2019001209

объединенный институт ядерных исследеваний дубна

P6-88-911

1988

Н.Г.Зайцева, О.Кнотек, А.Ковалев, П.Микец, Э.Рураж, В.А.Халкин, В.А.Агеев*. А.А.Ключникоз*, Л.А.Кузина*, А.Ф.Линев*

ФУНКЦИИ ВОЗБУЖДЕНИЯ РЕАКЦИЙ ^{113,114, прир.}Cd(p,xn)¹¹¹ In И ВЫХОДЫ ¹¹¹ In ПРИ ОБЛУЧЕНИИ МИШЕНЕЙ КАДМИЯ ПРОТОНАМИ С ЭНЕРГИЕЙ ~ 65 М3В

Направлено в "International Journal Applied Radiation and Isotopes"

^{*}Институт ядерных исследований АН УССР, Киев

введение

В настоящее время радионуклид ¹¹¹ In относится к групле пяти циклотронных радионуклидов, играющих важную роль в ядерной медицине /⁶⁷Ga, ⁸¹ m Kr, ¹¹¹ In, ¹²³I, ²⁰¹Tf/. Было показано, что ¹¹¹ In может быть успешно использован при локализации и определении опухолей, в исследованиях лимфатической системы, для получения многочисленных меченых соединений ^{/1/}.

Для целого ряда in-vivo исследований медленных биологических процессов, которые необходимо наблюдать в течение 1-3 дней после введения препарата. 111 Ів имеет благоприятные характери-Его период полураспада равен 2.83 дн.. стики распада. 100%-й электронный захват при распаде приводит к возбужденному состоянию ¹¹¹Cd, которое снимается каскадом гамма-лучей с энергией 171.3 и 245.4 кэВ и интенсивностью 90.3% и 94%. Соответствующие усредненные энергии /и интенсивности/ конверсионных электронов низки: 144.6 кэв /10%/ и 218.6 кэв /6%/. Энергия Оже-электронов равна ~20 кэВ. Энергии гамма-лучей ¹¹¹ In находятся в оптимальной области для фотопиков, регистрируемых коммерческими гамма-камерами и скеннерами либо по отдельности. либо суммарно /184 фотона на 100 актов электронного захвата/. В последнем случае достигается лучшая статистика или более быстрое накопление данных.

Принципиальные способы получения ¹¹¹ In , как это иллюстрирует табл.1, включают прямые и косвенные реакции его образования. Этот список не исчерпывает всех возможностей, например, ¹¹² $Sn(y, n)^{111}Sn \rightarrow 111 In / 2/$.

Для расчета Q-величин были использованы значения атомных масс, взятые из работы⁽³⁾. При определении необходимой лабораторной энергии налетающих частиц для заданных ядерных реакций рассчитывались их энергетические пороги. Другой важный фактор - кулоновский барьер и эффективный барьер, объясняющие туннельный эффект⁽⁴⁾, высоты которых также приведены в табл.1. Рассмотрение энергетических порогов и барьеров различных ядерных реакций показывает, что ¹¹¹№ может быть получен на компактных циклотронах с энергией частиц ≤ 20 МэВ, но некоторые реакции требуют более высокоэнергетических машин.

Обычно ¹¹¹ In получают при облучении мишеней серебра a-частицами в реакции ¹⁰⁹Аg (a, 2n)¹¹¹ In ^{/5-11/}, мишеней кадмия

Таблица 1 Пороги реакции и кулоновские барьеры для реакций, приводящих к образованию ¹¹¹ 1а								
\$\$ 1/1	Peaking	Природное содержание (%)	Q (M9B)	Lopor peakuus (MaB)	Высота жулошов- ского барьера (<i>RaB</i>)	Эрректинані куловорокції Саррер (Мів)		
I	¹¹¹ Cd(p,n) ¹¹¹ In	12,75	-1,62	I,63	8,49	4,II		
2	¹¹² Cd(p,2n) ¹¹¹ In	24,07	-11,02	11,10	8,47	4,10		
3	¹¹³ Col (p. 3n) ¹¹¹ In	12,26	-17,56	17,72	8,45	4,09		
4	114 Col (p, 4n) ⁴⁴ In	28,86	-26,60	26,80	8,43	4,09		
5	110 Cd (d,n) 111 In	12,36	3,10	0	8,15	5,09		
6	¹¹¹ Col (d, 2n) ¹¹¹ In	12,75	-3,85	3,92	8,13	5,08		
7	¹⁰⁹ Ag (³ He, k) ¹¹¹ In	48,65	6,55	0	15,52	10,92		
8	109 Hg $(d, 2n)^{111}$ In	48,65	-14,03	14,50	15,17	10,71		
9	412 Su (p, 2n) 411 St 33, pt 111 Su 33, pt 111 In	0,95	-17,06	17,21	8,82	4,27		
10	"" Sn (p, 4m) "" SB " Sn " In	0,65	-35,10	35 ,4 I	8,78	4,26		
II	415 Sn (p, 5n) 44 SB 111 Sn III In	0,34	-42,65	43,02	8,76	4,25		
12	116 Sn (p, 6n) 111 Sb - 111 Sn - 111 In	14,24	-52,2I	52,66	8,74	4,24		
13	"I Sn (p, 2n)" St "In	r 7,57	-59,15	59,65	8,72	4,23		
14	148 Sn (p, 8n) + S6 - + + Sn - + + In	24,01	-68,47	69 ,0 5	8,70	4,22		
15	140 Cd (3He,2n) 444 Sn 114 In	I2 ,3 9	-5,62	5,77	I5 ,8 2	11,13		

