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Preface

This report presents our developments in software, connected

with digital image processing & analysis.

In image processing, we resort to either alteration of grey

level values so as to enhance features in the image or we resort

to transform domain operations for restoration or filtering.

Typical transform domain operations like Karhunen-Loeve

transforms are statistical in nature and are used for a good

registration of images or template - matching. Image - Analysis

procedures segment grey - level images into images contained

within selectable windows, for the purpose of estimating

geometrical features in the image, like area, perimeter,

projections etc.

In short in image processing both the input and output are

images, whereas in image analyses, the input is. an image whereas

the output is a set of numbers and graphs.
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DIGITAL IMAGE PROCESSING & ANALYSES

I. INTRODUCTION

GENERALIZED IMAGING SYSTEMS :- Imaging systems can produce

only an imperfect replica of an object. Even when the imaging

system is perfect and the imaging conditions are ideal, the

phenomenon of diffraction limits the closeness of an object to

its image. In reality, the defects in the imaging system

(aberration, coma, etc.) and pre imaging conditions often

severely limit the quality of images obtained . To improve the

quality, there are two approaches: image-enhancement and image

restoration. An attempt is made to make the images "look" better

than the original in the first approach. In order to achieve

this, techniques like contrast stretching & histogram

egualization (described later) are adopted. In the second

approach, an attempt is made to "invert" the degradation

processes so that a good estimate of the object is obtained. The

degradative processes could be modeled in the following manner.

Intensity at a point in the image is contributed by all points in

the object to a greater or lesser degree. This phenomenon is the

well known Diffraction - effect. When the imaging aperture is

circular, a point source gives rise to a blurred image. The

blurring effect can be removed by deconvolution procedures

(discussed later) and a better quality image could be obtained.



IMAGE ENHANCEMENT AND IMAGE RESTORATION:

Enhancement is the attempt to improve the appearance of an

image for human viewing or subsequent machine processing. In this

case there does not exist an 'ideal' image, as in the case of

image restoration. Examples of enhancement techniques would be

the pseudocolourinq of images that are monochrome and the

emphasizing of contrasts in the image. Mathematically, two

dimensional grey tone images can be described by a brightness or

intensity function I, whose value varies with the location (x,y)

in the image plane.

I = f(x,y)

'I' may take a continuous range of values as in most natural

images acquired by analog means or a limited number of discrete

values. The various values taken by 'I1 in a monochrome (grey-

tone! image are known as 'grey-1evels' and are graded in

increasing intensity from black to white.

Ir.aqe enhancement involves the cran=foraation of intensity

function of a given image with a view to increasing the quality

of the image. Practical image forming svstems have limited

resolution and so it is permissible (without loosing too much

information) to scan a picture line by 15ne, as in television

scanning to convert the image into a time-series signal. The

picture or image can also be described as a two dimensional

matrix of discrete individual pixels, whose values vary from one

pixel to another. Scanning and two dimensional sampling are thus



two important preludes to image -processing -operations.

Digital enhancement comprises of three main categories of

processing operations:

i) Geometric or address dependent operations,

ii) Point or pixel operations and

iii) Neighbourhood operations.

Examples of geometric operations are image translation,

rotation and magnification. Such processing may serve to correct

for distortion. Point operations are carried out in the same way

for each picture element in the image, independent of its

position or the value of its neighbouring elements .e.g., log

compression, histogram modification, arithmetic combinations,

Boolean combinations, etc,. Neighbourhood operations modify the

value of the pixel in a way that depends on the intensity values

of the neighbouring pixels.

Other sources of degradation are relative motion between the

object and the imaging system (medical images - computed

tomographic images), turbulence in the medium between the object

and the imaging system {astronomical images), object plane not

normal to the axis of the imaging system, etc. All these will

effect the PSF's and will degrade the images generated.

Restoration is that process in which the computer is used to

invert some degradation phenomena that the image has suffered in

the process of formation. For example, blurring or geometric



distortion is to be studied & linked to various causes,

mathematical model is formulated and then a process to invert

this degradation is worked out. Thus using restoration techniques

it is possible to restore an image that has suffered the ill

effects, of say, transmission through atmospheric turbulence or a

fault in the focusing of the imaging system, as closely as

possible to an 'ideal' image.

Let us denote object -plane and image -plane as f(x,y) and

g (x ' ,y' ) respectively and the point spread function by

h(x,y,x',y') -as the contribution of a " point source at

coordinates x,y in the object space" to the pixel at x',y' in the

image. Thus the image g(x',y') can be written as

g(x',y')= I I f(x,y).h(x',y ,x,y) dx dy +n(x',y') (1)

where n(x',y') denotes "noise".

A significant point to remember is that the PSF is an

indicator of the quality of images and when PSF is narrower, the

degradation is minimal.

Turbulence in the medium is difficult to model correctly. For

example the atmospheric turbulence will cause changes in the

refractive index of the medium. Astronomical images will thus be

subjected to degradativa processes, which are uncontrollable.

Using the arguments of Central Limit theorem, the PSF may be



shown to obey Gaussian distribution. Thus,

h(x,x',y,y') = l//2no x exp[-{(x-x1)2+(y-y')2)/2a2] (2)

when the axis of the imaging system is at an angle to the

normal, the nature of PSF will be point-source dependent. Such

PSF's are called shift variant PSF's. Image restoration

techniques are broadly classified into - techniques for shift

invariant and that for shift variant PSF's.

Shift Invariant PSF & Restoration:

When the PSF is shift invariant, the integral in equation (1)

becomes a convolution. Thus

g{x,y) = f(x,y) * h(x,y> (3)

where * denotes the convolution operation.

Taking Fourier transform, we have

G{wx,wy) = F(wx,wy) . H(wx,wy) (4)

where wx , w refers to spatial frequencies.

Thus,

F(wx,wy) = G(wx,wy) / H(wx,wv) (4)

As, the RHS is known, F(wv,wir) could be determined. Taking the
JS. y

inverse transform we have f(x,y). This operation is called ideal

inverse filtering. However, when the noise term is taken into

account, we obtain only an estimate of f(x,y). When the effect of

noise predominates in a given image, inverse filtering techniques

become unstable, particularly when H(wx,wy) becomes smaller. It

is here that Wiener estimation theory becomes useful. Wiener

filtering estimates the filter coefficients statistically using



power spectral methods. Such of those minimum error coefficients

are employed to obtain the so called "Wiener filters".

It can be easily seen that statistical variability is computed

from past values of the time series, to predict the values of the

coefficients. The approach adopted for realizing Wiener filtering

assumes that the power spectral densities are very well known and

the time series is in a wide sense stationary. Both are open to

question and so a number of other interactive tunable filters are

used.

Shift Variant PSF & Restoration:

When the PSF is shift variant, equation (1) can not be

simplified: and the restoration task becomes much more difficult.

Many interactive techniques are being tried out for this purpose

and we shall not elaborate this topic any further.



II GREY LEVEL PROCESSING (POINT OPERATIONS)

An image is a two dimensional representation of information,

and it is represented as a function of the space coordinates

(x,y) . Such a continuous function of x and y is sampled at

regular intervals of x and y and the sample values

(corresponding to the intensity at that point) are approximated

to the nearest integers. The integers are given bi'.iary

representation and stored in the form of a matrix of finite

dimensions, i.e., intensity (grey scale) at the point (i,j) is

denoted by im(i,j) where i,j are integers and im(i,j) is an

integer array. Some basic properties of images are:

(I) im(i,j) > = 0 for all i,j

(II) im(i,j) < = M for all i,j

(III) im(i,j) = 0 for i > N or j > N where N x N is the total

number of points to which the image is digitized.

Image processing or picture processing can be defined rather

widely. It encompasses all the following :

a) Picture digitisation and coding : conversion of pictures from

continuous to discrete form; and compaction of the resulting

image for efficient storage and transmission.

b) Picture restoration and enhancement : Improvement of degraded

pictures and increasing the guality of images {discussed earlier

in chapter I ) .



c) Picture segmentation and description : Transforming an image

to yield a decision or a set of parameters that characterizes it

completely.

The aim of image processing is to enhance the signal to noise

ratio and to extract hidden information. The topic 'image

processing' covers essentials of digital picture processing,

pattern recognition, feature extraction, image enhancement and

standardization procedures for the purpose of improving the

quality of images.

