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then with (2.27) in view, the gauge condition (2.1) reduces to the following

bY(Fe ), =0 (2.28)
From (2.14) one can see that
b = — Eim KE™[e" + (D), (2.29)
Page7 -Lines1to 8
Delete from lines 1to8 up to: ... for brevity).
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where & is a unit vector collinear to the vector
B = b — e®(Eim K'K™) (2.30)
So from (2.29) in the limiting case x << k one can reduce (2.28) to
e"(Fe 1), =0 (2.31)

Having in mind that boundary conditions must be put on F at the surface z = 0 one may conclude
the following. If the function F' has the form

F=®(2)e'r, (2.32)

where ® (z) is some function of z only, (see also Eq.2.40) then the function F does satisfy the
equation (2.31).
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We would like to find a solution to (2.16) in the form ...

Page 8 - Last line of Table
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ABSTRACT

Propagation of un clectromagnetic wave in the ficld of gravitational waves is considered.
Attention is given to the principal difference between the electromagnetic wave propagation in the
field of random gravitational waves and the clectromagnetic wave propagation in a medium with
a randomly-inhomogeneous refraction index. It is shown that in the case of the graviation wave
ficld the phase shift of an electromagnetic wave does not increase with distance. The capability of

space radio interferometry 10 detect relic gravitational waves as well as gravitational wave bursts
of non cosmological origin are analyzed.
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1. INTRODUCTION

One of the main tasks of observational cosmology is to get information about possible |
existence in space of primordial gravitational waves (PGWSs) generated at the very first instants of
the Universe. Since PGWs are exiremely weakly interacting with the matter they carry direct data
about the birth of the Universe.

Much has been written about the problem of PGW detection (sce e.g. [1-16]. Most
informative — with respect of PGW detection — are the processes of their interaction with eleciro-
magnetic radiation. This paper is devoted 1o a thorough analysis of these processes and 10 assessing
a possibility to detect PGWs with VLBI space radio interferometry.

The paper discusses how gravitational waves affect the propagation of electromagnetic
radiation from remote astrophysical sources and from active generators in the Solar sysiem.

Section 2 presents the exact solution of Maxwell equations in the field of the monochro-
matic flat gravitational wave for the first order of its amptitude and for the arbitrary ration of
clecromagnetic-to-gravitional wave frequencies. To compare this problem with that of electro-
magnetic wave propagation in a medium whose refraction index differs from unity, an effective
refraction index is introduced which corresponds to the gravitational wave.

The resulis derived in Section 2 are used in Section 3 10 calculate the dispersion and the
structure function of electromagnetc radiation phase shift in a random field of gravitational waves.
The influence of 1he specific features of gravitational waves (their transversity, their propagation
velocity equal 1o the velocity of light) on the propagation of the electromagnetic waves have been
analyzed. The comparison is made with the task of electromagnetic wave propagation in randomly
ithomogeneous media | 17,18]. It is shown why for stochastic gravitational waves the distance 1o
the source does not enler she solution of the problem.

Section 4 gives restrictions on the PGW spectrum derived from the future observations
with the help of space radio interferometry.

Section 5 compares the capabilities of radio interferometry and pulsar timing [10, 19--30]
to detect PGWs; PGW wavelenpth ranges are presented where this or that method appeurs 1o be
most efficient.

Section 6 briefly discusses some capabilitics of space radio interferometry in detecting
individua! gravitational-wave bursts of astrophysical (rather than cosmological) origin. A new
effect called “phase memory™ is described.

In closing (Section 7) the results obtained are summarized and discussed from the view-
paint of future space projects.

. EXACTSOLUTIONOF MAXWELL EQUATIONIN A GRAVITATIONAL WAVE

For an arbitrary gravitatonal wave, with no sources and with the gauge condition chosen
as
AL=0, a2n

where A' is the 4—vector of the electromagnetic field potential, and " is the covariant derivative
(Latin letter indices run the values 0, 1,2,3) Maxwell equations reduce to the following wave
equations |31,321

o* AL, =0 ,k=0,1,2,3. (2.2)

The metric tensor for a weak field is written as
[ T i, gi* = 1’1'* - hlt + 23

where . = diag(1,—1,—1,-1). Further to the first order in hyg the indices are raised and
fowered using a non-perturbed metric tensor g,;.. Then it follows from (2.2) that

oA+ LA™ =0, (2.4
where O = _I-"%T + A, A is a conventional Laplacian, the operator i,’,,, is determined as
- i O ; ; &
L= 8t ooy ¢ (W + W — o {25)