Дейтронами в реакциях ¹¹⁰ Cd(d,n)¹¹¹ In, ¹¹¹ Cd(d,2n)¹¹¹ In ^{/6,10-12/} или протонами в реакциях ¹¹¹ Cd(p,n)¹¹¹ In и ¹¹² Cd(p,2n)¹¹¹ In ^{/6,6,13-15/} Выходы ¹¹¹ In в ядерных реакциях на серебре гораздо ниже, чем из мишеней кадмия, облученных протонами /см.табл.6/. Однако ¹¹¹ In, полученный из Cd мишеней, содержит на конец облучения также и другие нуклиды индия: ¹⁰⁹ In /T₁₄ = 4,3 ч/, ¹¹⁰ In /T₁₄ = = 4,9 ч/ и ¹¹⁴m In /T₁₄ = 49,5 дн./. Последний нуклид, имеющий основные гамма-лучи следующих энергий /кзВ/ и интенсивностей /%/: 191,6 /16,7/; 558 /3,6/ и 725,2 /3,5/, заметно увеличивает радиационную дозу для пациента: доза от 1 мКи ¹¹¹ In в 80 раз меньше, чем от 1 мКи ¹¹⁴ m In ^{/15}. Уровень примеси ¹¹⁴ m In в препарате, получаемом из облученного протонами Cd, меняется от 0,003% ^{/14/} до 3% ^{/5/} от активности ¹¹¹ In. Этот уровень зависит от степени обогащения материала мишени и вклада от соответствующих ядерных реакций. То же имеет место и при облучении дейтронами, когда загрязнения от ¹¹⁴ m In в ряде случаев достигают 6%.

Облучение серебра ³Не и α -частицами приводит к образованию ¹¹¹In без следов ¹¹⁴ ^mIn . Однако реакция ¹⁰⁹Ag(³He, n)¹¹¹In не подходит для получения ¹¹¹In из-за слишком низкого выхода, ~2 мкКи/мкА-ч на конец облучения ^{/5,16/}.

Сравнительное исследование перечисленных путей получения ¹¹¹ In на компактных медицинских циклотронах показывает, что наиболее высокий выход ¹¹¹ In получается в реакции ¹¹²Cd (p, 2n)¹¹¹In с высокообогащенным ¹¹² Cd^{/5/}.

Для того, чтобы выбрать наилучшие условия для получения $^{111}{\rm In}$, требуется информация о функциях возбуждения реакций образования $^{111}{\rm In}$ и побочных продуктов, а также об их выходах из толстых мишеней $^{/13}, ^{10}-^{25}$. Такие данные известны не для всех реакций, которые приводят к образованию $^{111}{\rm In}$. В частности, до настоящего времени нет такой информации для реакций $^{13,114}{\rm Cd}$ с высокоэнергетическими протонами /E_p>30 МэВ, прямой путь получения $^{111}{\rm In}$, табл. 1/.

Исследованию этих реакций и разработке метода отделения ¹¹¹ In от кадмия посвящено настоящее исследование.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

А. Мишени и облучение

Сечения Cd(p,xn) In реакций определяли методом стопки фольг. Этот метод позволяет исследовать функции возбуждения каждого типа реакций и выбрать оптимальный энергетический интервал для получения искомого продукта с минимальным количеством примесей.