Generally image or picture processing are discussed under two

categories: i) pre-processing and ii) post processing. Pre-

processing is specific to the modality of generating pictures.

For example in ultrasonic imaging, the video signals are routed

throucyh a PROM-lookup- table to compensate for the logarithmic

attenuation of ultrasound.

Post processing refers to the processes carried out to the

data or information in the main memory. Processing of such data

(spatial or array processing) is considered either for

statistically processing the information or analyzing the image

by converting the grey level images into binary images.

(Discussed later). Technical requirement of REAL TIME processes

are stringent as processing is required to be completed within 20

milliseconds.



DESCRIPTION OF AN IMAGE FROM STATISTICAL ANGLE:

An image will consists of N x M pixels arranged in an array.

Each pixel shall contain an intensity level. A histogram of an

image is a plot of the number of pixels in each grey level, which

denotes the probability of occurrence in a gray-level. It is

called the statistical descriptor of an image. See Fig. 2.1 for

the probability density distributions in a typical grey level

image. Fig. 2.2 gives the cumulative density function (CDF) for

the same image.

To evaluate a histogram, we treat grey levels as discrete and

scale down the number of pixels so that the histogram represents

the probability density function of the grey level distribution.

Each point on the curve will represent the probability that a

pixel has that particular grey level value.

The area under the histogram or the probability density

function (PDF) is invariant. In the case of histogram it is

always equal to the total number of pixels in the image. The PDF

is scaled down in such a way that the area is always equal to

unity (which is consistent with the statistical definition of a

PDF) .

HISTOGRAM MODIFICATION

The basis of histogram modification is one of redistribution

of pixel values such that the area under PDF curve remains the

same. The average brightness of the original image is given by ,
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nX1 x p(x) dx ,
0

while the contrast o by

a2 = Cx-x')2 p(x) dx

Jo
Hence by changing the histogram P(x), we can alter the

brightness, contrast, etc.

Histogram Modification

Let P(x) be the PDF of the original image and P(x^) the

probability that a pixel in the original image contains the grey

level Xj_. Let P(y) be the desired PDF or the histogram ; where

'y' represents the grey levels of the enhanced image. We have the

equality,

fx fy
i Px(s) ds = | Py(s) ds = 1 for the CDFs. (See Fig. 2.3)
Jo Jo
It is evident from the above figure, that Y can be obtained as

I
J

a function of X. The integral I Py(s) ds can also be looked upon
O

as a transformation on Y. Hence we may write,

G(Y) = I Py{s) ds

Jo

To find Y, we need only to find the inverse transformation of

G.

11
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Y = G 1{G{Y))

1| Py(s) ds I
L 0 J

= G"1

This equation is the required transfer function between X and

Y. The same algorithm is illustrated geometrically (See Fig.

2.3). It also gives a better insight into the problem. Cumulative

density function (CDF) are drawn on the same graph as can be

drawn choosing the same coordinates for both X and Y as

shown in fig. 2.3. We have for each X(say x = x^) the value for

I Px(s) ds and also we find the value cf I Py(s) ds which equals
J J
the value of CDF(x^) . The value of Y for which CDF of Y equals

CDF of X is the required transformation between X and Y.

HISTOGRAM EQUALIZATION

It is a special case of histogram modification for image

enhancement. Here the Py(Y) is a uniform PDF. It means we desire

equal probability of occurrence for all the grey levels.

Equalization of the histogram improves the quality of an image by

redistributing its pixels uniformly over the entire grey level

range. That is , if {Aii (i=l to Kl) represents the grey levels of

the input histogram and {Bj|(j=l to K2) then.

13



kl k2 i2
X Ai = I Bj and kl/k2 = N(integer), Bj = I Ai

The result is an array transforming every subset of I Ail to an

unique Bi. As equiprobable distribution of pixels yields maximum

information , the resultant image can reveal hidden features.

Fig. 2.4 (a) shows the photograph of a girl. It can be seen

that details of facial features are absent. We shall demonstrate

that by adopting histogram equalization procedure, such details

can be restored, to large extent. The input image has the grey

level distribution between 100 and 255. During the processing

schedule histogram is equalized such that the entire gray level

range is occupied. The processed image is shown in Fig. 2.4(b)

that looks much better, even when it is displayed in 8 gray

shades and printed on a dot matrix printer. A comparison of Fig.

2.4(a) and 2.4(b) shows that the hidden details are extracted and

the processed picture contains more visual information to any

observer.

As we indicated earlier, the grey level distribution (GLD) is

the statistical descriptor of an image. The manner in which it

can be modified can be specified by a transformation function.

The transformation can be specified by any of the following

functions - linear, exponential or non - linear, as illustrated

in Fig. 2.5. When a raw image is subjected to any one of the

above transformation, the image data or the matrix is altered,

14
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or r e d i s t r i b u t e d in i t s value. That i s to say, the pixel

intensities of the processed image get altered as specified by

the input-output transformation relations.

Fig. 2. r: shows a sector scan image of kidney, in black and

white. The grey levels in the raw image span from 0-200. Those

pixels whose grey levels lies within the window 100 to 180 are

stretched to occupy the levels 0-255 in the processed Image.

Notice that the boundary of the i n t e rna l organ i s highly

pronounced in the processed image.

In Fig. 2.7 the left bottom quadrant of the raw image (shown

in Fig. 2.6) is depicted to a magnified scale. The original image

with window corresponding to that guadrant is also shown on RHS.

The grey levels in the region.s of in t e res t (ROI), from 100-180

leve ls are s t re tched to occupy 0-255. Such operat ions are

employed to scrutinize magnified areas.

18
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Fig. 2.6-c: Raw image (ultrasonic sector scan of kidney recorded
in 35mm film & diqitized using densitometer of 8 bit
resolution, or 256 levels). Print out on dot matrix
printer, 4 <jrey shades, generated. Grey-level
histogram of raw image is shown in lower part.
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Fiq. 2.6-d: Processed image where qrey level stretching is
effected. Levels 100-180 in Fig-a have been stretched
to occupy 0-255 levels. Print out on dot matrix
printer, 4 grey shades, generated. Grey-level
histogram of processed image is shown in lower part.
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Figure 2 .7 appears on PttRe 28 along with Fig. 3 . 1 .

Fig 2.7 : Region of interest processing is depicted in this
figure. Input image is the same as in the previous
figure.

2.7-a: One quadrant of original image is shown magnified.
2.7-b: Raw image(Ultrasonic sector scan of Kidney recorded

in 35mm film & digitized using densitometer of 8 bit
resolution or 256 levels. Bottom left quadrant is
shown negated.)

2.7-c: Processed (quadrant) image. Grey level stretching
operation (100 - 180 levels of Fig -a have been
stretched to 0 - 255).

2.7-d: Grey level histogram of Fig -c.

23



Ill TRANSFORM DOMAIN OPERATIONS (GLOBAL OPERATIONS).

Image matrices are transformed into various domains for easy

handling of images such as coding, compaction & transmission.

Such transform domain filtering operations are mathematically

well defined.

Frequency Domain Filtering

From the general theory of signal dynamics, it is known that

convolution achieves filtering. Also, convolution operation in

the time domain is equivalent to multiplication in the frequency

domain and vice versa.

The impulse response function of a system yields information

on the time domain response for an ideal impulse-input. By

inverse transform relationship, we say that the frequency domain

characteristics of a system could be analyzed by using white

noise as the input source. To put in mathematically, one

dimensional relation can be written as -

G(w) = H(w).F(w)

where G(w) is the frequency characteristics of the system.

H(w) is the fourier transform of white noise which is unity

and F(w) is the frequency domain characteristics of the input

signal. As H(w) = 1 and G(w) = F(w)

and hence we call such a filter as "matched filter". All these

arguments are valid only for ideal (no noise) situations.

Filtering operation in general involves permitting certain

24



frequency components and suppressing the unwanted. The

experimenter's interest in specific problems will dictate such

considerations. Preferential selection of frequency components

would highlight the nature of images when other components are

totally absent. Thus unlike the grey level operations, we can

smoothen, deblur or differentiate the picture to alter its

frequency contents or to enhance or highlight hidden details. It

should be realized that in all practical systems, presence of

noise is inevitable and the source of noise could be identified

and noise minimized right at the source. Noise could be picture

independent, picture dependent, uncorrelated point to point, and

also in some cases coherent. We assume the systems to be linear,

shift - invariant and use unweighted averaging for all our

processing operations. We consider "additive noise", which could

be reduced by signal averaging. "Convolved noises" require

deconvolution procedures and are not described in this report.