Eq.(2.5) was derived taking into account the gravitational wave gauge choice:
WE=hi=0 (2.6)
and that h,; satisfies the wave equation:

Dhy =0 . (2.1

Eqy.{2.4) is easily generalized for the case when electromagnetic and gravitational wave
interaction occurs in & homogencous medium with the refraction index different from 1. To do that,
it is sufficient that the light velocity in vacuum, ¢, in the O be substituted with the phase velocity
of the electromagnetic wave in a homogencous medium, ¢4. Further on, the operator O is always
¢ither an operator with ¢4 = ¢ if vacuum is meant, or an operator with ¢y # c if it is the case witha
homogencous medium. Below we assume ¢ = 1. -

We consider the propagation of a flat monochromatic clectromagnetic wave in the field
of a Alat menochromatic gravitational wave:

hE = h et explipg) (2.8)
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Here h and p, are the amplivwde and phase of the gravitional wave, €} is the unit tensor onhogonal
10 the zero wave vector of the gravitational wave:

k=2 xr'=0, € x"=0. (29

The nonperturbed electromagnetic wave is written as:

(L]
A7 = Age exp(ip,) , (210

where Ap and . are the amplitude and phase of the wave, ¢/ is the unit space-like vector orthogonal
1o the elctromagnetic wave vector k*

k, = 8p /01", €'k, =0 (211
L . )
The non-perturbed vector-potential 4 7 meets the wave equation Oy A4 / =0,
In this case the operator L7, reduces to 2 matrix. Note that:
LA™ = —Aoh¥ explilp, + po)] (2.12)

and Eq.{2.4) becomes
D4 A = Aoh¥ expli(p, + )] (2.13)

where

V= —(Emn FPE + (€ k" (£0x™) + (€] ") kma™) — 8/ (Ema k™). (214)

The solution of (2.13) may be presented as:

A = Age™ (el + FV) (2.1%)

Here the scalar function F* meets the equation

—2|'k“'g§+D.F'=he"'. (2 16)

On the other hand, a perturbed electromagnetic wave may be written as follows:
A = A1+ 8AJA) expli( oo+ bp ) 1 e + By = Age™ | (1+ibp, + 8AJA)E + 5&/| (2.1T)

where §4/ A is a fractional variation in the amplitude, 8¢, is a phase shift, while e/ represents the
time delay the deflection and rotation of the polarization vecwor of the clectromagnetic wave. The
comparison of (2.17) with (2.1%) yiclds the following expressions for the variation in the amplilude

b

6A /A, phase shift by, polarization vector rotation & €,. the angular deflection 68, and delay 5t
of the wave,

5A/A = —(e')ReF, (2 18)

b, = ~(e,p")ImF, (219)

§€,= —(a,bt")ReF, (2200
..,,5:,_59,=‘—"’k’filaef-‘ (221

Here of is the unit vector orthogonal to &/ and e’ k is the 3-vector modulus, ie. k = [k®|. Greek
indices take on the values 1,2, 3. 11 should be mentioned that the linear combination of the wave
delay and deflection in (2.21) does not depend on how the reference system is chosen whereas each
of the quantities &¢, and 68, themselves depends on that choice.

To calculate scalar products that enter (2.16) 1o (2.21) we present 4—vectors &/ and &7 in
the following form:

K = 8Lk° + 8 (cos @ pi +sin - pT)k (222)
n! = 8hr° + 8i(cos @ - np + sin @ - nY)x (223)
Here # is the angle the 3—veciors k and & form, & is the modulus of the 3-vector . x = = pjj isthe
unil vector aligned along x®, p? is the unit veclor perpendicular 1o * and respectively - nﬁ' - isthe
unit vector aligned slong k™ and nf is the unit vector perpendicular to k™. The above presentation

with {2.22) and (2.23) permits the angular §—~dependence of (2.18) 10 (2.21) 10 be straightforwardly
indentified. As follows from (2.14)

(Ve;) = k2 sin? B(€,p p7p7) + k(| — cOS B)Y(Ep ") (2.29)
(Ma;) = —krsin? 0( Eap p*0”) (ean?)+

+kn(l — cos0)(€qap ee?) — knsin? B(Eap poePi(an2)  (229)

(V) [k = knsin® (€. 027 ) (ean) . (2.26)

The Maxwell equations (2.2) are derived for the case when the gange condition (2.1} is
met, thus the solution (2.15) should satisfy (2.1). For that purpose the coordinate transformation is
required;