Изотоп	ubab-Cer	113 _{Col}	II4 Cd
106(d	I,25	0,01	0,01
108 _{Col}	0,89	0,0I	0,01
IIOCol	12,5	0,12	0,10
IIIcd	12,8	0,12	0,II
II2 _{Cd}	24,I	I,98	0,34
II3 _{Cd}	12,2	95,8 <u>+</u> 0,3	0,28
II4Cd	28,7	2,47	98,9 <u>+</u> 0,I
II6 _{Cd}	7,5	0,21	0,27

Изотопный состав /X/ мишеней Cd

Были использованы стопки металлических фольг природного и сбогащенного кадмия. Металлический кадмий, обогащенный изотопами ¹¹³ Cd и ¹¹⁴Cd, получен из Государственного фонда стабиль[…] ных изотопов СССР. Изотопный состав материала мишеней приведен в табл.2.

Стопка состояла из 23÷25 пронумерованных дисков диаметром 10 мм, вырезанных из фольг толщиной ~0,13 г/см² для ¹¹⁸Cd и ¹¹⁴Cd и 0,24 г/см² для природного кадмия. Для облучения собиралась стопка чередующихся друг с другом дисков ¹¹³Cd и ¹¹⁴Cd общей толщиной ~6,8 г/см² и стопка дисков из природного Cd толщиной ~6,3 г/см².

Мишени облучались выведенным пучком протонов с энергией 63±1 МэВ в течение 0,5 ч на изохронном циклотроне У-240 в Институте ядерных исследований АН УССР.Поглощение энергии протонов каждым диском Cd рассчитывалось по данным таблиц ^{/28/}. Интенсивность протонного пучка ограничивали несколькими сотнями наноампер для избежания локального перегрева Cd /T_{nn} =321°C/ и его испарения. В качестве мониторной реакции для определения интенсивности протонного пучка, проходящего через мишень, служила реакция ²⁷Aℓ(p,Spm)²⁴Na, сечение которой для E_p = 65 МэВ равно 10 мб ^{/27}/.

Для облучения стопку фольг помещали в держатель мишени, вставляемый в блок, охлаждаемый водой. После облучения мишени транспортировали в тяжелом свинцовом контейнере в радиохимическую лабораторию ОИЯИ. Работа с мишенью начиналась через ~50 ч

после конца облучения, за это время полностью распадались короткоживущие радионуклиды.

5. Измерения и анализ результатов

Измерения активности каждого диска Cd из мишенной сборки образцов проводили с помощью гамма-спектрометра, состоящего из Ge(Li)-детектора /объем 40 см³, разрешение 1,2 кзВ на линии $E_y = 122$ кзВ 5^{7} Co/ и 4096-канального анализатора, соединенного с ЗВМ ЕС-1010. Эффективность детектора определяли с помощью набора стандартных источников / 152 Eu, 57 Co, 203 Hg, 137 Cs, 54 Mn, 60 Co/. Радиоактивные нуклиды в облученных образцах идентифицировали по энергиям соответствующих фотопиков. Активность каж-

дого диска определяли по результатам серии измерений /5÷8 раз/ в интервале от 60 до 500 ч после конца облучения. Такой длительный интервал измерения позволил достоверно определить примесь ¹¹⁴ mln. Обработку измеренных гамма-спектров проводили по программе ЭТАП⁷²⁸⁷, полученные значения активностей использовали для расчета сечений реакций образования и выходов нуклидов индия.

В. Радиохимическое выделение индия из облученных мишеней кадмия

Метод отделения радиоиндия в состоянии без носителя от макроколичеств облученного кадмия был разработан на основе данных о различии коэффициентов распределения ионов индия и кадмия между катионитом типа Дауэкс

Рис.1. Гистограмма элюирования радиоактивного индия в состоянии без носителя из колонки с Дауэкс-50х4 раствором 2 M HBr.

50х4 и растворами бромистоводородной кислоты в зависимости от ее концентрации /29/. Облученный металлический кадмий растворяли в горячей 8 М HBr, полученный раствор пропускали через колонку с Дауэкс 50х4 /Вс-форма/. В соответствии с величинами KD NOHOB Agt, Cd 2+ N In 3+ B BUGE KOMMINEKCHWX БРОМИДНЫХ АНИОНОВ [InBr.], равных соответственно <1, <1 и "80, ионы индия сорбировались на смоле, а кадмий и возможные примеси радирактивных нуклидов серебра оставались в растворе. Для полного удаления следов Cd колонку тжательно промывали концентрированной НВ: Радиоиндий вымывали из колонки раствором 2 М НВ: /рис.1/. Химический выход индия был равен ~90%. Радионуклидную чистоту проверяли, измеряя гамма-слектр препарата, выделенного из облученного кадмия через 5 дн. после конца облучения. В спектре были видны гамма-линии, принадлежащие только¹¹¹In/171 и 245 ков и суммарный пик от их совпадения при измерении детектором 417 кэВ/ и ¹¹⁴тл /190 кэВ/.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

