) * 30 - DC 219)

We have been usIng above the holonofmic basis 1o/odf, o/0p, ) 1or
the vector Mielgs on phase :<pace In principle, any <et of Zn hinearly
Independent fielas may Dé tzren as a Dasls. Such a gefieral basls Le, )
will have Lhe Oual Dasis (Wil with wlie) =8, and s mempbers will

have commutators le,egl = ¢4 &, where the slructure coelficients o,



measure the basis anholonomicity A general field will be writtzn X =
X'e = wiX)e, ;a general I-form 6 = o, w'=cle,) ', the differential
of a function F will be oF = ¢ (F)w' , etc in tnhis basis, the

symplectic 2-form will be

Q-::;Q;jmlmnl =%Q(ei,e,)mlawl - (216)

It 1S Interesting to consider £ =(2,) as 3 (antisymmetric) matrix
and Introguce its inverse 1= (Q ), whose existence 15 ensureg Dy

the nondegeneracy condition:

Q,QIk =QuQ, =84 217

The Poisson bracket is then
(F.6) = QX %) = X QX = & (G)QM ¢ (F) (218)

The holonomic vector basis related to the coordinates (a*) =

(@.p,) will be formed by the fielas ex =9/3¢* for k=1.2,...,n and
\ =3/ for K=(n+ 1),(n+2), ..,(2n). The matrices Q ana '

will have the forms

'[-l,, o et 0""]

where I, 15 the n-dimensional unit matrix.

Lel us summarize to a contravariant field X



cex 2 3 -
X=Xy ot e o (219)

Q@ will make to lorrespond the covaniant field

Ix Q= X“‘ ap - XD| aq . (2.20)

In reality, althougn trus relationsnip always 10135, most fielas do not
correspond to a generating function. 1xQ 15 not always eaact. When it
1S, X 15 more frequently called a strictly (or glovally » namiltonian
feld. In general, a generating function exists only locally Tne |-form
corresponding to any field preserving Q will pe closed, dil; Q) = L
=0.As 2 closeafurm 15 always locally exact, around any point of i1
there 1S a neightiurhood where some F(q,p) satisfies 1, Q=dFf

Suppose arother field 1S given, Y = Y, d/op, *+ Y, 3/0Qi. The

action of the z-form Q on X and Y will give

QLYY = Xgi Yy, = Xp, Yo (221

This 15 twice tré area of the triangle aefined on M Dy X and Y, 3 1t
1s still easier t¢c see from (214,15)

An n-dimer.s.onal subspace of the 2n-gimensional prace Space I
1S @ Lagrange nantrofd W QXYY =0 for any two vecturs «,Y lanye.t
10 1t Examples zre the configuration <pace and the mMomentum Space
Canorical transtormations preserve Such subspaces of 11, tnal 15, trey

lake a Lagrange Gianifole nto anotrer  Lagrange manifold

10



Let ws finish with a comment on the closedness of the
symplectic form. why have we S0 much Insisted thal Q De a
cocycle? The reason 15 that Q being a cocyclé 15 egquivalent to the
Jacobi 1dentity for tne Poisson brackets It 1S not difficuit to find
that -

X(QUY,20 = - {Fy {Fy.F 1)

and that

QUXY,2D= [Y,2] Fx= - {F, {Fy.Fpl).

Combined with the general expression for the differential of a 2-
form,

3 (aix,y,2)) = x(QY,2))+2(0(x,Y) ) Y{QUZ X) }o X (Y, 213+ 2,[X, Y])o2: ¥ [2,X)),

this gives
I aUX,Y,2) = = {Fx,(Fy,F2))- (F2,(Fx Fy))- (Fy.tF2,Fx)) = C (222

we see In this way the meaning of the closeaness of Q 1L 15 just the
Jacob! 1dentity for the Poisson bracket.

The Poisson bracket is antisymmetric and salisfies the Jacoul
igentity. It 1S an operation defined on the space C* (MR) of real
aifferentiable functions on M. Conseguently, C™ (MR, 15 an infinite-
dimensional Lie algebra with the operation defined Dy the Polsson
cracket. Actually, F == X 1S a Lie algedra homomorphism (a



representation) of C™ (MR) Into the algebra of strictly namiitonian
fielas on M.