™= 1"+ hAXZE, (227
here, with (2.15) in view, the gauge condition (2.1) reduces 1o the following condition on the trans-
formation matrix A}:

hATkne' = ib"F'a — (K*b) F | (2.28)

the second condition on AP results from the requirement that Eq.(2.13) be invariant against (2.27)
transformation, since

"

£l 7%
o= —2alf L a2 g (2 29)
d ¥ ci o™ gz ' Jg'm
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the additional condition on A7, is as follows:

]

ATE ke + (l - 1) APk = 0 (2.30)
¢

choosing the 0.2 along the 3-vector k and the OX along the & vector permits (2.29} and (2.30) to
be rewritten as:

h(ko A} + k3 A7) = ib"Fo — (knb™)} F, (230
Ag—(s—+c¢)A3fA§=0, (230
]

We now employ a new coordinate system (writing new variables however without primes
for brevity). We would like to find a solution to (2.16) in the form which would make it possible
to present the solution of the problem of electromagnetic wave propagation in the random field of
gravitational waves in the form identical to the solution of the problem of efectromaghetic wave
propagation in the medium with random perturbations of the refraction index.

It will help s 1o reveal a cardinal difference between the solution pattems of the firstand |

second problems and make important conclusions.

We first consider the problem of electromagnetic wave propagation in a medium with the
perturbed refraction index. We assume that the refraction index g of the medium is homogeneous
with minor perturbations added as a lat monochromatic wave

&n® = |En"jer”, (2.33)

where ¢” = vgw —£F, j6n°| is the perurbation amplitude, vy — is its phase velocity, w - its frequency
and £ - is the wave vector of the perturbation.

The wave equation for an EM wave in the medium is written as {17, 18]

104
2

»’

e, +AA =0 (2.39)

For the first order of |8x*| we get [17, 18)

LA
DA’ = 28n TS (2.35)
The solution of {2.35) may be written as:
A= Aye™ (el + F7e)) (2 .36)

7

and F~ in this case meets the following equation:

_2.‘k‘%§; + D F" = 2|6n"]e'*" | (231

which reduces to (2.16) when 2]6n*| i substituted with A. This permits the effective refraction
index ngw = | + &ngw to be introduced which corresponds to a gravitational wave where

[
bngw = CT%d (Vej)e'® . (2 .38)

In the case x < k and it is this case that is most interesting, it follows from (2.38)

1
Srgw = S he™ sin fcos 2, (2.39)

where p is the polarization angle between the principal axis of the polarization tensor €, and
the k vector projection onto the plane perpendicular to the £ vector. Thart gravitional waves are
transverse manifests itself in the fact that the refraction index depends on # and becomes zero at
8 = 0 when k and £ are parallel.

We will now try and get a solution for with Eqs.(2.16) and (2.37), each of which can be
reduced 10 the other with the simple substitution of variables as has been shown above.

The solution is written as:
F = hexp {i‘fc [a,: ~ VT =T (cos px + sin gy | + ikz}f(z) (2 40)

Here we use notations in the following sense:

Symbol or
Designation In the medium In the gravitational wave

F P F

[ 2|6h" h

3 2= k= |&} = «®
e ve/cs = vyhg 1/ep = hg

u (EE)/kE (Eoi’)fkn=cos€

cos ¢ (€8} fer/T — 2

=
xy /1 -t




Substitnting (2.40) into (2.16) or {2.37) yields 1he following condition for the Function
f(2) to be found:

‘i_{+ngf=e--'°- (241
where
Qo = /(k + ki) — R2(1 - u?) (2 42)
and
Q=k+ipu. (2 43)

The solution of Eq.(2.16) or Eq.(2.37), taking account of (2.40) and (2.41) and meeting
the boundary conditions _
ar

II-O = —a‘;I‘_o =v, (2 44)
becomes
F Le“' 1 - ei(ﬁ—(h): 1— ei(ﬁ#ﬂ.)z
IO [T -8 | meea | (243)

where @ = o, for gravitational waves or g = p* for the inhomogencous medium.