During filtering operation specific frequency-bands could be

chosen or suppressed, thus making the operation flexible. Such

operations are globally sensitive as spectral estimation is

carried out for the image, as a whole. In filtering operations,

the chosen "transfer function" will determine the

characteristics of the processed image.

Fig. 3.1 depicts a model of a square containing a circle

within. Fourier transform of the model is depicted in 3.1(c).

25



Fig 2 7 Region ot interest processing is depicted in this figure Input image is the samu as in the previous
figure

2 7 a One quadrant of original image is shown magnified
5 7b Raw image (Ultrasonic sector scan ot kidney recorded in 35rp,n film & digitized using densitometer of

8 bit resolution or 255 levels Bottom left quadrant is shown negated )
27 c Processed (quadrant) image Grey level stretching operation (100 180 levels ot Fig a have boon

stretched to O 255)
2 7 d Grey level histogram ot Fig c
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Corresponding grey level distributions are shown in 3.1(b) &

3.1(d) respectively. Note the symmetrical repeat patterns of

spatial frequency distribution in 3.1(b). Maximum information is

contained in a very small region around the center (zero

frequency). Two specific pseudo colour are assigned for the

geometrical figures. The Grey Level distribution shows

accordingly only two distinct distribution.

We shall now consider salient features of specific filters

used in image processing application.

Ideal filter: This filter is of academic interest alone. Box -

like transfer function is difficult to implement, although

selectable in softwares. But as the transient effects also called

Gibb's phenomenon, are difficult to eliminate, they are seldom

employed, exclusively. However, Hanning and Hamming operations

which will reduce such effects, are employed in practice. Fig.

3.2 depicts the frequency characteristics of such filter.

Trapezoidal filter: This filter is a modified version of ideal

filter, where the transition band is increased which consequently

reduces the Gibb's phenomenon.

A geometrical object is modeled (in ND 560 system) as shown in

Fig. 3.3(a). A trapezoidal filter operates on the raw image, to

eliminate high frequency noise. It can be seen that background

noise has been suppressed, to a great extent but the edges in

27
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the geometrical figure appear corrugated in the processed image.

Fig 3.3(b) and Fig. 3.3(d) show respective grey level

distribution. The importance of low pass trapezoidal filtering is

that it eliminates "noise", by cutting down higher frequency

components but (because of averaging effect) the edges are no

longer preserved with sharp features, as depicted in Fig. 3.3(c).

Butterworth Filter: For a monotonous and maximally flat

response at zero frequency, the Butterworth filter is chosen. The

transfer function variations near the cut off are not sharp. In

the stop band the transfer function rolls off at -6dB per octave

per order n of the filter, thus monotonously decreasing to zero

at higher frequencies. See Fig. 3.4 for the frequency

characteristics of a butterworth filter, in 1 - dimension.

A raw image (Kidney sector scan) & the Fourier domain

representation of the image convolved with Butterworth low pass

filter are depicted in Fig. 3.5(a) & (b) . The Fourier transform

of the image is multiplied with the transfer function of

Butterworth low pass filter and the product is depicted in Fig.

3.5(b) in the frequency domain. The respective GL distributions

are shown in Fig. 3.5(c) and Fig. 3.5(d). The Fourier domain

representation shows that the information is located around the

zero or dc value. Fig. 3.6(b) depicts, in a similar manner, the

change that result in the image when subjected to trapezoidal

filtering. The processed image depicts additional details not

29
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Fig. 3.6 appears on page 33 alongwith Fig. 3.7.

Fig 3.6-a: Raw image (Ultrasonic sector scan of Kidney recorded
in 35mm film & digitized using densitometer of 8 bit
resolution or 256 levels).

3.6-b: Image obtained by Butterworth low pass filtering.
3.6-c: Grey-level histogram of Fig -a.
3.6-d: Grey level histogram of Fig -b.
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revealed in the raw image.

Gaussian filter: This filter has monotonous response (without

ringing). The response is maximum and symmetric about it's center

frequency. Fig. 3.7 shows the one dimensional representation of a

Gaussian filter. Two dimensional Gaussian filter is obtained by

revolving the curve around the central axis. Such filters are

depicted usually by plan views. Fig. 3.8(a) shows the input

image and the Fig. 3.8<b) shows the transfer function of Gaussian

filter. This is a spatial frequency domain representation (plan

view of the convex dumb bell shape). Fig. 3.9 depicts the

processed image after gaussian blurring. Fig. 3.10 depicts

reverse operation of deblurring to obtain the original image.

Fig. 3.11 depicts the effect of deblurring the image with known

Fourier transform. As the operations are reversible, the images

are restored to their original form, as can be seen by a

comparison of Fig. 3.9(a) and 3.10(b).

Image compaction & Transform Coding:-

An image is represented as a set of data vectors which usually

has highly correlated elements. When the image is transformed

into another set of vectors, the size of the data vector

determines the order & dimension of the transform. We know that a

continuous "picture function" f(x,y) can be represented by a set

of orthogonal basis functions, for a bandlimited and highly over

sampled picture.
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Fig 3 6 a Raw imago (Ultrasonic sector scan of kidney recorded in 35mm film & digitized using densitometor
ot 8 bit resolution or 256 levels)

3 6 b Imago obtained by Butterworth low pass filtering
3 6 c Groy level histogram of Fig -a
3 6 d Grey level histogram ot Fig b
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Fig. 3.10-a : Gaussian blurred image
3.10 b : Dehlurred image. (Gaussian deblurring transfer function limited to near origin)
3 10c : Grey level histogram of Fig -a.
3 10-d : Grey level histogram of Fig -b.

Fig 3.11 -a : Raw image (Ultrasonic sector scan of kidney recorded in 35mm film 5 digitized using densitomi;t<;i
of 8 bit resolution or 256 levels).

3 11b : Imago obtained by Gaussian deblurring with known Fourier Transforms
3.11 -c Grey level histogram of Fig -a.
3 11 d : Grey level histogram of Fig b



Orthogonal transforms are classified into two types. (i)

Optimal transforms (ii) Sub optimal transforms.

The property of optimal transforms is reflected in i t s

characteristics that i t gives minimum errors in reconstruction.

Such transformations resu l t in a matrix of completely

decorrelated elements. But the sub-optimal transforms do not

decorrelate the data completely and gives r ise to errors in

reconstruction.

Image matrix contains redundant information and so i t is

possible to compact i t , if optimum transforms are employed.

Optimum transforms are those which could completely decorralate

pixel to pixel dependencies. All kno*n transforms like fourier,

Walsh, Hadamard, Haar & such transforms are sub-optimal

transforms because the elements of transformed matrices are not

fully decorrelated. They are pa r t i a l l y decorrelated. The

Karhunen-Loeve transform is the optimal transform because the

covariance matrix for image block data is diagonalized leading to

fully decorrelated K-L transform variables. (See Appendix 1 to 6

for details) Out of these the DFT is the transform involving

complex transformation kernels and thus involve high

computational timings for operations. Others require

comparatively lesser timings & hence more suitable for on-line

processing applications. K-L transforms being optimal reduces the

Image data into a set of independent (uncorrelated) components.

These components are generated from two parameters namely - mean
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vector & co - variance matrix, and can be used to generate the

image data with different and decreasing extent of errors.