There would De of course much more to be said about phase
space. how linear canonical transformations constitute an important
group, how a complex structure may be introduced, etc. The brief
outhine above, however, fixes notation and stresses hopefully enough
tne Dasic role of the cocycle Q. we snhall see In paragraph S that
on quantum phase space 3lso a cocycle is defined which, even In the
discrete case, has a comparably fundamental role.

3. Quantum Kinematics

Tne quantum description of a physical sSystem requires a
complete set of opservables. Sull petter, it requires a3 complete set of
operators in terms of which all dynamical operators can be bullt up.
Kinematics is governed Dy Heisenberg's group [10), whose elements may

be represented by real triples (a, b, r) obeying the group product rule
(1)

(3,b,r)%(c,0,5) = (@a+c,b+d,r+s+(1/2)ad-bc)).
The corresponding algebra i1s formed by triples (a,b,r) satisfying

(3,b,r) @(c,a, 5= (0.0, a0-0C)

12



Weyl introduced a realization in terms of powers of two umitary
operators U(a) and V(b) satisfying

Ula) Wa) = Ua+ a),
V(D) V(') = V(b + D)

and
Wa) V(b) = V(b) Wa)e'b®.

A particular example is given by V=¢® ,U=¢'" _ wnich lead to the
usual formulation of Heisenberg's algebra using the basic operators p
and q. Schwinger [3] has recognized the fact that the above U and V
generate a complete basis for all unitary operators and provided a
Classificaton of all the possible physical degrees of freedom. we shall
here be interested only in some aspects of Schwinger's work. what
follows s a short presentation of them.

Consider a space of quantum states of which a basis IS given Dy

orthonormalized kets Jvx? with k=12, . N A unitary operator U
can be defired which shifts these kets through cyclic permutations as

Ulvk? = vier?, WIth |vien2 8} v,? (3.1

Through the repeated action of U, a set of linearly independent unitary
operators U™ can be obtained whose action is given by

UM I2 = vgem? . (3.2)

13



128/8) &

As UN=1 tne eigenvalues of U are w=¢ , Corresponaing to

another set of kets fixed Ly
Ulw? = wluw? (33
Another operator V exists such that

Viw? = fu? (349)

VOl ? = fuep?, With w8y, (35)

Here also VW= 1 and the V eigenvalues are v, =e'@"NW* Tne miracle
of Schwinger's pasis 1S that the eigenkets |vx? such that

Vi =@k, (36)
are just those from which we have started Of course,
V”lV."él(:n/N}kn'Vt). (37)

A direct calculation In any basis shows that

voiuma en:’n/N)anmvn' (38)

14



Now, Schwinger's final point. the set of operators

smn = @ in/Rimn ymyo (3.9)

constitute a complete orthogonal basis in terms of which any
dynamical quantity O can be constructed as

0 = ZnnOmSm » (3.10)

the Omy'S Deing coefficients given by

Omp =r[5'm0] . (3.11)
U ang vV are each one a generator of the CyCIIC group Zu The

operators Sma give a peculiar combination of the two 2y's, providing
a discrete version of Weyl's representation of the Heisenberg group.

The following results are eastly obtained

(1) the action of the basic operators on the kels

HN/NX2k+ m) n | Viom ?

Sma lw>=e ; (3.12)

15



(1)) the group product.

Srs Sma = € N (rns-nr)s(m.” (nes) (313)

(111) the group identity.
Soo ® | | (3 14)
(v} the nverse to a given element:

S-lmn = S-m_-n N (.5 ]5)

(v) behaviour under a similarity transformation:

Sm sfs S""" = ¢ - i(20/N) (ms-nr) Srs . (3‘6)
(vi) assocCiativity;
(Sma Ses) Sui = Shw (Ses SW) - (317)

With the periwodicity conditions in (3 1) and (355, the nuinbers
m, n, etc take values on a torus lattice. It 15 this lattice who plays
the role of a guantum phase space. The points of GPS are so labels
of elements of a discrete group The operators Sg,, obeying tre

