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ABSTRACT

The superconductivity of mixed boson—fermion systems is studied using a simple boson—
fermion transformation model. The critical temperature of the superconducting transition is calcu-
lated over a wide range of the narrow boson band position relative to the Fermi level. The BCS
scenario and boson condensation picture are recovered in two limiting cases of high and low posi-
tions of boson band, respectively, with modifications due 10 boson—fermion interaction.
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1. INTRODUCTION

The interest in the superconductivily in the strongly correlated
electron sysiems has been revived by the discovery of the high tempe-
rature superconductivity in oxide superconductors[1]. The extensive
theoretical investigation of strongly correlated clectron systems pioneer-
ed by Anderson|2] has revealed the following scenario usually occuring in
the one-band models: The strong interaction converts low lying excital
ions into charged bosons which then form a two-particle condensate. For
instance, in the generalized Hubbard model with N-flavours and strong
on-site repulsion doping leads to the appearance of scalar Bose excitat-
ions (holons). These holons in the same planc repel each other, while
holons in adjacent planes attract cach other to form a two-particle Bose
condensate[3,4]. A similar situation occurs in dimer modecels of the spin
liquid state. In these models holes on different sublattices carry opposite
"quasi-charges” {5,6] and interact with each other following the Coulomb
law, which results in Bose condensation of "quasi-neutral” motecules
consisting of two holes {7]. Thus in all these models a Bose-condensate

of doubly charged {w.r.t. a real electrical field) Bose particles is formed.

In more complicated two-band models one should expect that apart
from these Bose excitations, a broad band of fermion excitations is also
present. According to the conservation law, a single fermion cannot
decay into a boson, but two fermions can be transformed into a bosonic

molecule. This gualitative picture is consistent with the experimental
ohservation that the usual broad fermion band coexists in cuprates with

narrow-band excitations of unclear origin. For instance, it is tempting to
ascribe the strong absorption of infrared light in doped cuprates at

around 0.3 eV to the interaction with these Bosc particles [8]

All the above reasoning |ustifies a theoretical study of phenomenolo-
gical models in which a broad band of fermion excitations {which can be
identified to oxygen p-orbitals in real materials] coexists with a narrow
band of Bose particles with double charges (which can be formed from
the subsystem of copper clectrons by strong inleraction). In the simplest

case the interation between Bose and Fernii subsystens can be deseribed
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as a lransformation of two fermions into a boson and vice versa. The
behaviour of the system s governed by the strength of the interation and
the position of the narrow boson band with respect to the Fermi level. If
the interaction is weak and the boson band is above the Fermi level, there
will be no bosons in Lthe ground state, but the virtual process of crealing
bosons from lermion pairs will give rise to a weak attraction between
fermions and a BCS-lype superconductivity. When the Bose band energy
is decreased below the Ferni level, fermions will flow into it forming
bosons, In this case a Bose system with fixed number of bosons (govern-
ed by the relalive position of the bosen band to the Fermi level) is formed
and superconductivity in the entire system occurs due to the superfluid-
ity of the Bose subsystemn. This Bose subsystem differs considerably from
the ususal diluled Bose systems because the interaction of bosons with
fermions changes the spectrum of the former and leads Lo their decay.

2. THE MODEL IIAMILTONIAN

The strong anisotropy of the high lemperature superconduclors
allows us to consider the two-dimensional model as the zeroth-order
approximation. We will limit ourselves to this approximation in the
present paper. The model Hamiltonian can be wrillen as
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The Hamiltonian ol this lype was considered carlier [9.10]. We as-
sume Lthat the short-range repulsion U (#-r)) in Lhe last terin of (1) leads to
astrong repulsion of bosons on the same site, In this case we can replace
it by U8 rr). the energy parameter £ is the separation between the
bottoms of the boson and the fermion bands. We suppose also that the
bosan band is only slightly lilled  so that in the momentom dependence

of the enerpy only the gquadradic term k2 s kept. The third term of (1)
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describes the interband processes, i.e., the transformation of bosons into
fermions and vice versa. The character of the superconducting transition
depends on the amplitude of such process V. We supposc it is small
compared with the Fermi energy e so that an integration over the
fermion states can be performed to yield the effective action in the

imaginary time given as
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where the polarization operator {1 is defined as
M rrye1) = d<ydtr, 7w prns V2 3)

Calculating the expectation value (3) as for the idea gas, for T >7, the

superconducting transition temperature. we obtain
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where v is the density of states at the Fermi level, @ =21T {n)+ 1/2), @ =

2rl ny with sy, n; as integers. For w=0 and small values of k, the

polarization operator becomes
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and { (3] Riemann zcta function, Iny = 0.57... the Euler constant, v, the

Fermi velocity.