GREY-LEVEL CO-OCCURRENCE, (MATCHED) TRANSFORM:In this

transformation two images of the same object (taken by two

sensors) are compared. As the images are identical, the two

dimensional matrix [h] of grey level histogram will have non-zero

values along the diagonal alone.. Element h(i,j) represents the

number of pixels with grey level i in picture 1 that have grey

level j in picture 2. When the two pictures are not-identical,

then [h] is no longer a diagonal matrix, but it has non diagonal

entries. The matched transform tries to generate one picture

obtained by linear representation of the [h] matrix. Karhunen-

Loeve transform, (or principal component analyses, as it is also

called) can be used to carry out this conversion to linear

representation. The selection of the component with largest eigen

value leads to the image with least errors as compared to the

images obtained by any one of the other components. Fig.3.12

shows two images for the purpose of generating "matched

transform" based image. Fig. 3.12(c) shows two dimensional grey-

level co - occurrence histogram, which is a diagonal matrix. The

reconstructed image based on "matched transform" operation is

shown in Fig. 3.13(c). The image appears to be smoothed; however

all edge - details are preserved.
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Walsh-Hadamard transform(WHT): This is a suboptimal orthogonal

transform with square wave transformation functions. These are

real valued functions unlike DFT which is a complex function. WHT

is described by sequencies which is half the number of zero

crossings in the interval (0,1). The WHT coefficients are called

Sequency components. This transform is computationally fast

because they involve only l's and -l's. Figure 3.14 shows a

geometrical figure a circle within a square. "W-H compacted

image" is shown in Fig. 3.14(c). It is advantageous to use such

transforms for coding & transmission. Fig. 3.15 shows model -

input image - matrix (8x8) and the intensity levels are

arbitrarily varied from 1 to 64. This image is used to check the

transform routines.

Discrete Cosine Transform(DCT):This transform is similar to

WHT, with the following dissimilarity. The basis vectors are

sampled cosine functions and the transformation matrix is given

as

H= 1//N [HR1]

r i, 1 = 0where H
kl

/2cos[ (2k+l)in/2Nl k - 0 ,1', 2. . . .N-l
1 = 1,2 N-l

The computation algorithm is made fast using FFT algorithms

for 2N points. DCT is slow but efficient computationally because
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the forward and the inverse transformation kernels turn out to be

the same. Fig. 3.16 gives DCT of image data shown in Fig. 3.15.

It can be seen that only the first row & first column carry the

transformed / coded information of the image data: also that the

third, fifth and seventh rows & columns are all zero. Thus, data

compaction is very large indeed.

Haar Transform: This transform has elements 1, -1, 0 and

powers of 42. The first coefficient is the mean of the vector,

the second is the difference of means between first half and the

second half elements of the vector. The remaining coefficients in

groups of power of two ( 2 , k=l,2,3,4...,n-1) are weighted

(weight equal to [/2] ) difference of means of the vector

elements at different positions of the vector and the element

count for averaging is given as 2 1, l=n-2 , n-3 , . . . , 1, 0 . For

example when the vector is of 4 elements, the third coefficient

is the difference of first two elements weighted by /2 and the

fourth element is similarly weighted difference of third and

fourth element. It can be verified easily that Haar transform of

N element vector involves N(n+1) additions and 2+21+22+. ..+2n~1

multiplications.

The Haar transform is both globally and locally sensitive as

it involves partr of the vsctor for computation of third and

subsequent coefficients cf the transform. Fig. 3.17 gives HT of

image data shown in Fig. 3.15. It can b-3 seen that only the first

row and the first column carry the transformed / coded
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Fig 3.16: Discrete cosine transform of image data shown
in Fig 3.15.
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Fig 3.17: Haar transform of image data shown in Fig 3.15.
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information of the image data: and that because of repeatability

in the transformed elements, compaction of the image data is

achieved, to a large extent.

Slant transform: The Slant transform is another fast,

su: ptimal, orthogonal transform, which uses sawtooth waves in

place f sinusoids or step functions for fitting the input data,

leading to the transfor: d output image. See Fig. 3.18 for the

coded image representation corresp ".ding to input image shown in

Fig. 3.15. It can be seen that except for the first & the second

elements in the first & second row and column, all other values

are zero: thus reducing the image to a three number -

representation in place of 64.

Hartley Transform: It is an orthogonal sub optimal transform

which has a real valued kernel. As before except the first row &

column all other values are zero. Only 14 numbers are required to

represent 64 element image.

Hartley transform is quite similar to the DFT, but has no

complex terms and therefore it is quite fast and efficient. It

can be computed using the FFT also. The advantages of Hartley

transform over FFT for real data are 1) it requires only half the

array space, 2) it has identical forward and inverse transforms,

3) it is a direct conversion to power spectral density function.

See Fig. 3.19 for coded image representation corresponding to

input image shown in Fig. 3.15.
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Fig 3.18: Slant transform of image data shown in Fig 3.15.

32.50 -1.71 -1.00 -0.71 -0.50 -0.30 0.00 0.71
-13.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-5.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-4.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-2.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fig 3.19: Hartley transform of image data shown in Fig 3.15.
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In essence, all transform domain operations generate either

correlated or uncorrelated variables. The transformed matrices

are then ordered {or arranged in some sequence) and denoted using

the principles of matrix rendition. Such a step provides elegance

to the whole approach and a possibi l i ty to encode image

informations for possible applications like "on-line" Processing,

Compaction, image transmission, etc.

The inverse operations recognize degradative processes

involved in the sequence of imaging and provide a technique to

recover information lost in the sequence of operations. It is

here that Wiener's principle of minimum mean - square error

(MMSE) plays a dominant role, although the problem is reckoned

from the statistical view points. Thus statistical communication

theory becomes the hallmark for progress in our understanding.

Wiener - Khinchine's theorem namely "Auto correlation and

Power Spectrum are Fourier transform pairs" provides an

experimental technique to link the Statistical & the Engineering

approaches: And i t is only proper that K-L transform adopts

s t a t i s t i c a l parameters like the covariance matrices for

generating fully decorrelated variables which finds various

applications in Image processing, proper regis t ra t ion of

satellite images, template matching, etc.
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IV. SPATIAL WINDOW PROCESSING (NEIGHBOURHOOD OPERATIONS)

A moving window of size (n x m) is subjected to many image

processing operations. Neighbourhood processing as the operation

is also called, involves operations on N x M pixels. Low pass

filtering operations such as local averaging (both recursive &

non-recursive), Jong-Sen filtering (k < 1), median filtering,

percentile filtering, maxmin / minmax filtering, are employed to

smoothen the appearance of the image. High pass filtering such

as laplacian filtering, Jong-sen filtering (k > 1), and image

shift-filter are employed to enhance edge details in images.

Kuwahara filtering is a low pass statistical filter which does

not "smear" the edge information because of the folding type of

operations, unlike tivf trapezoidal filter.

Neighbourhood processing, as above, are dependent on the

surrounding pixel values. These operations thus involve

convolution kernels. These kernels are specific to different

types of the filtering employed. There are two types of filtering

operations generally employed in image processing . They are non-

recursive & recursive filtering. In non-recursive filtering, as

in say local averaging , the value of all the pixels inside the

window is substituted by the average value (of groups of pixels

within the window). The window is moved by one window size to the

right & the process is repeated, till the entire area of the

image is scanned. In this way, abruptness in the pixel data is

smoothened and uniformity in the picture is introduced. It can be
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inferred that 9 x 9 window will smoothen the image better than 3

x 3 window. The average values computed in the previous operation

have no bearing on the future operations & hence the operations

is said to be non-recursive. Fig. 4.1 illustrate the effect of

non - recursive window operation carried out on the raw image. It

can be seen that the pixel values have also been altered giving

an overall effect to the global nature of the image.

In recursive window operations, the average value computed for

one window is assigned to the central pixel and the window is

shifted by only one pixel to the right. In the actual computation

scheme, the sum of pixel-values for one column of pixel to the

left of the window is replaced by that for the next column when

the window-average for the second position is computed and this

sequence is repeated till the entire area is scanned. It can be

seen that the computational scheme takes advantage of the

previous calculations and thus the process becomes recursive. In

general the past value will have its bearing on the values

presently computed. Such operations are called recursive

filtering.

Jong-Sen filtering: This is a window filter which not only

takes into account the window mean, but also a factor K of

deviations in pixel values from the mean for computing the output

value. Therefore the constant multiplier K can be varied to

obtain high pass as well as low pass filtering. For values of
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Pig. 4.1 appears on pa?e 50 alongvith Fig. 4.2.

4.1-a: Raw image (Ultrasonic sector scan of Kidney recorded
in 35mm film & digitized using densitometer of 8 bit
resolution or 256 levels).

4.1-b: Image obtained by non-recursive window (3x3)
averaging.