16



product rule (3.13), give a projective representation of the group of
transformations on this space, which will be examined in néxt chapter
Notice that they are themselves only semiperiogical: Syp = (- Sgp; Spn
=(-)P Spo . The quantum continuum limit, which has only been studied
in detail in some cases (1,3], is in suchcases attained by taking DOth
the torus radii to infinite while making the spacing between
NeIghbOUring POINLS go to 2eco, In Such a way that [V2n/N m] —-
some real constant a, [V2m/N nj —- another real constant b, etc. In
~ this limit, a particular realization of the above operators is

V = enf2VN P ;U =eely<N q (3.18)
VP = e'PP P —y o0 (3.19)

where the operators p and q have eigenvalues \l2n/N k.In this case,

Smn = S,p = ¢'@e* 2P (3.20)

The exprescion (3.13) takes the form

Std Slb . e(i/?lﬂ - o) S (a*c) (b+d) . (3.21)

17



The exponent W Sg 1S the quantum version of the gynamical funclions
(2.19) and the prase in the group product 1S just (half) the Poisson
bracket (2.15).

To 3 given gegree of freegom Corresponds a pair of operators U,
V satisfying (35) which will provide a basis for a realization of the
Heisenberg grous A Curious and important example is given by the
non-local order znd disorder operators determining the confined and
unconfined phases In quarkionic matter [12). The algebra (3.3) appears

then because of the crucial role attributed to the centre of the group
SUIN), which 1S precisely Zy

The above consigerations on the continuum limit suggest that
each pair of operators U,V salisfying (3.8) is related 1o a pair of
(exponentiated) canonically conjugate variables and, so, to a degree of
freedom. This is true only when N IS a prime number {3] Otherwise,
the representaticn involved 15 reducible. wWhen N is prime, (3.8) is
the only possible combination of powers of U and V leading to Such
a kind of expression. when N is not prime, however, things are
different. N can pe written in terms of its prime factors, M =Ny Ny ..
Ny and particular powers of U and V cocmbine to give expressions
ke (3.8) with N replaced by each one of the factors N, The basis
can then be recefined to Decome a direct product (3] In the
continuous 1imit, N goes to infinity through prime values.

18



4. Projective Representations

Projective representations [6] are treated, even n the pest of
older texts, wn a rather involved way The modern, homological
approach {7) of which a brief account is given in the following has
many advantages, not the least being its assignment of the sSubjet’s
correct place in the wider chapter of group extensions (8] In our case
the main 2dvantage is that the evident analogy with the formalism
of differential forms allows a clearer view of the connections
between Schwinger's basis and classical phase space.

Let us consider, to fix the ideas, a group G of elements g, h, etc,
acting through their representative operators U(g). U(h), etc on kets
9.2, ¥y, etc. The indices x, y include not only configuration or

momentum space coordinates but also spin and/or 1S0SpIn Ingices and
any other necessary state labels we snhall cail them paameters.
We might alternatively talk of the corresponding wavelfunctions @(r)

=<ri1¢, etc,but will use kets to keep In pace With previous
notation. The space (Ig? ) of kets will be the cav/er space of the

representation.

Suppose to begin with that we have

Ui @2 =1 g 2, @n

19



where “xg " 15 the set of labels as transtormed Dy the altion of g
Suppose further that, by compositon,

U WG P2 = Wgn i), (42)

meaning n particular that the composition by itself 15 independent
of the point x In parameter space. This is what 1s usually called a
representation, but will In the present context be callea a /mear
representation . The mapping Ug- Wg is in this case a
homomorphism.

we may next suppose that, instead of (41), tne action of 3
transform>*ion 1s given by

UQH I, > = e 9y 0> (43)

The wavelfunction acquires a phase Oky(x; §) which depenas Doth on the

transformation and the point in parameter space. The transformation
will operate differently at gifferent x. In Quantum Mechanics, of
course, the above phase will not change the state, which is the same
for wavefunctions differing only by pnases. A state is, in reality, fixed
by a ray (that 1s,a function with any phase factor). For this reason,
a representation acting according to (4 3) has been called a ray
repgresentation Its  more  mathematical name Is  projective
representation, but these notions will become more precise in the
following.