Generalizing the solution (2.45) for the case when A is a slowly varying function of z

gives
w [} _ ¥ dfl-Gg)e _} W fleflo)x
Fo.f h{z) h(O)e’ 4 DLz} - K O)e (2.46)
2y £ -2 2+ 02
The condition of slow A variation is the lollowing inequality
j‘:
—— l. 24
'(n "1, )hl < (241
In ancther limiting case when
'}'lr
= 1 24
'(n - Q,)hl > (248

there is a resonance in the solutions of Eqs.(2.16) and (2.37). We denote the characteristic distance
by z, which is

z =min {z, A/} .} . (2.49)
Then the resonance condition can be rewritten as:
[ - Slylz. < 1 (250

or, as follows from (2.42) and (2.43), as

3 . Q + 1),
B - (1 < 2 51
=B gy "*)l 2krd, (230

Y

In the limiting case & < k wehave (y ~ k+&iy, 50 that £1-Qy ~ i(p—ir;),f!+no [
2 k, here the solution of (2.46) far from resonance and the resonance condition (2.5() are simplificd

and become, respectively: . .
e h(z) — h(0)e*ls-"e

F"_‘ﬁ-;; i)*-p. (252)
[ — oy € (m2)7" (253

When the resonance condition (2.50) is met function F grows linearly with the distance
the clectromagnetic wave passes. This ums out 10 be exiremely important when the problem of
elecromagnetic wave passage in a random Feld of perturbations (see Section 3) is solved

7 e’ PP - - .o
F’:——z—kh(())z. al Uy —(K2,)" < p< By +(R2) (2 .54)

For further considerations it is convenient 10 introduce the fotlowing function:

e hia)fhioy
¢!(z,2)={_ : a zz, % | (2 55)
iz, at gz, <1
Then for both limiting cases (2.47) and (2.48) the function can be writfen as:
e
F=ﬁ-h(0)¢v[i(u—ﬁ4).zl. (2 56)

Further Jet us consider the effect of relic gravitional waves on the propagation of elec-
iromagnetic tadiation from distant sources with large red shifis Z,. With due account taken of
the adiabatic damping of gravitational waves caused by Universe expansion, the amplitude of the
gravitational wave is a slowly varying function of the distance z the clectromagnetic wave passes.

When the effect of the primordial gravitational waves on an clectromagnetic wave is
analyzed it is convenient to turn to conformal lime 7, dn = dt /o where a is the scale {actor and 1o
employ 4 wave equation in the curved space time |32] which is the generalization of Eqs.(2.2):

gikA{ﬁk +RIA"=0, (257

where R is the Ricei tensor. The second term in (2.57) can be ncglecicd ifk/H < Yande/H €
1. where H is the Hubble constant; (here and on the point means n—derivative). In fact for a
2e€0 approximation gravitational wave amplitude this term is of 1he order of H? A., whereas the
term responsible for the adiabatic damping of electromagnetic waves for the zero-approximation
gravitational wave amplitude is of the order of HxAg > H?®Ao. The first-order correction, in
terms of the gravitational wave amplitude, to the Ricci tensor is zero

SRL =0 (2.58)

10
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It follows from (2.58) that
h;:h.,“-aﬂez ‘ (259

Here ho and ay is the wave amplitude and the scale factor for today. As x/H 5 | the behaviour
of gravitational waves differs from the adiabatic law, see |15, 33]. Substituting h} from (2.59) into
(2.57) and

A = fa? (2 .60

and using instead of (2.3) the metric
g = a’(mu + ao/a - hy €ix) (2 61)
g.& - ”az(nm _ ﬂ:ﬂ ko ™) (2 62)

(indices in the case of the vector i/ and the tensor G{ are raised and lowered with the help of tensor
n}), we get instead of (2.4)
DY+ 2 Eim=0 (2 63)
a

where D = — g’,— + A and L, is given by (2.5) with the quantity hg €' instead of A*%.

The solution of (2.63) is given by (2.56) if A(0) is substituied with hy{1 + Z,) and
h(z) fR{O) with (1 + Z,)""

tdp. = 1l + BAJA = (1 + Z,)8now k¥l a(p — 1), 2] (2.64)
3. PROPAGATION OF AN ELECTROMAGNETIC WAVE IN A RANDOM FIELD
OF GRAVITATIONAL WAVES AND COMPARISON WITH THE CASE OF SPA-
TIAL AND TEMPORAL FLUCTUATIONS OF THE MEDIUM REFRACTION
INDEX
In a random hield of gravitational waves (6.} = 0. Here and below { ) denotes the
averaging over the random ensemble of gravitational waves. The correlition funciion for the non-
polirized PGW noise is written as
= T pe oy Sy gt 3 g [T ds
(70T = (Bpdt, DBUET)) = = (4 20T HAR | 5 pl)-
| .
cexplin(n—n' —z— z')lf dp(l — pH) P lelp - ), 2f-
-1

2w
I R{p D,),z'l/ dyexpl —iny/1 — p? A pcos ¢} (n
(]

Here the asterisk stands for complex conjugacy.