А. Экспериментальные функции возбуждения

Сечения реакций ¹¹³ Cd(p,3n)¹¹¹ In, ¹¹⁴Cd(p,4n)¹¹¹ In и ¹¹⁴Cd(p,n)¹¹⁴ m In были определены в зависимости от энергии падающих протонов. Полученные результаты приведены в табл.3 и 4 и на рис.2 и 3. Величины представляют среднеарифметические значения нескольких измерений. Ошибки измеренных сечений и выходов оценены в ± 20 %. Они определяются ошибками статистики счета, измерений эффективности регистрации гамма-лучей Ge(Li)детектором, геометрии измерений, данных распада, определения толщины фольг Cd, энергетических потерь протонов, времени облучения и ошибками, связанными с мониторированием пучка протонов.

Известно, что функции возбуждения характеризуются такими параметрами, как максимальное значение сечения реакций, его положение в зависимости от энергии, значение его ширины на половине высоты. Измерения показывают, что реакция ¹¹³Cd(p,3n)¹¹¹In имеет $\sigma_{\text{макс}} \approx 682$ мб при $E_p = 32$ МэВ и $E_{1/2}$ $_{\text{bmakc}} = 14$ МэВ в интервале 24÷38 МэВ; реакция ¹¹⁴Cd(p,4n)¹¹¹In имеет $\sigma_{\text{макс}} \approx 500$ мб при $E_p = 42$ МэВ и $E_{1/2}$ $_{\text{bmakc}} = 17$ МэВ в интервале 35÷52 МэВ.

Эти данные для указанных реакций получены впервые.

Как видно, начальная энергия изученных реакций (р, m) находится в хорошем согласии с величиной энергетического порога реакций, а измеренные функции возбуждения, согласно Сечения ¹¹³ Cd (p, 3n)¹¹¹ In -реакции и выходы ¹¹¹In и ¹¹⁴m In для тонких мишеней как функция энергии протонов

Ně .	Энергия про-	тонов (МоВ)	Сечение об-	HIXON	Buxon	
цов цов	BXOX/MIXOX	середния	IIIIR (MO)	(HECKE/ HECKE/	(1965/17) (1965/17/ (1965/17/ (1965/17/	
I	63,4-62,7	63,0	78	122		
2	61,8-61,1	6 I ,5	78	127		
3	60,3-59,5	59,9	82	138		
4	58,6-57,8	58,2	85	144		
5	56 ,9- 56,I	56,5	92	143		
6	55,2-54,4	54,8	101	155		
7	53,5-52,6	53,0	102	172		
8	51,6-50,7	51,2	111	185		
9	49,7-48,8	49,3	122	199	0,05	
10	47,8-46,9	47,3	138	224		
11	45,9-44,9	45,4	I59	254	0,06	
12	43,8-42,8	43,3	186	311	0,06	
13	41,6-40,6	4I, I	245	4 II	0,09	
14	39,4-38,3	38,8	326	539	0,14	
15	37 ,1-3 6,0	36,6	46 I	725	0,12	
16	34,9-33,6	34,2	606	1005	0,29	
17	32,3-3I,0	31,7	682	1143	0,27	
18	29,7-28,4	29,0	629	1045	0,31	
19	26 ,9-2 5,3	26,I	518	868	0,30	
20	23,8-22,3	23,0	263	409	0,18	
2I	20,5-18,7	19,6	37	64	0,18	
22	16,6-14,4	I5,5	14	23	0,51	
23	12,0-9,2	IO,6	3,0	5	0,40	
24	5,8	3,3	4,0	7	0,03	

Сечения 114 Cd(p,4n) 111 In, 114 Cd(p,4n) 114 m In реакций и выходы 111 In и 114 min для тонких мишеней как функция энергии протонов

