Instituto de Fisica Tedrica-Rua Pamplona,145-C.E.P.01405-S30 Paulo-Bresil

BR?OQBOS?

INSTITUTO DE risica Te6RICA

1F7/pP-03/89

CHIRAL SYMMETRY BREAKING IN WDQC- -1

BIFURCATION OF THE FERMIONIC SELF-ENERGY

L. D. Almeida and A. A. Nestzle
In-2situte de Fisics Teorica - Univ., Estadual Paulictis

C. P. 5956, 01405, Saoc Paulo, SP, Brazil

4

ABSTRACT

Ve study Lthe existence of a bifurcation point in Lthe
C:zhvinger -Dycon equation of c+1 dimensional quant um
electrodynamics with N fermions. We find evidence for the
exastence of a critical behavior, such that chirsl symmetry
brearing may occur only for a small number of flaveors. ’



The importance ©f chiral symmetry breaking (xSB) for Lhe
strong anteraction is largely known, and it i1t through \his
mechanicem that the quarks obtain their effective mass. It is alse
expected that thie phenomenon occurs only when the coupling
constant of the theory is larger than & certain critical value,
above which the fermionic se¢lf-energy bifurcates inte a

non=-trivial solutior.

A series of studies of the bifurcaticn of 41he quar)

self -ener ov has been done by Atkinson el al“"’. and here we will

apply some of their ideas to 241 dimensional quantum

electrodynamics (QED.) with N fermions.

QEZD‘ is a super-renormalizable gauge theory, which
mimics some of the main features of QCD;it has a coupling constant
Coz> with dimension of mass, offering a natural scale to which
most of the dynamics can be related; and working in the large N'
limit we can sum setls of diagrams under controlable
approxi mations, ¥ 1ng beyond perturbative results'®’. The
technhiquez cof re s (1-25 will allow us to determune the
existence, or no.« nf a bifurcation point in the Schwinger-Dyson
equatlion of Lthe 1+ mionic self-enercy, in particular we may verify
if chiral symnme’. v breakang occurs for any value of N. If this is
rnot the case Cas will be shown) the use of the large N expansicn

to study 2SB in Ahis theory may nct be consistent.

The mas;less QED. lagrangian density is
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which has a oglobal chiral symmetry W2N), and a mass term mywy

would brea) thais symnetry to UUNDxUCND. The gauge boson propagator
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with o=e’N/8 fixed. The inverse fermionic propagator is

sXp) = - 7, pM 11 + Acpdl ¢+ Spd Céd

where A(pY) ic tLhe wave function renormalization, which is
perturbatli vely ogenerated. and can be neglected in leading order of
1/N. Using the lowest order vertex r¥ » y‘.’ the Schwinger~Dyson gap

equation ©of the fermionic propagator (after angular integration)
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where the variables x=p/a, y=k/a and I(p)=Zf(p)/a were used.



i1 equataen (B3 has & hafurcatacr poeant 3t means Lhat
there 25 & cratical wvalue N(. such Lhat @ neon-travial sclutaon
L0 exasts only when N £ N . According to ref.C1>, to find
nen-trivial small sclutljonts of the non-linear eguation (5), we
sludy the laineariczed equataion, i.e., the funclaicnal derivative of

(B) evaluated at £=0'"". Writing &6Z0HO=1(3), we obtain
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Thae ¢ & Frednolm eguation and 1f itz kernel 3¢ L? tsguare
integrabled there is a discrete spectrum solution. The smallest
eigenvalue for which (60 has a non-trivial solution is the first

bifurcation point of the non-linear problem. Moreover, if the

kernel is symmetric we have the condition
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where K(».y) is the kernel of the integral equation. The kernel of
equation (62 is svmmetric but it is not L? due to the infrared
di vergences.

We can study the possible sclution of equation (62 even
in the case when the kernel is not L?. If we remenber that x and y
are defined as p-a and k-/a, and the integral is rapidly damped

for momenta larger than o, we can make the following appro:f.imauon
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[efining & new function e xD=fx>-Y 3 egq. (O is reduced Lo
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and introducang new variables u=lnY x and v=lnY y , we finally

arrive Lo
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which is knwon as the Lalesco-Picard oquation"’ »and where

A=B-n°N. This equation has the general solution

AW = Ao 1A U gV itér c12>

and it e>ists for any value of A real and positive! The proof that
(131> has no bifurcation point can be seen in Tricomi’s book (ref.
5). If a cutoff is introduced into eg.(6) it is possxble that our
conclusion does nct held (see, for instance, the second work of
ref. 4,

The linesarization we have performed is not reliable for
the infrared limit of eq. (5). As pointed out by Atkinson and

Johnson'®, & much better approach would be the substitution of
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Yy *ssiye ab the denomunator of Eq. (53 by y <200 . Exvpanding the

logarathm an eq. (5) and relaining the leadaing Lterms we cblain
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This intejral equation is equivalent to the following differential

equation
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where y=v 1-4x .

kotice that eg. (147 is identical to e3. (2.3) of ref.

F1

(6>, and solution (16D exists only for A > 1/4 { Therefore we

see that there is a critical value Nc above which there is not

chiral synmetlry breaking
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Evidence for the existence of such critical value of N was also
found in the analysis of an effective potential for composite
oporators" ", and such small number cast some doubts in the

consistency of the 1/N expansion for the study of chiral symmetry



brealang througl. the use ©of the Schwinger -Ilryson equatison. It must
slso be noticed Lthat the lanearazation around I(0) was necessary
to obtain this result, and this it a much better approximalion to
the actual non-linear solution'®

Finally, it is interesting (o 1nvestigale if with an
amproved antsatz for the verte» function the above result will be
;odif;od. Such approach haz been pursued by Atkinsen in tLhe
case of QD™ and here we recall that the behavior of the Lheory
for a&ll momenta is besl described in terms of dimensionless
running couplang constant

opd) = a

p {13IKpo] . e
Hence., we adopt Lthe ansatz
v 1
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where Ak.p> = max(k.p). Introducing (190 inte egquation (6>, this

last equation will be reduced to

(s =

x+y+1
f<yo ] <20

4 I dy Ln
a2N . Xyll+41/%,y>] -y |1

Expanding the logarithmic function as we did to arrive at eq.(13),
we obltain an integral with a L2 symmetric kernel, well behaved in
the infrared and ultravioclet regions, for which we can compute the

expression (B). Consequently we verify that condition (7) leads to

the constraint



212

which., again. is a qQuite small number and even more restraictive

than condition (17D,

In zonclusion, we have seen, UsSINO very simple methods,
that the Schwinger -Dyson equation for Lthe fermionic self-energy of
QED. with N fermions shows a critical behavior , with non-trivial

solutions for Lhe dynamical mass appearing only for small values

of fermion flavors. Thas result persisted even when we used an

Amproves vertex: function in the gap eguastion. Such result cas
doubts in the consistency of Lhe 1/N expansion as a Lool to study
chiral symmetry breaking in QED.. and a deeper study of this

behavior, where the full non-linearity of the gap equation is

attacked remains yet to be done.
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