Ap=\/(:|:— )+ (y -y, r.=2aj7

I

o “:L_..Mw R ki . (O B IR N RN | SWETE RS W AL TR i

where 1 is the duration of observation; as the litersure on pulsar timing caused by cosmological
pravitational waves often mentions, (see [ 103}, this limitation on low frequencies is associated with
the fact that the observation time is non-sufficient for a wave with x < . to undergo at least
one oscillation, thus their effect cannot be distinguished from the systematic variation of any task
parameters. As a result, the low frequency contribution 10 mean-square quantities is zero. The
quantity ¢(x) thut enters (3.1) is the spectrum of gravitational wave background at the present
moment, determined as:

dr 1 (3H2

-1
— 4 4 2 ;
¢ x) B‘.'IG) " (lho|" )dm (32)

x 3G

The density of gravitational wave background is expressed in terms of ¢( x) as
dr
Qow = eow fEa = ['ﬁ(n)T

where £, = 3H?/87G is the critical density at which the dimensionless parameter of the mean
density {2 = |1t follows from (3.2) that

{thol?) = % $lr) fut a3

The retation (3.3) is 1aken into account in (3.1). From (3.1) for the camelation function we get the
squared dispersion of the phase fluctuation puttingy’ =z =1,y = ¢ and 2 = 2"

g =T, = %(nz.)zuzk’f ‘i—'; d(x}H, (1.4)

where .
I = f1 [l wl — B4), 21| gl (3.5)
Here g{p) = (1 — p2)?.

Before the integral (3.5) is tuken let us estimate the contribution from the angular range
near the resonance (see (2.50). As lollows from (2.54) and (2.55)

o 2 [l 2 - diq
a2 glp)du~2z; qL i'(J':z.) + 1/6;1?
b =iy

U‘—("-l-"'

. (nz.r’] =
By
&g

=2q| ta/my+ 133 it (3.6)
u=iy dut laas,

It is evident from (3.6) why the factor of distance lacks in the dispersion relation for
the case of random gravitational waves. As Uy = 1 for the laner then the coefficient of 2, in
{3.6) is proportional 0 gluz. and gl =~ (0 — p?)? [, = O because of the gravitational wave
ransversity. Therelore, in this case, the contribution of resonance wives 10 the squared dispersion

12



is inversely rather than directly proportional to the distance the EM wave passes. This is contrary
10 the situation with randomly inhomogencous media for which vy ~ ¢ and g0 # 0.

The same conclusion can be made if a random ficld of gravitational waves is considercd
as a superposition of wave packets with finite cross—sections rather than flit waves. Presented in
this way the above mentioned specifical features of gravitationzl waves manifest themselves as
inevitable spread of wave packets in the dizrection perpendicular to that of their propagation.

It is interesting 10 note that in the case when the phase velocity of the clectromagnetic
wave in plasma exceeds the light velocity (g = ¢/cy < 1), the distance facior does exist, but the
effect in this casc is very weak. Indeed,

g ~ 1] ~ wl /&* (3N

":""'" , Wy 18 the plasma frequency, n = m( 1+ Z,)? is the number density of electrons.

Assuming that the maiter density in the Universe is critical (€ = 1) we have

2 _
where Woe =

wh ~5-10°(1+ Z,)°H,

and

2
[0y — 1] ~ 10~ (———It'm) (1+2,)2 (3 8).

Obviously, (gl,.s,) '/ = |i4 — 1. Thus to achieve the input from the distance factor (we assume
that the distance is equal 10 Hubble’s distance) the lenpth of the gravitational wave should satisfy
the inequality

Lo\
A < Ru(vg— 12 w2 1074 (—-—-‘-—) (1+2)%cm
Y cm
which shows that the effect is extremely weak,

In principle, randem squared phase shifi could be proportional 10 the distance from the
source in the quadratic-in-amplitude approximation.

This effect is also extremely weak because of the smaliness of gravitational wave ampli-
1de.

Indeed, for the quadratic—in--amplitude phase increase that depends on the distance 10
exceed the phase increasc linear in amplitude the condition (1 + Z,) h\/R/X, > 1 should be
fulfilled; in this case the dimensionless density of gravitational waves Qcw (<) should meet the
inequality {even for R = Ry):

Qowir) > (Ter)(1 + 2y
. Since for the wavelength range we are interested in the Factor (T <) 2 104 whereas the

factor ( 1+ 2,)"* 2 4 102 we then see that the quadratic cffect is important only for inadmissihly
high S3iw .

i3

Thus below we assume By = | and neglect the contribution from resonant flat waves. In
that case the integral (3.5) is easily taken and the dispersion (3.4) is

cz=4[(!+z,)’+!]H’2sz ::—:d)(n) 39

In practice, the value to be measured is the structure function determined as |17, 18]
DU, 7t 7') = (1602, P ~ 8p(t'.F)) =
= ol (t, P + (1, 7) = 2ReT (1, 7 U, 7") (1.10)

We now consider a space radio interferometer where the base is perpendicular to the
direction toward the source while phase measurements are strictly synchronized, thatis, £ = ', {y =
7).