Mi CODER-	Экергия пр	Ceyeline	Bexog	Сечение	Buxon	
цов	BKOR/BLIKOR	середние	MANUA IIII _{IN} (MO)	(anclus) Mach-9	(MC)	(MarKa/ Marka-9)
I	62,7-61,8	62,3	119	208	8	0,8
2	6 I,I-60, 3	60,7	129	210	8	0,8
3	59,5-58,6	59,0	142	244	9	0,8
4	57,8-56,9	57,3	160	279	9	I,0
5	56,1-55,2	55,6	178	308	9	0,9
6	54,4-53,5	54,0	207	366	12	I,2
7	52,6-5I,6	52,I	257	459	11	I,I
8	50,7-49,7	50,2	309	548	10	I,0
9	48,8-47,8	48,3	367	638	II	I,I
10	46,9-45, 9	46,3	45I	773	11	I,I
II	44,9-43,8	44,3	486	864	12	I,2
12	42,8-41,6	42,2	500	88I	15	I,5
13	40,6-39,4	40,0	462	814	14	I,4
14	38,3-37,I	37,7	385	65I	16	I,6
15	36,0-34,9	35,4	243	406	15	I,4
16	33,6-32,3	33,0	96	166	18	I,8
17	31,0-29,7	30,4	22	37	22	2,I
18	28,4-26,9	27,6	10	17	26	2,6
19	25,3-23,8	24,6	8	I4	29	2,8
20	22,3-20,5	21,4	6	10	38	3,7
21	18,7-16,6	17,6	5	6	90	9,I
22	14,4-12,0	13,2	3	8	1 7 8	17,2
23	9,2-5,8	7,5	I	2	39	3,9

Рис.2. Измеренные сечения и теоретические функции возбуждения 13 Cd(p,xn) In реакций, рассчитанные по программе ALICE. Стрелки на шкале энергий указывают теоретических значения энергетических порогов реакций.

теории, начинаются выше кулоновского барьера с очень низких значений. Затем сечения ¹¹³ Cd(p, 3n)¹¹¹In и ¹¹⁴Cd(p, 4n)¹¹¹In быстро растут с увеличением энергии протонов, достигают максимального значения, после чего уменьшаются, сохраняя "хвостовую" часть в высокоэнергетической области. Сечения этих реакций, как показывают полученные результаты, близки сечениям реакций ¹¹¹Cd(p, n)¹¹¹In и ¹¹²Cd(p, 2n)¹¹¹In ^{′13}, 17 ′, обычно используемых для получения ¹¹¹In. Следует отметить, что в низкоэнергетической области имеется неопределенность в результатах, которую можно приписать вкладу от реакций (p, xn) на примесях ¹¹¹Cd и ¹¹²Cd в обогащенных ¹¹³Cd и ¹¹⁴Cd /табл.2/.

Б. Теоретические функции возбуждения

Теоретические функции возбуждения реакций $^{113}Cd(p, x_n)$, x = 1÷5, и $^{114}Cd(p, x_n)$, x = 1÷6, были рассчитаны по известной программе ALICE, основанной на механизме равновесных и предравновесных ядерных реакций в соответствии с гибридной моделью $^{/30/}$. Расчеты проведены на CYBER-компьютере в Институте ядерных исследований /Сверк, Польша/.

Рассчитанные по программе ALICE функции возбуждения показаны на рис.2 и 3, откуда видно, что они следуют ожидаемому ходу кривой. В высокоэнергетической области функции возбуждения отражают предравновесные процессы. Явно выраженный максимум функций возбуждения ¹¹³ Cd(p,3n) и ¹¹⁴ Cd(p,4n) реакций подтверждает предположение, что в рассматриваемом энергетическом интервале реакции протекают главным образом через образование компаунд~ядер. Экспериментальная функция возбуждения ¹¹³ Cd(p,3n) реакции хорошо согласуется с расчетной как по форме, так и по абсолютным значениям величин /рис.2/. В случае ¹¹⁴ Cd(p,4n) ¹¹¹ In /рис.3/ экспериментальные сечения перекрываются расчетными по всей исследованной энергетической области. Противоположная ситуация наблюдается для реакции ¹¹⁴ Cd(p,n)¹¹⁴ mIn. Здесь следует отметить, что рассматривается образование только ¹¹⁴ mIn, так как сечение образования ¹¹⁴ In /T_{1/2} = 72 с/ неизвестно, и оно не определялось в этой работе.