4.1-c: Grey-level histogram of Fig -a.
4.1-d: Grey level histogram of Fig -b.
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K < 1, it acts as a low pass filter and for K > 1, it acts as a

high pass filter.

Window averaging operations with N points window, produces an

improvement of /N in the SNR. The convolution kernel for local

averaging with 3 x 3 window is given by

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

and it can easily be seen that the information /details will

be average''.

Kuwahara Statistical Filtering: It is a statistical filter

which estimates parameters like mean and variance of four

overlapping quadrants of a window with a common pixel in the

picture. The mean of the window corresponding to the minimum

variance is chosen and put for the common pixel. This smoothing

operation also preserves the edges information.

Kuwahara filtering is superior to any other low pass filter

(even better than the median filter that has better edge

preservation as compared to window averaging) to a large extent.

The window size here should also be chosen with care, taking into

account noise effects and artifacts. In Fig. 4.2, a noisy

geometrical object is subjected to Kuwahara filtering of (5x5)

window. It can be seen that the processed image is superior even

49



W U T FOR PH0O5SSINC
MM1 .

FILTERING OPESfiTIOHS IflmCU HUEMCIIK
1118 -

« > COLOUR8 i ? 2 2S6 SMV LEUKL
<c> CLEAR SCHSBt: :

(A 128 1SZ 2S6 OKT UW

Fig 4 1 a Raw imago (Ultrasonic sector scan of kidney recorded in 35mm film & digitized using donsitomotiM
of B bit resolution or 256 levels)

J 1 b image obtained by non recursive window (3x3) averaging
•4 I c Groy level histogram of Fig ;j
4 1 d Groy level histogram ot Fig b

Fig 4 2a Modolod imago of a noisy geometrical ob]octs using ND 560 system
4 2b Grey level histogram of Fig a
42 c Imago obtained by Kuwahara 13x13 wndow filter
4 2 d Groy level histogram ot Fig b



to trapezoidal filtering (Fig. 3.3) in that the edge details

preserved. Such an advantage ensues in view of the fact that the

edges are not smeared as in window averaging because of folding

operations involved. Fig. 4.3 refers to the kidney raw image and

the processed image. The effect of Kuwahara filtering in

preserving the geometric details can again be discerned.

Maxmin Filtering: It operates on the maximum and the minimum

pixel values, computed for the window. The central pixel is

replaced by the minimum pixel value. This is then followed by

computation of maximum pixel value and. substitution. The entire

sequence is recursively executed. Such operations secure noise

removal in image processing applications. This filter is said to

remove white objects on black backgrounds.

Minmax filtering: Here the operations are similar to that of

maxmin filter but in reverse sequence. Consequently, this filter

eliminates black objects on white background.

Shift And Subtract Filtering: Here the input image is shifted

and subtracted from the original image. The image so obtained

will highlight edge-details prominently. The grey level could be

stretched to occupy 0-255 levels, to reveal further hidden

details.

The shift can be done in the X, Y, or XY directions,

respectively depending on whether the the edge is in the X, Y, or
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Fig. 4.3 appears on page 54 alongvith Pig. 4.4.

Fig 4.3-a: Raw image(Ultrasonic sector scan of Kidney recorded
in 35mm film & digitized using densitometer of 8 bit
resolution or 256 levels).

4.3-b: Image obtained by Kuwahara (5x5) window filtering.
4.3-c Grey-level histogram of Fig -a.
4.3-d: Grey level histogram of Fig -b.
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XY direction. The shift depicts the thickness of the edge,

whereas the threshold shows the grey level region of our

interest. Fig. 4.4{a) shows the image when subjected to shift

and subtract operation, shift being in X direction. As the result

of subtraction can be both positive and negative, the zero (dc)

value in the resultant image shifts to mid scale psuedocolour

{green as is evident from the scale in Fig. 4.4). From Fig.

4.4(b), it can be seen that low spatial frequencies have been

removed and the vertical regions of the contours are enhanced.

Digital Laplacian : Laplacian operator sharpens picture

details and removes blur.

Laplacian filtering in the digital form can be described by

the relation.

[ 4f(i,j) - [ f(i+l,j)+f(i-l,j)+f(i,j-l)+f(i,j+l) ] I

where the pixel values are shown in graphical form, as below.

For keeping the magnitude within the fixed word length the

following form is used

I f<i,j) - 1/4 [ f(i+l,j)+f(i-1,j)+f(i,j-l)+f<i,j+1) ] !

The convolution kernel for the Laplacian filter can be given as

-1/4

-1/4 1 -1/4

-1/4
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Fig 4.3-a : Raw image (Ultrasonic sector scan of kidney recorded in 35mm film 4 digitized using densitometer
of 8 bit resolution or 256 levels).

4 3-b : Image obtained by Kuwahara (5x5) window filtering
4 3-c : Grey level histogram of of Fig -a
4 3-d : Grey level histogram of Fig -b.
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Fig 4 4 a Raw image (Ultrasonic sector scan of kidney recorded in 35mm film & digitized using densitomeler
of 8 bit resolution or 256 levels)

4 4 b Image obtained by x shift & subtract on Fig a Both a & b have been magnified to 256x256 pixels
4 4 c Grey level histogram of Fig -a
4 4-d Grey level histogram of Fig -b



As in the shift and subtract operation, the output can be

either stretched to occupy full grey level range for high

frequency emphasis or converted to binary picture based on the

user specified threshold. The pixel is set to 1 if the threshold

is crossed or else it is set to 0. The Laplacian can be combined

{a fractional value added) to the original picture to obtain edge

- enhanced picture. A modeled image (see Fig.4.5) is subjected to

Laplacian filtering with a threshold of 20. (b) is the processed

image where only edge details are preserved & highlighted. As

shown earlier, (c) & (d) refers to GL distribution for (a) & (b)

respectively. It can be seen that Laplacian operator is useful

for edge detection, contouring, edge-enhancement, etc.

TEMPLATE MATCHING: In template matching, a small image

representing a template is moved over all possible positions of a

large image that is likely to contain the template. In our case

the template image consists of a square of side 220 pixels long

with grey level value = 100. A circle of radius 80 pixels and

grey level of 200 is included in the square. This symmetric

object template is matched with the image having same size and

grey-levels. The template is moved around the image by 9 pixels

in x and y directions leading to a matrix of 9x9 size.

In our discussion, first we shall consider case where the size

of the template and that of the image are identical and they

differ only in clarity. We shall compute cross-correlation
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Fig. 4.5 appears on page 58 alongwith Fig. 4.6.

Fig 4.5-a: A noisy image of geometrical objects.
4.5-b: Laplace edge detection with a threshold of 20 on -a.
4.5-c: Grey-level histogram of Fig -a.
4.5-d: Grey level histogram of Fig -b.
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coefficients between the template and the "underlying image part"

for every position- For a perfect match, the correlation

coefficients will have the maximum value lying on the apex of a

cone. This situation is similar to the computation of one

dimensional correlation function, which is similar to that shown

in Fig.4.6.

Fig 4.6 depicts the results of spline analyses.( performed on

the x & y profiles through the apex of correlation matrix). For

the sake of discussions the left half(A) of Fig.4.6 depicts

"effects of noise" with no difference between the template and

the Image. As we proceed along the column SNR is increased from 0

db to 100 db. The correlation coefficients vary from 1.0 to 0.910

respectively. These figures are the same for both X and Y

profiles for egual displacements of pixels, in one direction.

It can therefore be concluded that when the template and the

image are identical in size, the presence of even 100 db noise

can pick out buried similarities, between a given template & its

replica in the image.

Similarly, the right half(B) of Fig.4.6 depicts the situation

when the template & the replica inside a given image differs in

size by 2,4 6 pixels and the SNR in both are the same, with no

noise conditions. It can be seen that the correlation

coefficients vary from 0.980 - 0.945 for equal displacement of

pixels, in one direction.
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Fig 4 5 ri A noisy image ot geometrical ob|(;ctr>
4 5 t i Laplace edge detection wilh a threshold ot 20 on a
4 6c Grey love I histogram ot Fig a
4 b d Grey level hir.togr.'im ot Fig b
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It can therefore be concluded that even when the template &

its replica buried in the image differ by 2,4, or 6 pixel

dimensions, it is possible to identify buried templates in

Images.