21

Suppose condition (4.2) holds,
Uh) WG IY.> = Wgn) 1.2,
A direct calculation shows that this implies
0%, (xg;h) = O4,(x;gn) +0%,(x;9) = O, (44)

another form of the homomorphic condition. If a function QRy(x)
exists such tha! Oti(x;g) can be written In the form

0y(x; @) = Dg(xg) - Olglx), (45)
then (4. 4) holds automatically, (4 3) becomes
U e > = el d) 1y >
and phases can be eliminated by redefining
[ =900 |y,
which Drings the group action back to the form (41)

in the cohomological theory of group representations, phases
such as the above Okoix) and % (x,0) are considered as results of



the action of cochains on the group 6. Cochains  are anliSymmetric
mappings on the group, purely defined by their action. They have much
in common with differential form. (which are in reality special
cochains) but 1t should be hept in mind that here they are not
necessarily acting on elements of a hinear space. Here \rey take one,
two or more Qroup elements to give numbers. The group elements
have the role vectors have n the case of differential forms. Cochains
may be defined on any group, even discrete ones - which IS just the
case of our interest. Oty iS5 a 0-cochain, @ function on parameter space
whose value at point x is the pnase ORy(x), Oy is 3 l-cochain
becauce It operates on one element g of 6 at poit x of the
parameter space 10 Jive &,(x;g); 3 cochain taking two group elements
as arguments will be a 2-cochain, etc. An operation analcgous to the
exterior differentiation of differential forms is defined [8) on
cochains: it I the derivative operation 8§ taking a p-cochain Oty
nto a (p+1)-cocrain [,y accoraing to [13)

§: 0y > some B, =6ax,

8%‘*. 01,02, . Ger) = 050X 01,02, .., Gpe1) - ORpiX; 01G2,  ,Qper ) *

RET ol NP A %) (4¢)

22



An important property 1S the Poincaré lemma 82-0, which can De

verified directly from this expression. The first examples are
0L,(x; 9) = Okylx @) - Oyl x); (47)
Sov,(x; g, h) = O, (x g, M = O, (x; g +&%,(x;Q); . (48)

806,(x; 0, 1, 1) = Olx g; B, 1) = Glx; G, 1) + Ox; g, h 1) - Ohlx; 9, h). (49)

A cochain & satisfying 80&,-0 IS @ c¢/osed p-cochain, or 3 p-
cocycle, and a cochain Oy for which a 7ochain Q.4 exists such
that Oy = 8O-y 1S exact, or a coboundary (or trivial cocycle). An

exact cochain 1s automatically closed. We see that condition (4 4)
means that &, is closed,

ok, (x;gn) =0, (4.10)

still another form of the homomorphic condition. As to (4 5), it says
simply that 04 is exact:

O, (x, g) = 80k(x; ) (411

Summing up the composition rule (4.2) implies the closedness
of O ;if In addition O is a derivative, a regefinition of the

23



functions exists such that 1t simply disappears. when O, 15 closed

but not exact, It cannot be ehiminated but the representation 1s still
equivalent to a linear representation A oure projective representation
appears when, nstead of (4. 2), we only require

UM UG 1Y, = %00 ygny |y, 2, (412)

allowing the composition to depend on the "position” x through a
phase factor. Tne mapping U: g => U(g) 1S no more a homomorphism.

Applying (4 3) successively, we have
ugn 1y,> = el jy >

U UKG) 1Y) = et glthlXah) )y 5 =

. eI( o4, (xgih) = O&(x;gn) * O&(x;9) } Ugh Iye?. (413
Consequently,

8o, (x;g0) = Cho(x;g.0) . (4.14)

In this case O 1S not closed and the representation 15 no more

equivalent to a linear one. The cochain O, i1s an ovsiruction 1o
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homomorphism. On the other hand, ray representations like (43)
require O., to be exact.