В. Выходы ¹¹¹In и ^{114m}In

Выходы ¹¹¹ In и ¹¹⁴m In, измеренные в ядерных реакциях на мишенях природного кадмия и кадмия, обогащенного изотопами ¹¹³Cd и ¹¹⁴Cd, как функция энергии протонов, приведены в табл.3-5 и на рис.4-6. Ошибка определения выходов равна ±20% и включает те же неопределенности, как и при определении сечений реакций образования этих нуклидов. Суммарные сечения образования $^{npwp}Cd(p,xn)^{111}$ in и $^{npwp}Cd(p,xn)^{114}$ mIn реакций и выходы 111 In и 114m In для тонких и толстых мишеней как функция энергии протонов

1616 00-	Энергия протонов (МЭВ)		Суммар- ное се-	Buxog III _{In} (mrKg/mrA-4)		Сунмар- нов ов-	HIXOH 114M In (MKKH/MKA-4)	
цов	вход/выход	сере дшна	oopaso- Bahur IIII (MO)	тонкал Минень	толстая минень	oopaso- Bahka II4m <u>I</u> n (MO)	тон- Кая Мі- Шень	толс- Тая Мі- Шонь
I	63,9-62,5	63,2	9I	266	266	9	I,2	I,2
2	62, 5-6I ,0	6 I ,7	92	274	540	10	I,3	2,5
3	6 I,0-59, 5	60,3	9 5	285	825	IO 1	[,4	3,9
4	59,5-58,0	58,8	94	279	1104	9	I,4	5,3
5	58,0-58,4	57,2	97	285	I389	IO	I,4	6,7
6	56,4-54,8	55,6	103	300	I689	IO]	[,4	8,I
7	54,8-53,2	54,0	I08	320	2009	9	I,4	9,5
8	53,2-51,5	52,4	II9	347	23 56	II	I,5	II,O
9	5 I,5 —49,8	50,6	131	382	2738	10	I,5	12,5
10	49,8-48,I	48,9	I49	442	3180	12	I,9	I4,4
II	48,I -4 6,3	47,2	177	518	3698	12	2,0	I6 ,4
12	46,3-44,4	45,3	193	575	4273	12	2,1	18,1
13	44,4-42,6	43,5	212	632	4905	I4	2,4	20,5
I4	42,6-40,6	41,6	210	624	5529	I 5	2,6	23,I
15	40,6-38,6	39,6	202	598	6127	19	2,8	25,9
I 6	38,6-3 6,5	37,6	187	555	6 682	26	3,4	29,3
17	36,5-34,3	35,4	173	516	7198	37	4,0	33,3
18	34,3-32,0	33,2	161	475	7673	47	4,8	38,I
19	32,0-29,6	30,8	I8 6	550	8223	53	5,5	43,6
20	29,6-27,0	28,3	229	685	8908	44	5,2	48,8
2I	27,0-24,I	25,5	219	663	957I	17	2,7	5 I, 5
22	24,1-21,2	22,6	I68	5 I 0	10081	24	3,3	54,8
23	21,2-17,9	19,5	75	239	10320	37	7,3	62,I
24	17,9–14,1	16,0	22	66	I 03 86	9	1,9	64,0
25	I4,I-9,7	11,9	15	44	10430 I	,0	0,2	64,2

Рис.4. Выходы ¹¹¹ In и ¹¹⁴ш In для тонких и толстых мишеней ¹¹³ Cd как функция энергии протонов.

Сравнивая полученные результаты с выходами реакций 111Cd(p,n) 111In и 112Cd(p,2n) 111In / табл. 6/, можно видеть определенные преимущества в случае облучения 113Cd протонами с энергией ≤ 65 МэВ: 111Inполучается с хорошей радионуклидной чистотой и более высоким выходом. Образование нежелательного 114mIn может быть понижено до минимума при использовании высокообогащенных мишеней.

При облучении обогащенного ¹¹⁴Cd загрязнения ¹¹⁴mIn, образующегося в реакции (**p**, **n**), получаются на порядок величины выше по сравнению с ^{111,112,113}Cd мишенями. Принимая во внимание тот факт, что большая часть

¹¹⁴mIn образуется в низкоэнергетической области, реакция ¹¹⁴Cd(p,4n) ¹¹¹ In открывает возможность использования высокоэнергетической части протонного пучка /65 — 36,5 MэB/ для получения ¹¹¹ In почти такой же чистоты, как в случае¹¹³Cd(p,3n)¹¹¹In, если использовать высокообогащенный материал мишени. Протонный пучок, выходящий из ¹¹⁴Cd мишени толщиной 3,9 г/см² /E_p = = 65 — 36,5 MэB/, может быть направлен в ¹¹³Cd мишень толщиной 1,6 г/см² /E_p = 36,5 — 23 MэB/. Таким образом, обе реакции ¹¹⁴Cd(p,4n) и ¹¹³Cd(p,3n), захватывающие энергетические интервалы со своими масимальными значениями функций возбуждения, могут быть использованы одновременно при облучении тандемной мишени ¹¹⁴Cd + ¹¹³Cd и дать высокий выход ¹¹¹In /до ~24 мКи/мкА-ч/.