When the size difference exists, the profiles can be fitted

with three splines, the central spline-length yields, in pixel

units, the difference between the image and the template (both

vertical and horizontal profiles can be considered). The length

of the central - spline is indicative of the degree of size

mismatch. The outer splines must be of opposite slopes and the

correlation coefficient at the apex must be significant. Degree

of mismatch is indicated by the deviation of apex correlation

coefficient from unity. Presence of more than three splines, in

either profile is indicative of no matching.

Thus using product moment correlation coefficients, inference

on "size differences" and "existence of template" can be made.

To sum up, a spatial window with suitable Kernel is convolved

with image data to locally alter the grey level distributions

within the window. It can be seen that the window operations are

easier to implement and statistical parameters are invariably

used to eliminate noise, or to extract hidden details or to

emphasize boundaries or to delineate geographic ground details

(as in satellite imaging) or for engineering applications as

template matching. It should be emphasized that all the
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operations are well defined mathematically & are invertible and

thus constitute potentially useful techniques to reveal hidden

information.
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V IMAGE ANALYSIS

Image analyses involves conversion of grey level Images into

binary or two level images. It is also called grey level window

operations. When a 64 - level Image information is to be

converted into a binary image, the choice of the window is

decided by the threshold setting of the operator. ( It may be

parenthetically remarked that such an operation makes the

analysis subjective and hence adequate care has to be exercised

for reliable analysis). Binary analysis aims at feature

extraction and characterization. The resultant binary images

often have artifacts, noise, etc., requiring "cleaning up

operations". Logical operations such as AND, OR, XOR and NEGATE

are used in association with dilation, erosion etc., in the

cleaning up operations. Such operations are employed to select

specified or interested regions in the raw image.

A Scanning Electron Microscope{SEM) image was digitized &

"imaged" using the Video Frame Processor developed by our

associate - groups in this section. The digital frame of Image

stored in the system was transferred to IBM PC-AT system for

further analysis.

Fig 5.1 shows the grey level image & the binary converted (180

- 243) image. Pseudocolouring of grey level image is used to

highlight the composite nature of grain size distribution. The

program enables display of both images as well as the
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Fig. 5.1-a : Image data acquired with frame grabber from a SEM photograph of a metallurgical sample. The
image is magnified to 256x256.

5.2-b : Grey level thresholded (180-243) binary image. The image is magnified to 256x256.



distribution of parameters measured on individual objects.

In Fig. 5.2, the objects touching the borders have been

eliminated. Fig. 5.3 shows binary image obts \ried by close holes

operation on the binary image shown in Fig. 5.2(b). To eliminate

smaller objects of erosion size 2, the binary image is eroded

twice (Fig. 5.3). Fig. 5.4 shows reconstructed image of Fig.

5.3(b) with the source image obtained from Fig. 5.2(b) after

close hole operation.

Fig. 5.5 depicts the image after "fermeture " operation on the

binary image shown in Fig. 5.4. This operation is useful in the

reconstruction of broken grain boundaries in metallurgical

samples. Fig. 5.6 depicts the image after "skeletonisation" of

the image shown in Fig. 5.5. This operation is useful in

characterizing the shape of objects, particularly details of

chromosomal features involving the location of centromere. Fig.

5.7 depicts the "selection of objects" with a graphic cursor

(black and white display of the same is shown in Fig. 5.8).

Selected object and its features like projection, area,

perimeter etc. are shown in Fig. 5.9.

To sum up, it can be seen that the binary image analysis can

be used to obtain quantitative information. The given image is

segmented into binary image to get the objects of interest

delineated from unwanted noise and other artifacts. The
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Fig 5.4-a : Image data acquired with frame grabber from a SEM photograph of a metallurgies! sample
(128x 128)

5 4 b : Binary image obtained in Fig 5.3-b is reconstructed (dilation & logical AND) to restore the objects to the
original size.

Fig 5 5a Image data acquired with frame grabber from a SEM photograph of a metallurgical sample
(128 x 128)

5 5b Binary image obtained in Fig. 6.4b is subjected to lormolurc operation ot order 3 (3 dilations followed
by 3 erosions) Notice the merging ot close by ob|(;cts
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LK; 5 8 a Imago data acquired with frame grabber from a SEM photograph ot a metallurgical sample
• 128x128)

5 8 b Binary image obtained by grey level window (180-243) is processed to select object with a graplic
cursor (Black and white image)
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characterization of these objects is done through measurements of

different features such as area, projections, shape factors etc.

These measurements are then subjected to statistical analysis to

arrive at reliable parameters.
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VI CONCLUSIONS

To conceive image transformations from statistical approaches

require greater understanding of not only statistical methods of

image description but also the links between communication

theories and signal processing. Based on such approaches, the

information in the image, per se is maximized by adopting

equiprobc.l ' e distribution of grey levels in the picture: thus

providing a scientific basis to imaging science & processing

methods. Although grey level resolution could be increased by

increasing the number of bits of video - digitisation or

intensity levels, noise level present in the system imposes its

restrictions to quantifying the information. Thus SNR is limited

by a noise in the systems: and averaging of N - digital frames

could be adopted to increase the limit by a factor of /N. The

spatial resolution in principle is limited by the resolution in

the matrix frame chosen for digitizing the spatial distances

(e.g. 512x512 corresponding to a space of dxd cm ) . But, as

mentioned in the introduction, the point spread function (PSF)

actually limits the system resolution. If the PSF is invariant to

spatial & temporal transformation, as is normally the case in

linear, time invariant systems, the inter - pixel influences

which is known a priori, could be eliminated to improve the image

resolutions. Autoregressive (AR) methods is a step in this

direction and is superior to conventional deconvolution

69



procedures. Such super - resolution techniques are becoming

widely used in Image Processing: and the second report in this

series will dwell on such topics.
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APPENDIX 1

Fourier Transform: The Fourier transform of a 2 dimensional

image is a suboptimal, orthogonal transform having a complex

kernel defined as exp[-2nj(ux+vy)], and the transform is given as

F(u,v) = f(x,y) exp[-2nj(ux + vy)] dx dy

where F(u,v) is the Fourier transform of the image f(x,y),

u,v the spatial frequency in x and y direction

respectively.

The inverse transform of F(u,v) to obtain image f(x,y) is

given as

:"(x,y) = F(u,v) exp[2nj(ux + vy) du dv

The above equations are for continuous variables x and y. For

the discrete case these equations can be written as follows

for Fourier Transform,

N-l N-l
F(k,l) = 1/N Z I f(m,n) exp[-2nj(km + ln)/N]

m=0 n=0

and for inverse Fourier transform as
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N-l N-l
f(m,n) = 1/N I I F(k,l) expt2nj(km + ln)/N]

k=0 1=0

The straight forward implementation require NxN complex

multiplications and similar number of additions. If the number N

can be made to be 2 n (by padding the vector by zeros) , the

symmetry in complex frequency plane can be used to a fast

implementation of the transform. The Fast Fourier Transform (FFT)

algorithm reduces these multiplications to N x Log2 N which

yields a significant reduction in the computational timings. The

Fourier transform has some important and useful properties that

are quite useful for simplifying mathematical formulations for

many signal processing applications.

a) Linearity: Fourier transform of a linear sum of functions

is a linear sum of the Fourier transfcrm of individual functions.

The input function f(x,y) has the Fourier transform F{u,v) given

as

n
f<x,y)= I a* fi(x,y)

1=1

n
F(x,y)= I a., F.; (u,v)

1=1

where F^(u,v) is the Fourier transform of function
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b) Scale change: Scale change in variable x,y leads to inverse

change in the corresponding frequency variable in the Fourier

domain. The frequency and amplitude both are affected.

f(ax,by) leads to transform 1/jabj F(u/a,v/b)

c) Shift of position: Shifting a spatial function in distance

x-a leads to addition of phase by ua to the original phase. The

magnitude is invariant to translation.

Mathematically f(x-a,y-b) in the spatial domain is equivalent

to a linear shift of phase in the frequency domain given as

F(u,v)exp(-j(ua+vb).

d) Modulation: A spectrum will be centered around the

frequencies o' the sinusoid if the spatial function is multiplied

by that particular sinusoid.