Let us see what comes out from the mposition of
associativity: equaling

WO LU U] 1> =e' %R y(r) ugh) Y=

= @lOetgn) ilelighd) yygny) I¥s? (415)
and

(WD UMl Ul 1§, ) =e'®™0D yinr) uig) 1> =
= ei“?(lﬂ;h.f) el“?(l;ﬂ.hf) U(gnr) lwl) (4.16)

brings forth, from (4.9), just the closedness of O,

8, + 0 (417)

This "associativity condition” s of course coherent with (414).
Condition (4 14) has an interesting conseguence. Suppose it holds
and let us proceed to a redefinition of the operators U. define new

operators U® by

U'(g) = e %100 yg) (4.18)
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They depena, through the phase, on the point x at which they will
operate and are, In this sense, “gaugefied” versions Of (The previous
WQ). In terms of such operators, (4 13) becomes

VT UTQ) 1YY = UT(gh) 1¥y?, 419)
which ts just of the form (4 2).

Concerning only the group operator representatives (and not tne
particular carrier space), it 15 expression (4 12) which characterizes a
projét;tive representation. Associativity implies that &z 1s a cocycle.
If it 15 also exact, there exists 3 O satisfying (4.14) which will
appear as a ket phase and O can be absorbed by the procedure just

described Into the “gaugefied” operators, In terms of which the
representation reduces (but only locally in parameter space) to a
linear one. we will say in this case that the representation 15 locally
linear but globaly projective. The unitary quantum operators to be
studled in next chapter will be of this type. If Q& 1S clcsed but not
exact, there exists no C&) as in (414) and Ok, cannot be eliminated.

The projective representation 1s not even locally equivalent to a
linear representation and is not of the form (4.3). Consequently, it is
better to reserve the name “ray representations” to locally linear
representations.
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If an exact cochain 8P, is added to Oy, the exact part can be
eliminated but the non-exact “core™ cannot. Adding an exact cochain 1s
an equivalence relation, the corresponding classes being the elements
of the quotient space of the closed by the exact cochains. This
quotient space is the additive conomology group H?(G). There 15 a one-
to-one relation between the inequivalent projective representations

.and the elements of H? (6), which thereby “classifies” them ([7,8]

To obtain condition (4 17), we have taken associativity for
granted in its usual way. If we are enough of a free thinker to
accept that it holds only up to a phase factor,

LUl UMY ) Ug) 1ye>= 350N Dy [umiuig) ) [ ys? (420)

then

Sox, = ox, (421)

instead of (4.17). O 1S @ 3-cochain, as 1t takes tnree elements of G
to give the number Q& (x,g,h, f). When it Is nonvanishing &, is no

more a cocycle and there 1S no associativity: O

p 15 an opstruction

to associativity. In principle, we can proceed with such successive
steps of requirements and a corresponading hierarcny of closed ana
éxact cocnains. Nevertneless, associativity i1s part of (he definition of
a group and so desirable a property for a representation that It 1s
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usual to stop at this point. we say then simply that 0:, 1S an

obstruction to the construction of projective representations

it 15 also possible to introouce a notion akin 10 the Interior
product: given the p-cochain Oy, its “interior product” with h& 6 15
that (p-1)-cochain 504 satisfying

RaOpl (X, 91, G2, ..., G-1)= Ogp(X; 1,01, 82 ..., 1) (422)

for all gy, 32, .. , Gp-1- A natural further step is to introguce a formal
"Lie derivative™ with respect to a h & G by

An=8oly + 1,08, (423)

Some of its formal properties, again analogous to those of differential

forms, are:
§oA=801u08 <Ay08; (4242)
(Ap Qo) (x) » Obo(xh) - Cto(x) = & Co(x) ; (424D)
(AnCh) (X, ) = Ca(xg; ) - Oy D)+ Ohylxh;g); (424¢)

(An0t2) (% g ) = QRo(xh; g, ) - Obp( g )+ Cbalxg:h,j).  (4240)

The limited character of Such analogies should however be
stressed. Unlike aifferential forms, the above cochains are not acting
on 3 linear space and consequently share with them <nily some of
their properties. Tney lack a tensorial character and, a3 a consequence,
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all the qualities coming with 1t. For example, there are no Dasis in
terms of which any p-cochain can be written

5. The Fundamental Cocycle

As said in paragraph 3, it is the toroidal laticce formed by the
labels (m,n) of Schwinger's operators Smn that constitute quantum
phase space. Our objective, to which we finally arrive, is to show that
indeed a certain cocycle (X, below) exists which endows the space

of a structure similar to the symplectic structure of classical phase
space and tends to the symplectic form in the classical hmit.
Consider the unitary operators of chapter 3. 1t comes directly from
(3.12) and (43) that