Таблица в

Материен минени и его обогащение (%)	Энергия налотанцих частиц (МЭВ)	Ядерная реакция	Виход III _{Ге} на конец облучения (мики/мил-ч)	HORNECL II4-I. (% OT SETED- HOCTE III)	BEIRE ROBU OT LLAMIL. (% OT COME ROBU)	Collena
	15	(p.n)	140	3	7	/13/
	22	(p, 2n)	I03 5	0,5	(29)*	/5/
IIPEP. Col	22	(p,2n)	1150	0,25	(17)	/14/
-	63	(p,xn)	10400	0,6	(33)	BACT. DOOTE
	12	(d,n)	117	5,7	(82)	/5/
III (d (96,5)	I 6	(p,n)	515	0,012	(I)	/13/
II2 _{Cd} (97)	27	(p,2n)	6000	0,003	(0,24)	/14/
^{II3} Cd (95,8)	63	(p,3n)	16500	0,024	(1,88)	BROT. PROTA
¹¹⁴ (d (98,9)	63	(p,4n)	15600	0,26	(17,2)	HACT. DECOTE
	32	(3He, n)	2	не определя- ется		/5/
прар-Ад	24	(⁴ He, 2 <i>n</i>)	64	не определя- ется	-	/5/

* Данные в скобках были получены экстраполяцией результатов работы 4/

.

.

ЗАКЛЮЧЕНИЕ

Впервые измерены функции возбуждения реакций ¹¹³Cd(p,3n)¹¹¹ In, ¹¹⁴Cd(p,4n)¹¹¹ In и ¹¹⁴Cd(p,4n)¹¹⁴ In при облучении мишеней кадмия, обогащенных изотопами ¹¹³Cd и ¹¹⁴Cd, протонами с энергией \leq 65 МэВ. Показана возможность получения относительно больших количеств ¹¹¹ In при облучении этих мишеней на изохронных или линейных ускорителях с энергией частиц ~65 МэВ.

Полученные результаты показывают, что из обогащенного кадмия ¹¹³Cd можно получить ¹¹¹In с более высоким выходом и с относительно более низкими примесями /на один-два порядка/ ¹¹⁴m In по сравнению с мишенью ¹¹⁴Cd. С целью увеличения выхода ¹¹¹In может быть использована тандемная конструкция мишени из обогащенного / ¹¹³Cd и ¹¹⁴Cd/ кадмия.

В заключение авторы выражают благодарность группе циклотрона У-240 /Киев/ за проведение облучений, В.Б.Бруданину и А.Ф.Новгородову за обеспечение работы измерительно-вычислительного центра отдела, один из нас /Э.Рураж/ выражает благодарность В.Г.Калинникову за интерес и поддержку работы.

ЛИТЕРАТУРА

- 1. Thakur M.L. Int. J. Appl. Rad. Isotopes, 1977, 28, p.183.
- 2. Malinin A. et al. Radiochem. Radioanal. Lett., 1983, 59, p.213.
- 3. Möller P., Nix J.R. LA-UR-80-1996, L.A., 1980.
- 4. Münzel H. KfK-1955, Karlsruhe, 1974.
- McDonald N.S. et al. Int.J. Appl. Rad. Isotopes, 1975, 26, p.631.
- 6. Дмитриев П.П. и др. Атомная энергия, 1974, 37, с.496.
- Thakur M.L., Nunn A.D. Int. J. Appl. Rad. Isotopes, 1972, 23, p.139.
- De Pasquali G., Von Goeler E., Peacock R.N. ~ J. Inorg. Nucl. Chem., 1959, 11, p.257.
- Neirinckx R.D. Radiochem. Radioanal. Lett., 1970, 4, p.153.
- Helus F., Maier-Borst W. Radiochem. Radioanal. Lett., 1973, 13, p.271.
- 11. Wood R.A., Wakakuwa S.I., MacDonald N.S. J.Inorg. Nucl. Chem., 1972, 34, p.3517.
- Gruverman I.J., Kruger P. Int. J. Appl. Radiat. Isotopes, 1959, 5, p.21.
- Brown L.C., Beets A.L. Int. J. Appl. Rad. Isotopes, 1972, 23, p.57.

