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ABSTRACT

The superconductivity of mixed boson-fermion systems is studied usingasimple boson-

fermion transformation model. The critical temperature of the superconducting transition is calcu-

lated over a wide range of the narrow boson band position relative to the Fermi level. The BCS

scenario and boson condensation picture are recovered in two limiting cases of high and low posi-

tions of boson band, respectively, with modifications due to boson—fermion interaction.
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1. INTRODUCTION

The interest in the superconductivity In the strongly correlated
electron systems has been revived by the discovery of the high tempe-
rature superconductivity in oxide superconductors! 11. The extensive
theoretical Investigation of strongly correlated electron systems pioneer-
ed by Anderson|2| has revealed the following scenario usually occuring in
the one-band models: The strong interaction converts low lying exeital
ions Into charged bosons which then form a two-particle condensate. For
instance, in the generalized Hubbard model with N-flavours and strong
on-site repulsion doping leads to the appearance of scalar Bose excitat-
ions (holons). These holons in the same plane repel each other, while
holons in adjacent planes attract each other to form a two particle Bose
condensate[3,41. A similar situation occurs in dlmer models of the spin
liquid state. In these models holes on different sublattices carry opposite
"quasi-charges" (5,6) and interact with each other following the Coulomb
law, which results In Bose condensation of "quasi-neutral" molecules
consisting of two holes {7J. Thus in all these models a Bose-condensate
of doubly charged {w.r.t. a real electrical field) Rose particles is formed.

In more complicated two-band models one should expect that apart
from these Bose excitations, a broad band of fermion excitations is also
present. According to the conservation law. a single fermion cannot
decay into a boson, but two fermlons can be transformed into a bosonic
molecule. This qualitative picture Is consistent with the experimental
observation that the usual broad fermion band coexists in cuprates with
narrowband excitations of unrlear origin. Tor instance, it is tempting to
ascribe the strong absorption of infrared light in doped cupnites at
around 0.3 eV to the interaction with these Hose particles [H\.

All the above reasoning Justifies a theoretical study of phenomenolo-
gical models in which a broad band of fermion excitations {which can be
identified to oxygen p orbitals in real materials) coexists with a narrow
band of Bose particles with double charges (which can be formed from
the subsystem of copper electrons by strong interaction). In the simplest
case the migration between Hose and I'enui siibsysK-ms can he described
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as a transformation of two fermions into a boson and vice versa. The
behaviour of the system is governed by the strength of the interation and
the position of the narrow boson band with respect to the Fermi level, [f
the interaction is weak and the boson band is above the Fermi level, there
will be no bosons in the ground state, but the virtual process of creating
bosons from fermion pairs will give rise to a weak attraction between
fermions and a BCS-type superconductivity. When the Bose band energy
is decreased below the Fermi level, fermions will flow into it forming
bosons. In this case a Bose system with fixed number of bosons (govern-
ed by the relative position of the boson band to the Fermi level) is formed
and superconductivity in the entire system occurs due to the superfluid-
ity of the Bose subsystem. This Bose subsystem differs considerably from
the ususal diluted Bose systems because the Interaction of bosons with
fermions changes the spectrum of the former and leads to their decay.

2. THE MODEL I1AMILTONIAN

The strong anisotropy of the high temperature superconductors
allows us to consider the two-dimensional model as the zeroth-order
approximation. We will limit ourselves to this approximation In the
present paper. The model Mamiltonian can be written as

, t. . . I <f .,- )\bir) )

*/>

„<•<•) +h.c.

(Hr-r.)h (r)b (rAh [r Ah [r) M)

The llamiltonian of this type was considered earlier |9.101. We as-

sume (h;il the short range repulsion U (r-r{) in the last term of (1) leads to

;i strong repulsion of bosons on the same sile, In this case we can replace

it by Ufiirrj). The energy parameter /•. is the separation between the

bottoms of the boson and the fermion bands. We suppose also that the

boson band is only slightly Tilled so that in the momentum dependence

ot the energy only the ijuadralic term k2 is kept. The third term of (1)
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describes the interband processes, i.e.. the transformation of bosons into
fermions and vice versa. The character of the superconducting transition
depends on the amplitude of such process V. We suppose it is small
compared with the Fermi energy eF so that an integration over the
fermion states can be performed to yield the effective action in the
Imaginary time given as

\rr
S = \drid b\r.T) \-f -

2m
E- \b (r,T)

\n

w h e r e t he po la r i za t ion o p e r a t o r fl is defined a s

,,T-T,) = (3)