Oty (K; Spa) = & [(2k+m) 0], (5.1)

of which two particular cases are

0%, (k; V) = 2 & (52)

and

Oy (k; U) = 0. (5.3)
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we need the two expressions

0 (KSmn, Srs) = Oy (kem; Sys) = & [20kem)er] s (5.4)
O (K; SmuSrs) S[(2ksmer) (n+s)) (5.5)

to verify, using (48), that
804, (K; Smn, Srs) = Ohy(k S, Srs) = Oy (K; SranSrs) + Oy (K, Sma) =

. ‘ﬁ' [ms-nr) . (5.6)

This 1S nonvanishing in general, hinting, after the discussion of the
previous chapter, to a globally projective character. indeed, from
(3.13) we obtain

O&y(K; Sma, Srs) = % (ms-nr], (5.7

S0 that uz 15 exact:

OatK; Smn, Sps) 8“1“‘; Smns Srs) (5.8



}0

for any pair Sma, Sys. ThiS means that the representation onhiy reguces
to a linear one If we want to pay the price of “gaugefying” it as
in (4 18) 1t 1S a ray representation, locally linear although globally
projective.

Notice that Og(k; Sma, Srs) IS independent of the state label k.

A particular value of interest is
. = . = !
Op(k; U, V) = O5(k; Sto, Son) = - (59)

That the cochain O, 1S a cocycle 1S a consequence of the

associativity congdition (3.17).

80, (K; Smn, Srs, Su) = OgfK; Sm, Srs, S =0 (5.10)

Of course, this was already implied by the triviality (5.8) of & and

actually contained in the product rules (3.13). we shoula call atention

to an obvious but important aspect. The cochains act on group

elements to produce phases, exponentiated numbers. Unitary operators
are ‘nct observables, only their hermitian exponents are. The parameters
m,n appear always exponentiated also, as i1n (3.9) and In the continuum
Imit fas in (3.19)) they do seem to tend to observables with
classical counterparts. It Is as if the parameters belonged not to the
group but to its algebra Wwe must consequently be prepared to the
fact that the relation between O, and Q IS exponential and, for

facility, compare the results of their respective actions There s no
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obvious correlation between associativity and the property related to
the closedness of €, the Jacobi identity (222) for the Poisson
bracket. Associativity is a much more general condition, a property of
every group while Jacobi identity, typically an integrability condition,
appears (exponentiated, as a property of the generators) only for Lie
groups. Presumably this general property gets somehow weakened In
the limiting process. An analogy may however help to shed some light
on this point. There is a strong similarity of the formalism above
WIth the Dasic structure of gauge theories: G4 recalls the gauge

potential A, § the covariant derivative D, %, the fiela strength F =
DA. Or, it happens that in gauge theories the closedness of F, DF = 0
(the Bianchi identity) is precisely equivalent to the Jacopi 1dentity

for the gauge group generators [14). We mignt conjecture that the
closedness of X, 1S somenow related to that of

it 1s Instructive to consider on the parameter space of the

. .m nr
humbers m, n, r, etc column vectors Xms = 'ﬁ(n ), Xes = \/%(5) etc,

with them as components. The row vectors X'mn, X'rs will behave as
dual vectors by simple scalar product. Then, with the usual product of
rows, matrices and columns,

O (K; Smn, Srs) * X IMs=nr) = XTon Q X, (5.11)



where £ 15 the symplectic matrix of chapter 2 On the torcidal grid
formed by the parameters O (k, Sma. Srs) 1S proportional t the
"area” defined by the vectors (m,n) and (r,s),as was the case for Q
In (2.21). We may also check that \s . Ok, IS closed and lakes 2

column vector Xgm INt0 Xoam.
& 1. W (- ry .
[5py QIS = FCam(T) - (s12)

This duality corresponds to relation (2.10) established by  between

vectors and forms. Furthermore, putting together the considerations on
the continuum limit at the end of paragraph 3 and equations (2.14-
15), we see that X2 plays on the lattice torus a role quite

analogous to that of the symplectic form: from (3.21), we see that in
the continuum limit €% gives (minus) half the value (2.15) of €

applied to the corresponding vectors.
%2 (K; S, Sco) = - %laa-coh - %Q(J»,J“).

