Zhu Lihua, Li Guansheng, Wen Shxuian, Li Shengang, Yu Panshui, Zhang Lankuan, Hua Penfei, Wu Ping, Weng Peikun, Yang Chunxiang (Institute of Atomic Energy, P.D. Box 275 Beijing, China)

High spin states in 163 Lu have been populated in the 148 Sm(19 F,4n)163 Lu reaction with F beam provided by HI-13 tandem of IAE. A tentative level scheme is constructed from the gamma-gamma coincidence experiment with three HpGe-BGD Compton suppressed spectrometers and two bare HpGe detectors. A strong coupling band and a decoupling band have been established.

This investigation is one in a series of high spin state studies of odd-Z even-N rare earth nuclei in order to establish the systematics of the consfiguration-dependent band crossing frequencies based on the alignment of a pair of $i_{3/2}$ quasineutrons. It has been observed c_{1-52} that the band crossing occurs at larger rotational frequencies for 1/2[541] proton configuration than for the other configurations in odd-Z even-N rare earth nuclei, such as 165 Lu, 169 Ta, 171 Ta, 175 Ta and 177 Re. This phenomena is interpreted as shape change due to -driving. In order to verify this conclusion ¹⁶³ Lu has been chosen as a good candidate. It has 92 neutrons and it's neutron Fermi level, λ_n , is close to the high-j low- Ω neutron configrations. So that the $(\epsilon_{\mu} - \lambda_{\mu})$ term in the expression for the quasineutron energy

$$E_{\mu} = \sqrt{\Delta_n^2 + (\epsilon_{\mu} - \lambda_n)^2}$$

is smaller in comparision with In this case the quasineutron energy E_{μ} should not be so sensitive to the ϵ_2 -driving effect. So, the band crossing frequency for 1/2[541] proton configuration in Lu should not be delayed than for the other configurations. Our preliminary result seems to support this conclusion.

	References		
S.	Jonsson et al.,	Nucl.	1

- NUC1. Phys. 1. al., A422(1984)397.
- J. C. Bacelar et al., Nucl. Phys. 2. A442(1985)547.
- 3. C. X. Yang et al., Phys. Lett. 133(1983)39.
- 4. W. Walus et al., Phys. Scri. 34(1986)710.
- 5. G. J. Yuan et al., Chinese J. of Nucl. Phys. 11(198).

Partial level scheme of ¹⁶³Lu