C a l c u l a t i n g t h e e x p e c t a t i o n va lue (3) a s for t h e idea g a s , for ' / > / , , t h e

superconducting transition temperature, we obtain

2* \«>\ + ipk/2m
0(k'J,l - ltol/2). (4)

where v is the density of states at the Fermi level. w ^ n T (H,+ 1/2), a» =

2/i7 «2 w i t h r t | , n 2 as Integers. For w = 0 and small values of k, (he

polarization operator becomes

(5)

where

Ibir T in k

dap

and C, (3) Riemann zeta function. Iny = 0.57.,, the Ruler constant, 17 the

Fermi velocity-

Tile total density of particles N = NF +2/VD does not depend on the

temperature and is determined by the chemical composition of the corn

pound. Denoting the Fermi energy of system with Nlt = 0 as <•,," we find

from the pailicle number conservation that
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On Hie other hand, the boson density can be found from the boson

Greens function as

(2/r)
(7)

with 5 approaching zero from the positive side. The boson Green's

function Gt, itself can be determined from the effective action (2). For-

mulas (6) and (7) combined yield the equation to determine the chemical

potential ;i. while the critical temperature Tc for the superconducting

transition is I he minimal temperature when the equation <b > = 0 has a

solution.

3. TRANSITION TEMPERATURE IN LIMITING CASKS

The renormalized chemical potential for bosons /J* is given by
H* = 2fi-E +/7(0,0> (X)

For the case of low boson density, p* is small, so that the chemical

potential for fermions /< will be close to (E - fl (0,0))/2 and as follows

from 16)

Ntt=

For small enough V, the superconducting transition temperature Tc

concides with the Hose condensation temperature for a two-dimensional

non-ideal gas and is given by |11]
1

' 2m In in (• r) .

where a2 is the area of the unit cell.

(10)

Now consider the influence of the boson-fermlon interaction upon

I he transition ii-niperature '/',.. We firs I discuss the case ol high Irans

ition temperature so thai (he main contribution to the integral (7) for the
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boson density comes from the region of small k. In this case equations

(6) and (7) can be simplified to yield

f-Xnml
[kdk

In ( I I )

—
2m

where the self-energy correction L(k) is due to the hard core boson

repulsion. This correction term will lead to the convergence of the

integral (II) at small * <kL. For large k > kr , this correction is small and

can be neglected. This charasteritlc value kc. can be found from the

estimate

krV2m - F , (12)

where r is the renormalized boson-boson scattering amplitude which

plays the role of the effective interaction between bosons at large dis-

tance [11|. In two-dimensional systems the scattering amplitude is loga-

rithmic and does not depend on the details of the interaction, namely
m

'= T (13)

Inser t ing th is expression Into the est imat ion 112) for k,,. we get the

cut-off for the logarithmically divergent integral (11). Evaluat ing this

integral with logarithmic accuracy we find

J4 nrnT

4 < f » = r J kJL- ! ,,4>

if the condition

k2

2m c (15)

is satisfied, the expression for the transition temperature (10) is recov-

ered from (12) and (14). In the opposite limit the elfeclive mass of

bosons in* for small momenta k «. ^ •' is determined by the interaction

ol bosons with ferinion system and is equal to
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Kqualion (11) is transformed in Ihis case into

4v(f,..

Tm*

u /•;• n (USD c ttk

* , ( 2 ; r )

1 7m
it

:xp)|I_+n(0,0)-/7(*,0)j/T] • 1
2m

(17)

2mTa

Depending on the values of parameters mlm* and V, either the first or
the second term on the right hand side of (17) may appear to be essen-
tial.

So far we have considered the limiting case when the boson density

NB is high enough. Upon Lhe increase of the energy E the boson density

decreases, and the right hand side of (17) becomes small for E > 2ty-«, so

thai the equation for determining the temperature of Bose condensation

turns into the BCS formula, i.e.,

'• 2 jiT
(IK)

In the limiting ease m -> •» and m* -» 0, (17) reduces to the expression for
lhe transition temperature obtained by the self-consistent field method
i 10] as given by

4. CONCLUDING REMARKS

We have carried onl the theoretical study of a two-band model con-
sisting of a narrow bosonic band and a broad fermionic band. Two limit-
ing cases are possible depending on the relative position of the bosonic
band w.r.t. the fermion band: li the bosonic level is high compared with
the Fermi level, the superconductive transition is mainly driven by the
lennion at tract ion and can be described by the BCS theory. In the oppo-
site case I lie siipercomUicting transition is due to Bose condensation.
These bosuns, however, have a unusual spectrum, rcnormalized by the
interaction will) Imnions We have oblained an expression for (ho trans
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it ion temperature valid in the entire range of the boson band position.

Physical phenomena which could be observed in such systems to
differentiate them from the usual superconductors are related to the
presence of an additional mode with a small gap. This mode can he des-
cribed as a relative oscillation of the fermion and boson condsensates.
Since this oscillation is neutral as a whole, its gap is not strongly influ-
enced by the long range Coulomb interaction as in the case of the gapless
mode in the ordinary superconductors. The concrete physical effects
due to this plausible mode remain to be studied.
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