If the spectrum is to be centered about uQ and VQ , the frequency

shift equation is F ( U - U Q ) and in space the same can be

represented as f(x,y)exp(j(UQX + VQy).

e) Convolution: Convolution of any two spatial functions

requires different steps like reversal, translation,

multiplication and summation. But this operation in the frequency

domain involves only direct multiplication of the two spectral

functions.

In the spectral domain we write the operation as
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N-l M-l
I I f{i,j)h{m-i,n-j)

i=0 j=0

where f and h are the two spatial functions used for

convolution and the same in frequency domain is given as

f) Correlation of two spatial functions is the same as the

product of one of the spectrum and the complex conjugate of the

other in the frequency domain.

The spatial correlation can be written as

N-l M-l
I I f(i,j)h(k-i,l-j)

i=0 j=0

and the corresponding equation in the frequency domain is

F(k,l)H*(k,l).

g) Multiplication: This is the inverse of case e where the

product of the spatial functions produces the same results as the

convolution of the functions in the frequency domain.

h) Rotation: Rotation of the input spatial image by an angle

produces the original spectrum rotated by the same angle. If

f(m',n') is the rotated spatial image and F(k',l') the rotated

spectral image then we can write

m' = mcos© + nsin©
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n'= -msinO + ncosO

and k'= kcos© + lsin©

1'= -lsin© + kcos©

0 is the angle of rotation.

i) Differentiation: This operation results in a high pass

filter output. Differentiation operation in the frequency domain

can be written as (ju)nF(u,v).For discrete cases in the space

domain we have f(m,n) - f(m-l,n) and the same in frequency

domain is equivalent to the operation like F(k,l)fl-exp(-jk/N)}

which is the differencial operation for discrete cases.

j) Integration: This operation involves a similar type of

process but it is a low pass filter and here the multiplier for

the spectral component J<.s i/{ju)n , for an n t n order integration

operation. For discrete cases it is f{m,n) + f(m-l,n) in space

and F(k,1)(1+exp(-jk/n)I in the frequency domain.
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APPENDIX 2

Karhunen Loeve Transform: This transformation is based on the

statistical properties of the picture. It gives the minimum

reconstruction error and so is called an optimum transform. The

image is considered to be a random vector and it is characterized

by 2 parameters, namely - "mean vector" and "covariance matrix".

If the covariance matrix of the input is CRXX and if CR is

the covariance matrix of the transformed data, they can be

expressed as

CRXX= E[(X - M)(X - M)"]

We represent the random image vector X by a transformation

X=

Assuming A to be a non s ingular matrix with l i n e a r l y

independent basis vectors of n dimension, we can write Y as

n
Y= A'X = I A 1 ^

i=l

If only m (m <. n) of the n components of Y which contribute to

X are known then X can be approximately written as

m n
X(m) = lYjAi + 1 b.Ai

i= I i=m+I

Thus the error introduced is
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n
e = X - X = I (yi - biJAi

i=m+l

The mean square error is thus

e 2(m) = I E {{yL - b±)
2)

i=m+l

Solving the above for minimum mean square error we have

±= E{y±] = A'±

•> n

e2(m) = I E[(y± - Ely*])]
i=m+l

n -1= I ElA^iX - M) (X - M) 'Ail
i=m+l

i=m+I

If the basis vectors An- are eicjen vectors of CRVV and if

A^ = 1 we have

a± = A'iCRxxAi

and the mean square error is

n

i=m+l
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where A^ is the eigen vector and ot̂  the corresponding eigen

value of CR__V.

Thus the mean square error can be minimized by ordering the

eigen values a^ > c<2 > a^ >» an- i.e. if the component y^

is eliminated the mean square error increases by co. Therefore

those components of y^ that correspond to the minimum eigen value

can be neglected without causing much of the coding error. The

procedure can be summarized by the following steps, 1) For a

given vector X, find the covariance matrix CR V V. 2) Find the

eigen values or̂  and the corresponding eigen vectors A^ ,

i=l,2,3,....,n. 3) Arrange these in ascending order of a^ . The

covariance matrix for the transforme'd variable Y is given as CRyy

= A1 CRXX A is a diagonal matrix, implying that the vector Y has

uncorrelated components. 4) The transformed vector Y can also be

obtained from a subset of eigen vectors by ignoring the eigen

vectors corresponding to small eigen values.
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APPENDIX 3

Walsh-Hadamard transform: This is also a suboptimal orthogonal

transform with square wave transformation functions. These

functions are real and they are described by their sequencies

which is half the number of zero crossings in the interval (0,1).

The coefficients of the representation are called sequency

components. This transform is computationally fast because they

involve only l's and -l's. The Walsh functions are given by the

relation

wo

w
1

w
n

(X) =

(x) =

(x) =

1

1

-1

W

w n / 2

n/2

X

(2x)

(2x-

(2x-

X

>

1)

< 1/2

1/2

x <

x ;>
X i.

1/2

1/2,

1/2,

n
n

odd

even

Here n/2 takes only the quotient part of the division and WQ,

V*2, W^,....etc. are even functions which are symmetric around

x=l/2, and W^ , W 3,...etc. are the odd functions that are

antisymmetric around x =1/2.

The Walsh functions should be sampled to have samples which

are a power of 2 so that even and odd function pairing is

possible. These matrices have the row ordered with the increasing

number of sequency or the zero crossings. The Hadamard matrices
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are also similar to the Walsh, but here the row ordering is

different. The Hadamard matrices are easy to work with as the

higher order matrices can be generated from a small core matrix

of the form

H =
2

1 1

1 -1

The Hadamard matrix of order 2N can be generated recursively

as

H
N

H
N

H
N

H
N

H
2N

The 2 dimensional Walsh Hadamard transform of an input image f

is given as F = H[f]H where H = 1//N HN.

This transform is quite useful not only for image coding but

also for pattern recognition, sequency filtering etc. As this

transform considers all the image elements for computation of the

transform coefficients, it is globally sensitive.
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APPENDIX 4

Discrete Cosine Transform:This i s also an orthogonal transform

t h a t comes under the sub op t imal c l a s s with r e a l va lued

transformation kernel . The bas i s vec to r s are sampled cosine

functions and the transformation matrix is given as

H= 1//N [Hkl]

where H
kl

1, 1 = 0

/2cos{(2k+l)ln/2Nl k = 0,1,2 N-l
1 = 1,2 N-l

The basis vectors of DCT are related to the class of Chebyshev

polynomials which are also orthogonal. The eigen vectors of a

Toeplitz matrix and the DCT matrix are related by their basis

vectors. This has a fast computation algorithm and it can also be

computed from a 2N point FFT.

This transform is more efficient than the WH type as here the

mean square error is minimal but it is quite slow

computationally. The forward and the inverse transformation

kernels are the same.
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APPENDIX 5

Haar Transform: This is also an orthogonal sub optimal

transform which has elements 1, -1, 0 and powers of /2. The

matrix rows consider different elements of the vector, depending

on the row number in the computation of the transform

coefficients. The first coefficient is the mean of the vector,

the second is the difference of means for first half and tht

second half elements of the vector. The remaining coefficients in

groups of power of two ( 2 , k=l,2,3,4...,n-1) are weighted

(weight equal to [/2] ) difference of means of the vector

elements at diff rent positions of the vector and the element

count for averaging is given as 2 l=n 2,n-3,...,1,0. For example

when the vector is of 4 elements, the third coeffic :nt is

difference of first two elements weighted by /2 and the 1: .rth

element is similarly weighted difference of third and fourth

element. It can be verified easily that for transform of N

element vector involves N(n+1) additions and 2+2 +2 + +2n

multiplications.

The Haar transform is both globally and locally sensitive as

it involve the parts of the vector for computation of third and

subsequent coefficients of the transform.

For a NxN two dimensional matrix [f] , the Haar transform [F]

is given as
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[F] = l/(NxN) [H] [f] [H]'

[f] = CH]'[f] [H]

where [H]' is the transpose of [H]
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APPENDIX 6

Slant transform: The Slant transform is another fast,

suboptimal, orthogonal transform, which uses sawtooth waves in

place of sinusoids or step functions for fitting the input data,

leading to the transformed output image. The basis matrix S can

be easily computed by the recursive relationship, involving the

lower order slant matrix. The lowest order Slant matrix S(2) is

defined as

S(2) = 1//2
1 1

1 -1

The recursive relationship for S(N) in term of lower order

matrix S(N/2) is given as the product of matrices as shown below.