Using (423) we find that
(Asy, , ;) (k; Srs, Spa) = 0 (5.13)

for all Sm, Srsand Spg, Stating the tnvariance of &, under ail

transformations of the Wey) group. In this sense, all of them are
“canonical transformations”. Another analogy, trivial to odtain but
interesting, comes from the very definition of Otz It vanishes when
applied to two commuting elements, just as 2 vanishes when applied

33



to two flelds corresponding to dynamical functions whose Poisson
bracket vanishes. Such two fields are tangent to the same Lagrange
manifold On QPS, this corresponds to subsets of intercommuting

operators. Finally, from (5.8), we see that the role of the canonical
form G is played by the cochain 0.

Points in QPS can be attamned from each other by successive
applications of the operators U and V. Operators Smpn will meanwhile
acquire phases. This is better seen if we start with some state | v >
and look such successive transformations as forming patns on QPS.
Each time U is applied the state is shifted and each time V is
applied the ket gains a phase. Tms phase depends on the state
arrived at. In Fig1(a), operator V acts at "k+1°, but its inverse V!
acts at "k". As a3 consequence of this point dependence, closed loops
give 3 net result phase. Going around the loop in Fig 1(a), for example,
will give to Iv,> a phase €%= (2n/N). This €% is the unil phase: it

comes each time a unit cell in QPS is surrounded.

-1 U’ uz_.-
U r" | -1
- Hv
i 0 L ixa
k yke ko kb) ke2 T2
(o) (b) (c)

Fig.) The simplest Joops on QPS: (a) an elementary loop; (b) &
doubdle loop with negetive senss; (c) s triple 1000. Each
enclcsed elementary cel contridutss o phese an 10 Spo-
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The sum of phases IS algebraic. going around the unit 100p in the
inverse sense changes its Sign In our convention, positive Ssign IS
given by counterclockwise motion. So, the path of Fig 1(b)
contributes a phase (-2€2), that of Figl{c) a pnase (-3¢2), etc

Closed loops may give vanishing phases. This is trivial for the two

1

‘*’-"->

._‘ k'ﬂl’z

Fiy2 & loop Qiving 8 vanishing con-
INbutioh 10 the prase oF S5,

closed pa:hs generated by UN and WM, which simply close around the
'torus. but Lhere are non-trivial cases: in Fig2, the contributions from
the two umit loops cancel each other. As C%; measures just (half) the
areas in units of € there 1S at work here a version of Gauss

theorem: the total (algebraic) area circunvented by a loop is obtained
by just following the loop step by step, at each step summing the
corresponaing O4g, as given by (5.2,3). As exnibited in Fig3, the product
Smn Srs 15 equivalent to taking Smq then S,y only when ©Obz(K; S,

Srs) =0.The closed paths of Figs.i and 2 are projections of paths in
the space of the operators Sm, where the paths are, as arule, open. A
kind of non-integrability appears: starting from a given point, the
phase at another point will depend on the path, unless the “flux™ of
a2 through the surface defined by any two paths 1s zero. In this
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}Ca(I;S..S")
e o, (ke x8,,)
S
Sl
L S WY s
X e

sense Ok 1S 3 non-integravle phase like those of gauge iheories [15)
ano Ol would act as the corresponding “curvature™. AS already

mentioned, there are many aspects In common with gauge theories In
the present formalism, but we shall not discuss them here. Neither
shall we considger the possible relation of O to a generalized [16}

Berry's phase {17, a subject which deserves further Study.

As an example, the commutator V-1U-IVU of Figl(a) produces
In operator space (see Fig4) an arc which falls to close precisely by
the phase €2 Such trajectories In operator space only close when the
unit cell 1s surrounced a2 multiple of N times, In wnich case it
becomes a closed spwral The role of Oy, similar to a curvature on
QPS, 1S different here: as 1t measures Such defects in ihe operator
space, It 1s reminiscent of tnat of torsion In differential geometry.



n+i

m ( v (m,n)
N Al v

Fig. 4 An elementary loop in paremster spacs corresponds o en
open trajectory in operstor specs.