With the help of (3.10) we calculate the transverse structure funciion.

D{(AP) = D(t, 7,7+ AP, (3.1
where {A g 7} = 0. We get from (3.3), (3.6}, (3.10) and (3.)1):

o0 ¥
DA = %(l+ z.)’H’s’[ d”—_f,(‘) [ du( 1+ w)? [1 _ Zeastaz(l ~u))
. -1

1+ 2,

1
+(—ﬁ—z’—)2-]l‘,, {3'2)

where

¥
f,=/ [| — cos(xAp/T — 42 cos¢)]d\b (313)

The inegral 4 reduces to the zero Bessel function Ty (o) [34]
Iy ~ 27 Iy{a) : (3.14)

where o = kA o/l — p? = 2m(L/A) /1 — u? here L — the basc length of the interferometer.
[n asympitotical relations for long waves when a < |

b
1..,:5;’:,1“-“’). (3.15)
then in the short-wave limit when o 33> 1 we get
Ty 2x (316)

In the asymptotical relations (3.15) and (3.16) the integral over 4 is easily taken, the result

being:
, 6 22 gyl 1 i ¢(N)
D(AGY = D) ~ -k LPH (1 + 2,) + 1) de Gix), 3N
5 .. w3
where | L
G(x) x{ " e (3 18)

The next section will deal with the numerical estimates of the structure function under
virious assumptions about the specirum of cosmological gravitational waves.
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4, STRUCTURE FUNCTION OF PHASE FLUCTUATIONS; LIMITATIONS ON
THE DENSITY OF COSMOLOGICAL GRAVITATIONAL WAVES

Comparison of the structure function (3.17) with the future radioimerferometry data
makes it possible to derive limitations on the energy density of primordial gravitational waves at an
arbitrary frequency « over a special range Ax ~ & and 10 do it independenty of the assumptions
about the spectrum of cosmological gravitational waves. And indeed it is evident from (3.5) and
(3.17) that the contribution 10 the structure function from waves with Ax ~ x 15 equal 1o

kK H? 2 L Imfr<n L
Din L) = —— {(1+ 2) +|]Qc.w(ﬂ){8&__2' x> L] (4 h

I the experiment provides a certain sensitivity in determining the structure function for
phase shifi (we denote it as §) then — even if we have not got positive results in primordial gravi-
tational waves measurcments — we can, with the help of (4.1), obtain the following limitations on

Qcw (x)
Qowin) <

52 sl {L’, 28jr< m L) 42

ETHI[(1+ 23t + 11 1 x¥/8, x> L~

A maximally severe limitation on Qgw (&) is reached for wavelengths with the period
of the onder of observation time and is written as:

2 2
Q. ow =~ 28° (2:1) (%) [(1-2)2+1]" =

-2 2 -2 2 ~1
~ el T e L (+Z)+1
=2-10776 (lyear) (Icm) (IAU.) [ 2 ] 43

where Ty - -} H~! 2 20 billion years — is the Hubble time.

For an arbitrarily-long gravitational wave, ¢lectromagnetic wave phase radiointerferom-
ctry yiclds the lolfowing limitations on $k;w ()

8 N/ a N [O+rz-mr+1]7 o, VT
n““’(")((s-m—ﬁ) (Icm)[ ) ] (IAU‘) '

(Fw)’, 2R3L
. z
(i) . »s30

(4 4)

(sec Fig.1 where limitations on {lgw are given as a function of wavelength, and Fig.2 with the
same as a function of baselines). .

The above described limitations on gw may be vatid for some cosmological models
predicting a specific 1ype of pravitational wave spectrum. Thus models based on inflation and
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phase transitions in the carly Universe, within the wavelength range we are interested in, predict a
flat spectrum of PGWs. Here (35-40)

(R) 22 Qy(tpeftinr )2 (4.5)

where £, is the dimensioniess density of relic radiation L is 1the time from the beginning of Uni-
verse expansion till the beginning of its inflation. This time is Ly = L in quamum-gravitaional
inflation models and t, ~ (10 = 104 M in the models of inflation due 10 phase transitions at the
Grand-Unification enerpy. To measure such a RGW spectrum with a space radio interferometer
the accuracy of phase determination should be of the order of

t,, [(1+2p2+11'7 7 + e V7 L
§ B : L
ég_tm[ [ 2 ] (lycar)(lcm) (IAU) (48

when Z, ~ 3 and tpe ftinr = 2 - 101 the required 6 is

-1
-3 T Az L
3. 10~ s
b=3-10 (lycnr)(lcm) (IA‘U‘) 4.7y

which seems quite realistic.