- 14. Beavier J.E. et al. Progr. Nucl. Medicine, 1978, 4, p.28.
- 15. Dahl J.R., Tilbury R.S. Int. J. Appl. Radiat. Isotopes, 1972, 23, p.431.
- 16. Omori T. et al. Radiochem. Radioanal. Lett., 1980, 44, p.307.
- 17. Otozai K. et al. Nucl. Phys., 1966, 80, p.335.
- 18. Wing J., Huizenga J.R. Phys.Rev., 1962, 128, p.280.
- 19. Usher O.H. et al. Radiochim. Acta, 1977, 24, p.59.
- 20. Fukushima S. et al. Nucl. Phys., 1963, 41, p.275.
- 21. Fukushima S. et al. Nucl. Phys., 1965, 69, p.273.
- 22. Porges K.G. Phys.Rev., 1956, 101, p.225.
- Wasilevsky C., Vedoya M.V., Nassiff S.J. Int. J. Appl. Rad. Isotopes, 1986, 37, p.319.
- 24. Smend F., Weirauch W., Schmidt-Ott W.D. Z.Phys., 1968, 214, p.437.
- 25. Авчухов В.Д. и др. Изв. АН СССР /серия физ./, 1980, 44, с.155.
- Williamson C.F., Boujot J.P., Picard J. CEA-R 3042, CEN, Saclay, 1966.
- 27. Grütter A. Nucl. Phys., 1982, A383, p.98.
- Гопыч П.М. и др. В кн.: Материалы совещания по программированию и математическим методам решения физических задач. ОИЯИ, Д-10,11-11264, Дубна, 1978, с.330.
- 29. Nelson F., Michelson D.C. J. Chromotogr., 1966, 35, p.414.
- 30. Blann M. Overlaid ALICE Code, CCO/3494-29, 1976.

Зайцева Н.Г. и др. Функции возбуждения реакций ^{118,114,прир.}Сd(9,12)¹¹³ и выходы ¹¹¹21 при облучении инженей кадиия протондии с энергией ~65 НэЭ

Методом стопки фольг измерены функции возбуждения ¹¹³ Сd(p, 5s)¹¹¹ Is и ¹¹⁴Cd(p, 4s)¹¹¹ Is реакций в энергетическом интерезля 63 → 3 MoB. Экспериментальные результаты сравниваются с теоретическими функциями еозбуждения, рассчитанными по программа ALICE, основанной на гибридкой модели дрерных реакций. В том же энергетическом интерезле определены эфективные сечения ^{MMP}Cd(p, zs)⁸¹¹ Is реакций. Определены выходы ²¹³Is и количество примесей ¹¹⁴mIn в тонких и толстых ниженях ⁸¹⁸Cd, ²¹⁶Cd и ^{лрир}Cd, облученных протонани с начальной энергней 63±1 MoB. Кумулятивные выходы ¹¹³Is из этих инженей были равны 16,7; 15,7 и 10,4 иКи/икА-ч соответственно. Разработан метод ра² диохимического выделения индия в состоянии без носителя из облученного кадиия, основанный на различном поведении ионов индия и кадмия в системе катиоиит Дауэкс 50х⁴ - растворы HBE различной концентрации. Определена радионухлината конечного препарата ¹¹¹Is.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1988

Перевод

P6-88-911

#6-88-911

Zaitseva N.G. et al. Excitation Functions and Yields for ¹¹¹In Production Using 113,114, max Cd(p,xm)¹¹¹Im Reactions with 65 MeV Protons

Excitation functions for the ¹¹³Cd(p, 3n)¹¹¹ In and ¹¹⁴Cd(p, 4n)¹¹ in reactions were measured by the stacked-foll technique in the energy range from 63 to 3 MeV. The results were compared with theoretical calculations based on the hybrid model using the well developed computer code ALICE. For the same energy range, the effective cross-sections were determined for the matCd(p, m)¹¹¹ In reactions. At the initial proton energy of 63 MeV for production of 114m from ¹¹³Cd, ¹¹⁴Cd and ^{matCd} the cumulative yields were found as 16.7; 15.7 and 10.4 mCl/µAh, respectively. The contamination of the undesired nuclide ¹¹⁴mIn was determined. The carrier-free ¹¹¹ In activity was separated from the cadmium cyclotron-target by procedure based on ion exchange chemistry. The radionuclide purity of the final radioindium was determined.

The Investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988

22 коп.

Редактор Б.Б.Колесова. Макет Т.Е.Попеко. Набор Л.В.Пахомовой, О.В.Шестаковой. Подписано в печать 06.02.89. Формат 60х90/16. Офсетная печать. Уч.-изд.листов 1,43. Тираж 375. Заказ 41610. Издательский отдел Объединенного института ядерных исследований. Дубна Московской области.