Higher order matrix is obtained by appending zero partitions on

the off diagonal parts, the main diagonal partitions are the

lower order slant matrix. The matrix is premultiplied by another

matrix obtained by adding identity matrices and zero matrices.

1 0 . Z(2xk) . 1 0 . Z(2xk)
a(N) b(N) . . -a(N) b(N) .

Z(kx2) . I(kxk) . Z(kx2) . I(kxk)

0 1 . Z(2xk) . 0 - 1 . Z(2xk)
-b(N) a(N) . . b(N) a(N) .

Z(kx2) . K k x k ) . Z{kx2) .-I(kxk)

S(M) . 0<M)

O(M) . S(M)
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where 0(M) is zero matrix of M rows and M columns,

S(M) is lower M order slant matrix,

M = N/2

Z(ixj) is zero matrix with i rows and j columns,

k = M - 2,

a(N)= /[ 3MxM/{4xMxM - 1)]

b(N)= /[(MxM-l)/(4xMxM -1)]

For a NxN two dimensional matrix [f ], the Haar transform [F]

is given as

[F] = l/(NxN) [S] [f] [S] '

[f] = [S]'[f] [S]

where [S] ' is the transpose of [S] and [S] is slant matrix

S(N) defined above.

88



APPENDIX 7

Hartley Transform: It is an orthogonal sub optimal transform

which has a real valued kernel. For input sequence f (t) ,

t=0,1,2,....,M-1, the Hartley transform H(s) is given as

H(s) = Z f <t)cas(2nst/M) s=0,l,2 M-l

where cas(O) = cos(O) + sin(©)

s/M is similar to cycles per unit t

The FFT has the following decimation relationships

2M-1
F-(s) = Z f ( t ) exp(irist/M)

t=0

F"(s) = F e{s) + F o (s) exp(-ins/M)

F*(s ± M) = F e (s ) - F o(s) exp(-ins/M)

These relationships are used to compute the Fourier transform

of 2N point sequence, Fo(s) and Fe are Fourier transforms of odd

and even indexed data points. The relationship between Fourier

transform F(s) and Hartley transform H(s) is given as

F(s) = [ H(s) + i H(-s)]

Using these relations even and odd indexed data can be

89



separated for Hartley transform, yielding

H-<s)+iH-(-s) = [He(s)+iHe(-s)]+[Ho(s)+iHo(-s)].

exp(-ins/M)

This equations can be separated in to real and imaginary parts

as

H"(s) = He(s)+Ho( s)cos(ns/M)+Ho(-s)sin(ns/M)

H"(-s)= He(-s)+Ho(-s)cos(ns/M)+Ho{ s)sin(ns/M)

The power spectral density function can be directly obtained

from Hartley transform without conversion to FFT as

P{s) = [H"(s)2 + H-(-s)2] /2

The " operator denote the transform on 2M points. Thus Hartley

transform is quite similar to the DFT , but has no complex term

involved in it and therefore it is quite fast and efficient. It

can be computed using the FFT also. The advantages of Hartley

transform over FFT for real data are 1) require only half the

array space, 2) has identical forward and inverse transforms, 3)

more direct conversion to power spectral density function.
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APPENDIX 8

SOFTWARE DEVELOPMENTS FOR BINARY IMAGE ANALYSES

Following programs have been developed for binary image

analyses.

GRAY LEVEL IMAGE OPERATIONS

Read input image from file:- The grey level image is read from

the user specified file.

Acquire new grey image:- The analyses performed on earlier

image is saved in appropriate memory area and the new grey level

image is read from the user specified file.

GENERATE BINARY IMAGE BASED ON SPECIFIED GREY LEVELS: The user

specified window on grey scale is used to get a binary image.

DISPLAY THE OUTPUT (GREY) LEVEL: The gray level image along

with the binary image in output array are displayed on the

terminal.

DISPLAY DISTRIBUTION: The distribution of the parameter

measured on individual objects along with the grey level image,

binary image in the output array and the statistics are displayed

on the terminal.

BINARY IMAGE AND BIT PLANE OPERATIONS: The binary image in the

output array and the binary image stored as bit plane in Imb
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array are operated upon. The different operations are

Store output (binary image) in bit plane:- Output image to the

user specified bit plane.

Move bit plane :- Source bit plane to the destination bit

plane.

Clear a bit plane:- Destination bit plane is cleared.

Set mask bit plane;- Output array is set in the mask bit

plane.

Clear mask bit plane:- Mask bit plane is cleared.

PREMEASUREMENT PROCESSING: To weed out the noise from binary

image before making measurements.

LOGICAL OPERATIONS

Inclusive OR of bit planes:- Destination bit plane equal to

the OR of source and destination bit planes.

Exclusive OR of bit planes:- Destination bit plane equal to

the exclusive OR of source and destination bit planes.

AND of bit planes:- Destination bit plane equal to the AND of

source and destination bit planes.

Negate a bit plane:- Destination bit plane equal to the NOT of

source bit plane.

MORPHOLOGICAL PROCESSING: A structural element is used to
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modify the destination bit plane and result is set in the output

image array.

Dilate bit plane:- Destination bit plane is dilated increasing

the size of the binary objects.

Erode bit plane:- Destination bit plane is eroded decreasing

the size of the binary objects.

Thicken operations:- Destination bit plane is dilated

increasing the size of the binary objects. The objects in the

output image are not allowed to touch each other.

Reconstruct plane:- The binary objects in destination plane

are modified till they attain the size of the corresponding

objects in source bit plane.

Close holes:- The holes in the binary objects are filled with

ones, making them (holes) indistinguishable from the object.

Remove objects on the border:- Objects on the border are

removed, leaving the image with the objects well within the

borders.

Overture (open up) a bit plane:- The destination bit plane is

eroded by the specified count and then dilated by the same count.

Fermeture (close) a bit plane:- The destination bit plane is

dilated by the user specified count and then eroded by the same

count.
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Skeletonisation:- The output image is processed so that

objects are reduced to the minimum size, without breaking the

objects.

Axes of local symmetry:- The objects are reduced to the line

segments that are axes of symmetry for each object.

Binary image refinement:- Using maxmin filter the objects

falling within the filter window are removed leaving the other

objects unaltered.

AREA SEGMENTATION: Different parts of binary image are

isolated for measurements on the objects included in the selected

part.

Select object:- Object specified by the user through graphic

cursor or by the coordinate is isolated.

Delete object:- Object specified by the user through graphic

cursor or by the coordinate is removed from the binary image.

Connect points in a bit plane:- Joins the points by a line

passing though the user specified points. The bit along the line

is either cleared, set to 1 or reversed.

Select/remove part by contours:- Area of the image masked by

the linear segments making closed contours, is either selected or

removed as specified by the user.
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MEASUREMENTS ON INDIVIDUAL OBJECT: the following measurements

are made on the individual object isolated from the rest of the

image.

AREA
X PROJECTION
Y PROJECTION
INNER PERIMETER
OUTER PERIMETER
PERIMETER
EQUIVALENT DIAMETER
SHAPE FACTOR
NUMBER OF HOLES
ABSORBANCE (OD)
TRANSMITTANCE
MINIMUM DIAMETER
MAXIMUM DIAMETER
SLOPE

GLOBAL MEASUREMENTS:

The following measurements are on the whole of the binary image

with all the objects.

GLOBAL AREA OF THE OBJECTS
GLOBAL EQUIVALENT DIAMETER
GLOBAL NUMBER OF HOLES
COUNT THE OBJECTS

ANALYSES: The measurements on the objects are used to generate

the histogram, check the type of distribution and perform

statistical analyses.

Histogram:- Histogram on any of the measurement can be

generated.

Object erosion size histogram:- The distribution of the

objects based on the number of erosion to remove the object, is
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generated.

Statistical analyses of data:- The following analyses options

are available.

i) Type of distribution (normal or log-normal).

ii) Correlation among any two parameters.

iii) Inter-image comparison of measurements with Analyses of

Variance (ANOVA).

Arrange ob.iects in order:- The grey level image of the binary

objects is isolated and arranged in a sequence based on the

measurement on the binary object.

Grey level profiles through a pixel:- Also the grey level

profiles through a point can be obtained.
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