Models with ring cosmological strings predict the following for the range of interest:
Qew ~ 1) ~% [41-47] therefore in this case the accuracy with which the phase should be deter-

mined is wrilten as:
A\ L
~ 3,101 T L 48
§=3-10 (char)(lcm) (IAU) 48

In fact real-world requirements on 5 should be an order of magnitude more stringent for
the measurements 10 ensure the observed effect.

s. SPACE RADIOINTERFEROMETRY AND PULSAR TIMING: COMPARISON
OF THEIR CAPABILITIES FOR ESTIMATING LIMITATIONS ON RELIC
GRAVITATIONAL WAVES

This section had o be included in the paper since the data on pulsir timing may currently
yield the most siringent limitations on relic gravitational waves in the wavelength range of the order
1 10 10 light years (as to the 10 to 10* Mpe range the most stringent limitations can be obtzined
from the isotropy of relic (background) radiation, see e.g. {36, 48-54]),

The aim of the comparison made below is to determine the range of wave lengths within
which space radiointerferometry may compete with, or even be betier, as to its capabilities, than
pulsar timing. Fairly rough estimates will do for such an analysis.
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In pulsar timing the accutacy with which wave amplitudes hg are measured depends on
the following quantities: At is the inevitable systems error in determining the time of amival of
radio pulses and 7pr is the observation time. The quantity At is now determined by the accuracy
of the Solar sysiem | 28] and for RSR 1937 + 21, is of the order of \emihs of a mircrosecond. The
quantity 1y is of the order of 10 years. Therefore, the value measured is of the order of:

flnNAt/T. (51)

For the length of the gravitational wave ), this imposes the following limitation on Qgw

2 2
A
Qow rr S (—-—RH) (——t) for X, & w1 (52

Ay T

The accuracy of hg measurements in terms of phase shift in the radiointerferometer (sce
Sections 2 and 3} is:

& X
ho_m;‘r for L(A,(TSI (53)
the respective limitations on flgw are
_ R\’ 5 2
awvss (52) (mz) (3) ¢

Comparison of (5.1) with {5.3) or (5.2) with (5.4) shows that Qgw s1/Qcw pr < | when

At af1+2\{ At wr N (e N (L
b<{V+2) -y ~2.10 ( i )(O_Ips)(loycal's) (lcm,) 1AU.
(5%

Thus, at fairly realistic & the space radioinierferometry may compete with pulsar timing.
It is essential to emphasize here that if 1 light year to 14} light years is the wavelength range within
which the most stringent Jimitations can be derived for pulsar timing, the respective wavelength
range for space radiointerferomerer is A, S | light year. In other words, not only could space
interferometry be competitative with pulsar timing, it can also be complementary to the latter for
the other wavelength range.

Another fuctor in favour of radiointerferomerry is the one associated with adiabatic damp-
ing of relic gravitationul waves. For distant sources with large red—shifts the phase shift is deter-
mined by more intense relic gravitational waves ncur the source.

6. ON A POSSIBILITY TO DETECT GRAVITATIONAL WAVE BACKGROUND
AND BURSTS WITH A SPACE RADIOINTERFEROMETER. "MEMORY OF
PHASE"” EFFECT

If smetlites of RADIOASTRO 1ype are used 10 record low-frequency gravitational radi-
ation, with microwave interferometers 1o measure small variations in distance [551, it is possible

17

to achieve a sensitivity similar 1o the optimistic estimates for relic gravitational wave background.
We now estimalte the reguirements which must be imposed on such satellites and imerferometers.
Let the expected value of metric amplilude Auctuations be (k2)'/2 = 1. 10~ in the frequency
range A fow = fow = 10-3 Hz*). Then the requiremenm to the compensation level for non-
gravitational acceleravions of satellites should be relatively milder. These accelerations should not
be higher than

b
: L
20t L)' =3 10707 (lof—r::qz) '(1 AU )'(("5)”1“0‘") (&

If three satellites arc used and two radioinmerferometers between two pairs with acommon
mew-self—oscillator then the requirement 1o the relative stability of the self—oscillator frequency
Awg fwe would not be too stringent either:

-1 1172
Awn 1 o yp20p -uf_ P {ha) )
— 5z ~ 1 —_ T 62
— 55 87 0" o= 107 (6.2)
where g is the fractional differcnce of two distances between two pairs of satellies.