The total density of parlicles N = Np +2Np  docs not depend on the
temperature and is determined by the chemical composition of the com:
pornd.  Denoting the Fermi energy of system with Ny = O as 6% we Tind

from the particle mnnber conservation that
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On the other hand. the boson denstty can be found from the boson

Green's function as
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with § approaching zero from the positive side. The boson Green's
function G, itself can be determined froin the effective action (2). For-
mulas (6) and (7) combined yield the equation to determine the chemical
potential g, while the critical temperature T, for the superconducting
transition is (he minimal temperature when the equation <b > = 0 has a

solution.
3. TRANSITION TEMPERATURE IN LIMITING CASES

The renormalized chemical potential for bosons u* is given by
w* =2 - E +I {1 (%)

For the case of low boson density, y* is small. so that the chemical
potential for fermions p  will be close to (E - IT(0,.0)¥2 and as follows

from (6)
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For small enough V. the superconducting transition temperature T,
concides with the Bose condensatlion temperature for a two-dimensional

non-ideal gas and is given by [11]
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where ¢ s the arca of the unit cell,
Now consider the indluence of the boson-fermion interaction upon

the fransition temperature T, We first discuss the ease of high trans-

ition temperature so that the main comtribution o the integral (7) for the

boson densily comes from the region of small £, In this case e(punions
(6] and (7) can be simplificd to yield
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where the sell-energy correction X (&) is due to the hard core hoson
repulsion. This correctlon term will lead to the convergence of the
integral (11) at small & <k, For large k£ > k., Lhis correction is small and
can be neglected. This charasteritic value 4. can be found from the
estimale
k22m ~ T, (12)
where I' is the renocrmalized boson-boson scatlering amplitude which
plays the role of the effective interaction between bosons at large dis-
tance [11]. In two-dimensional systems the scattering amplitude is loga-
rithmic and does not depend on the details of the interaction, namely
m
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Inserting this expression Into the estimation {12) for k. we get the

cut-off for the logarithmically divergent integral (11). Evaluating this
integral with logartthmic accuracy we find
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If the conditton
2
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is satisfied, the expression for the transition temperature (10} is recov-
ered from (12) and (14}. In the opposite limit the cllective mass of

bosons m* for small momenta k << &1 is determined by the interaction
of bosons with fermion system and is equai to
1

m¥ =

vazéz (16}
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Equation (11) is transformed in this case into
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Depending on the values of parameters m/m* and V. either the first or
the scecond term on the right hand side of (17) may appear to be essen-
tial.

So far we have considered the limiting case when the boson density
Ny is high enough. Upon Lhe increase of the energy E the boson density

decreases, and the right hand side of (17) becomes small for E > 2&.0, so

that the equation for delermining the temperature of Bose condensation

turns into the BCS [ormuly, i.e.,
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In the limiling case m — = and m* = 0, {17) reduces to the expression for
the transition temperature obtained by the self-consistent field method
[10] as given by
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4. CONCLUDING REMARKS

We have carried ont the theoretical study of a two-band model con-
sisting of a narrow bosonic band and a broad fermionic band. Two limit-
ing cases are possible depending on the relative position of the bosonic
hand w.r.t. the fermion band: 1f the bosonie level is high compared with
the Fermi level, the superconductive transition is mainly driven by the
fermion attraction and can be deseribed by the BCS theory. In the appo-
site case the saperconducting transition is due to Bose condensation.
These bosons, however, have a unusual spectrum, renormalized by the

interaction with fermions We have oblained an expression tor the trans

ition temperature valid in the entire range of the boson band position.

Physical phenomena which could be observed in such systems to
differentiate them from the usual superconductiors are related to the
presence of an additional mode with a small gap. This mode can be des-
cribed as a relative oscillation of the fermion and boson condsensalies.
Since this oscillation is neutral as a whole, its gap is not strongly influ-
enced by the long range Coulomb interaction as in the case of the gapless
mode in the ordinary superconductors. The concrete physical effects

due to this plausible mode remain to be studied.
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