In the continuum limit we must consider “large” regions of
sizes m€ and né€ tending to limits a and b and the operators (now

putting K back into our expressions) UM - e®/f ang yn o /A Tpe
n ¢ 1

phase Olz(k; UM, vn) = N0 = = mn tends to 7 ao, just (haif) the

value of € (aXg bXp). Actually, to examine the continuum limit, as

weil as to get some more Insight on the role of the cocycle Ok 1t

Is convenient to apply the formula giving the Weyl-Wigner transform
W(AB) = (AB)y, of the product of two operators A and B In terms

of their transforms W(A) = A ,(q,p) and W(B) = B,(qp) , which 1S

WAB) = el(h/2)aA 8; - 9A; 2Bg) A (q,0) B0 (5 14)
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The upper indices In a”‘q,aB are reminders: a“q is the derivative with

p
respect to q but which applies only on A ,(qp); a°n derives with

respect to p but only acts on B,(qp), etc. The Poisson bracket

always comes up at first order in h:

WIAB) = A ,(Q,p)Byla,p) - (R/20){A (q,p), Bylap) )} +... (5.15)

but the Weyl-Wigner transformed functions A ,(qp) and B,(q,p) may
still exhibit adaitional powers of h, depending on their explicit form
in terms of q and p. In fact, only in the strict classical (i = 0)
Iimit will such functions reduce to their classical counterparts.
Getting the Poisson bracket from a quantum commutator is only
achleved when we pass from a non-commutative algebra to a

commutative one at the price of ignoring the cell structure of
quantum phase space. Only then (i/R)A, Bl -» (A, By} (18] To

clarify this point, let us consider the operators A = Sgp = eli/h)eaq
and B =Spp = e(WVA)bP  From the previous formalism, their product
will be

AB=¢!02AB) g . oi0(AB) o (i/R)Xaq+bp) (5.16)

The Weyl-Wigner transform of the right-hand side is

W(AB)= ¢ 10:2(A,8) e (i/h)Xag+dp) , (5.17)



where now q and p behave like classical variables.On the other hand,
(5.14) will say that

WA B) = e!(F2)[0A 38) - A 2B} [ eCish) (ag+bp) ] (5.18)

we see that in some way O sums up all the intricate action of

the exponentlaied operator. The present example is specially simple
but reflects much of the fundamental structure of the continuum
.quantum phase space, as in this case S 1S a typical base element.
The Potsson bracket is constant and it is possible to write down the
exact resuit,

W(AB) = e (/208 o (i/h) (aq+Dp), (5.19)
so that

®,(A,B) =-(1/20){A,B). (5.20)

An analogous result would come 1f we took operators of type (3.21).
In such cases related to the harmonic oscillator, whose semiclassical
aproximation is exact, Okp gwes'tne classical result up to a factor
h-1. Tmis 1s indeed the halimark of the quantum structure of phase
space embodied in O, which i1s not at all a classical object. It is
expressed above in terms of the Poisson bracket, but of Weyl-wigner
representatives of quantum objects. in this continuum case, O
heralds the non-commutativity of the basic pair q - p. In the general
case, it highlights the fundamental cellular structure of QPS.
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6. Summing up

Every feature of Classical Mechanics stems from some quantum
mechanical feature. Let us try to review the analogies and differences
between the cocycle O and the symplectic form. To begin with, Q

is globally defined on the classical state space and 0 (K; Sea, Srs) IS

independent of the state label k. The first is invariant under canonical
transformations, the second under all unitary transformations. Both
measure areas defined by vectors in the corresponding spaces. The
closeaness of € guarantees the Jacobt identity for the Poisson

brackets, that of O, the projective character of the Weyl

representation. Classical Lagrange manifolds are on QPS replaced Dby
subsets of Intercommuting unitary operators. The symplectic form 1S a
linear operator, which we could not expect of 0(2. Finally, 0(2 tends
to the symplectic form Q when, in the continuum limit, the non-
commutativity of dynamical variables is relaxed. The cocycle O is

that feature of guantum mechanics on which the symplectic structure
of classical mechanics casts 1ts roots.
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