The recorded phase~shift value is relatively large

e V'L hiy 2
Ape = ;L(bo)"’ ~1-10*rad (1 m) (1 A_U') ((13)_,, ) . (6.3)

To compensate for phase fluctuations caused by interplanetary plasma it is necessary that
each radicinterferometer should have two microwave frequencies. Requirements 1o the dynamic
range of the phase measuring device are not 100 severe: about 5 orders of magnitude since for
de = Lcmand L = 1.5 - 13" cm the additional phase shift caused by plasma is of the order of 10
rad [56].

The signal-to-noise ratio is the mosi scrious obstacle if we are to achieve a sensitivity
af the level Ay, =~ 1 - 104 rad. If W is the microwave power of the wave that retrmcd to the

emitting antenna after its retranslation by one of the satellites, then the standard quanium limit of
fluctuations, A psqr. . is as known, equal to [57):

A fo
Bpsqu = L“’;‘-‘—"— (6.4)

For the condition A p, = Ap,g =~ 10~* rad o be fulfilled at [ = 1.5-10"* cm and the ransmitter
power 10% erg/s, antennas aboard the satellites should be of the order of 10* cm in diameter and
the power gain should be 200 dB. The latter requirement can be appreciably reduced, though in this

According o (15}, (h3}'7% is Y2+ W2 if A fow ~ fow. while (h3)'? = (3 + 10) - 10°7,

Jow

according to |38 at fow ~ 10 Hz.
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case two high-stability self-oscillators would be necded for two satellites with 222 ~ (hf}!/7 -
1 - 10-"". There are indications that this level of frequency stability is possible |58]. Note that
the accumulation of dala about phase fluctuation correlation during a long peried of time in two
branches of the radio interferometer will reduce the detection threshold.

Possible use of space radiointerferometry for gmvi(ational wave detection is not restricted
only to cosmological background. Space interferometers can also be used 10 detect individual bursts
gencrated by such astrophysical processes as supemova explosions, by two gravitating bodies pass-
ing each other, eic. It is essential that when a single burst, without memory (h{ —00) = h{ +o0) =
0 (see |59-62] for bursts with memory), is passing through an electromagnetic wave moving 10-
wards us from the source, the wave gains an additional phase shift:

X
Ap.z%'—[h,.dz:%—h,. (x—') , (6 5)

If the emission and retransltation of an eleciromagnetic wave can be provided for a long
time, the above mentioned phase shift will be memorized forever, with which the quantity Ay,
could be measured very accurately, since that accuracy is determined by N ="/, where N is the
number of photons used.

A similar system also operates in a laser—interferometer with mitrors multiply reflecting

a laser beam [13, 63, 64].

In the case of a space radicinterferometer the range of gravilational waves detected with
its help shifis 10 low frequencies. This propeny makes space radiointerferometry a unique way 1o
detect gravitational wive bursts whose duration varics from minutes o days.

7. CONCLUSION

We have shown that the propagation of electromagnetic waves in a sandomn gravitational
wave field considerably differs from electromagnetic wave propagation in randomly inhomoge-
neous media. Their behaviour is specific since gravitational waves are first — transverse, second —
tensorial, thus they are “twice transverse” (the solution includes the factor sin 2 g, rather than merely
sin @, as would be the case for centain veotor transverse fields) and also since the propagation ve-
locity of gravitational waves is exactly equal 10 the light velocity. Due 10 the cumulative effect of
the above factors the squared phase dispersion does not grow with distance to the source of elec-
vomagnetic waves as is the case for randomly inhomogencous media. As was already mennoned
above, however, despite even the above said, space radivinicrferometry will provide non--trivial
limitations on C;w {or it may even lead to relic graviutional wave detection).

Principally new possibilities should also be mentioned of optical interferometry which,
reducing the fength of the wave wsed, results in greater sensitivity of phase measurements in X i /X
by a factor of 1}3.
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FIGURE CAPTIONS

Fig.1 Schematical picture of the dependence of the upper limit for the RGW energy density as a
function of the wave length which could be obtained from the space radio interferometry
(see Eq.(4.4)). Here

(8 N2 N[urzty oL Nt
'(3 10—2) (E) [ 2 (mu) '

Fig.2 The same as Fig.1, but as a function of space radio interferometry baseline (sec Eq.(4.4)),

Here
a. - 8 NN [aszprea) g N
v 3.10-2 lem 2 1A U,
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